Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 9(5): e0003770, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25978361

RESUMEN

Trypanosoma cruzi is the causal agent of Chagas Disease that is endemic in Latin American, afflicting more than ten million people approximately. This disease has two phases, acute and chronic. The acute phase is often asymptomatic, but with time it progresses to the chronic phase, affecting the heart and gastrointestinal tract and can be lethal. Chronic Chagas cardiomyopathy involves an inflammatory vasculopathy. Endothelial activation during Chagas disease entails the expression of cell adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) through a mechanism involving NF-κB activation. Currently, specific trypanocidal therapy remains on benznidazole, although new triazole derivatives are promising. A novel strategy is proposed that aims at some pathophysiological processes to facilitate current antiparasitic therapy, decreasing treatment length or doses and slowing disease progress. Simvastatin has anti-inflammatory actions, including improvement of endothelial function, by inducing a novel pro-resolving lipid, the 5-lypoxygenase derivative 15-epi-lipoxin A4 (15-epi-LXA4), which belongs to aspirin-triggered lipoxins. Herein, we propose modifying endothelial activation with simvastatin or benznidazole and evaluate the pathways involved, including induction of 15-epi-LXA4. The effect of 5 µM simvastatin or 20 µM benznidazole upon endothelial activation was assessed in EA.hy926 or HUVEC cells, by E-selectin, ICAM-1 and VCAM-1 expression. 15-epi-LXA4 production and the relationship of both drugs with the NFκB pathway, as measured by IKK-IKB phosphorylation and nuclear migration of p65 protein was also assayed. Both drugs were administered to cell cultures 16 hours before the infection with T. cruzi parasites. Indeed, 5 µM simvastatin as well as 20 µM benznidazole prevented the increase in E-selectin, ICAM-1 and VCAM-1 expression in T. cruzi-infected endothelial cells by decreasing the NF-κB pathway. In conclusion, Simvastatin and benznidazole prevent endothelial activation induced by T. cruzi infection, and the effect of simvastatin is mediated by the inhibition of the NFκB pathway by inducing 15-epi-LXA4 production.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lipoxinas/fisiología , Nitroimidazoles/farmacología , Simvastatina/farmacología , Tripanocidas/farmacología , Moléculas de Adhesión Celular/análisis , Células Cultivadas , Enfermedad de Chagas/fisiopatología , Humanos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/fisiología , Transducción de Señal/efectos de los fármacos
2.
J Immunol ; 179(12): 8533-43, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18056401

RESUMEN

The appropriate development of an inflammatory response is central for the ability of a host to deal with any infectious insult. However, excessive, misplaced, or uncontrolled inflammation may lead to acute or chronic diseases. The microbiota plays an important role in the control of inflammatory responsiveness. In this study, we investigated the role of lipoxin A4 and annexin-1 for the IL-10-dependent inflammatory hyporesponsiveness observed in germfree mice. Administration of a 15-epi-lipoxin A4 analog or an annexin-1-derived peptide to conventional mice prevented tissue injury, TNF-alpha production, and lethality after intestinal ischemia/reperfusion. This was associated with enhanced IL-10 production. Lipoxin A4 and annexin-1 failed to prevent reperfusion injury in IL-10-deficient mice. In germfree mice, there was enhanced expression of both lipoxin A4 and annexin-1. Blockade of lipoxin A4 synthesis with a 5-lipoxygenase inhibitor or Abs against annexin-1 partially prevented IL-10 production and this was accompanied by partial reversion of inflammatory hyporesponsiveness in germfree mice. Administration of BOC-1, an antagonist of ALX receptors (at which both lipoxin A4 and annexin-1 act), or simultaneous administration of 5-lipoxygenase inhibitor and anti-annexin-1 Abs, was associated with tissue injury, TNF-alpha production, and lethality similar to that found in conventional mice. Thus, our data demonstrate that inflammatory responsiveness is tightly controlled by the presence of the microbiota and that the innate capacity of germfree mice to produce IL-10 is secondary to their endogenous greater ability to produce lipoxin A4 and annexin-1.


Asunto(s)
Anexina A1/fisiología , Vida Libre de Gérmenes , Inflamación/inmunología , Interleucina-10/metabolismo , Lipoxinas/fisiología , Animales , Anexina A1/administración & dosificación , Anexina A1/antagonistas & inhibidores , Inflamación/prevención & control , Interleucina-10/genética , Intestinos , Lipoxinas/administración & dosificación , Lipoxinas/antagonistas & inhibidores , Ratones , Ratones Mutantes , Péptidos/administración & dosificación , Daño por Reperfusión/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA