Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.357
Filtrar
1.
J Transl Med ; 22(1): 606, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951801

RESUMEN

BACKGROUND: The spatial context of tumor-infiltrating immune cells (TIICs) is important in predicting colorectal cancer (CRC) patients' clinical outcomes. However, the prognostic value of the TIIC spatial distribution is unknown. Thus, we aimed to investigate the association between TIICs in situ and patient prognosis in a large CRC sample. METHODS: We implemented multiplex immunohistochemistry staining technology in 190 CRC samples to quantify 14 TIIC subgroups in situ. To delineate the spatial relationship of TIICs to tumor cells, tissue slides were segmented into tumor cell and microenvironment compartments based on image recognition technology, and the distance between immune and tumor cells was calculated by implementing the computational pipeline phenoptr. RESULTS: MPO+ neutrophils and CD68+IDO1+ tumor-associated macrophages (TAMs) were enriched in the epithelial compartment, and myeloid lineage cells were located nearest to tumor cells. Except for CD68+CD163+ TAMs, other cells were all positively associated with favorable prognosis. The prognostic predictive power of TIICs was highly related to their distance to tumor cells. Unsupervised clustering analysis divided colorectal cancer into three subtypes with distinct prognostic outcomes, and correlation analysis revealed the synergy among B cells, CD68+IDO1+TAMs, and T lineage cells in producing an effective immune response. CONCLUSIONS: Our study suggests that the integration of spatial localization with TIIC abundance is important for comprehensive prognostic assessment.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Microambiente Tumoral/inmunología , Análisis por Conglomerados , Anciano , Linfocitos Infiltrantes de Tumor/inmunología , Inmunohistoquímica , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Análisis Espacial
2.
J Transl Med ; 22(1): 617, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961399

RESUMEN

INTRODUCTION: Intrauterine adhesions (IUA) manifest as endometrial fibrosis, often causing infertility or recurrent miscarriage; however, their pathogenesis remains unclear. OBJECTIVES: This study assessed the role of Dickkopf WNT signaling pathway inhibitor 1 (DKK1) and autophagy in endometrial fibrosis, using clinical samples as well as in vitro and in vivo experiments. METHODS: Immunohistochemistry, immunofluorescence and western blot were used to determine the localization and expression of DKK1 in endometrium; DKK1 silencing and DKK1 overexpression were used to detect the biological effects of DKK1 silencing or expression in endometrial cells; DKK1 gene knockout mice were used to observe the phenotypes caused by DKK1 gene knockout. RESULTS: In patients with IUA, DKK1 and autophagy markers were down-regulated; also, α-SMA and macrophage localization were increased in the endometrium. DKK1 conditional knockout (CKO) mice showed a fibrotic phenotype with decreased autophagy and increased localization of α-SMA and macrophages in the endometrium. In vitro studies showed that DKK1 knockout (KO) suppressed the autophagic flux of endometrial stromal cells. In contrast, ectopic expression of DKK1 showed the opposite phenotype. Mechanistically, we discovered that DKK1 regulates autophagic flux through Wnt/ß-catenin and PI3K/AKT/mTOR pathways. Further studies showed that DKK1 KO promoted the secretion of interleukin (IL)-8 in exosomes, thereby promoting macrophage proliferation and metastasis. Also, in DKK1 CKO mice, treatment with autophagy activator rapamycin partially restored the endometrial fibrosis phenotype. CONCLUSION: Our findings indicated that DKK1 was a potential diagnostic marker or therapeutic target for IUA.


Asunto(s)
Autofagia , Endometrio , Exosomas , Fibrosis , Péptidos y Proteínas de Señalización Intercelular , Macrófagos , Ratones Noqueados , Miofibroblastos , Animales , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Endometrio/metabolismo , Endometrio/patología , Macrófagos/metabolismo , Macrófagos/patología , Humanos , Exosomas/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Ratones , Ratones Endogámicos C57BL , Adulto
3.
Clin Transplant ; 38(7): e15384, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967592

RESUMEN

BACKGROUND: Macrophages are involved in kidney transplants. The aim of the study was to investigate if changes exist in the levels of glomerular macrophage index (GMI) between two consecutive kidney transplant biopsies, and if so to determine their potential impact on graft survival. METHODS: Two consecutive biopsies were performed on the same renal graft in 623 patients. GMI was categorized into three GMI classes: ≤1.8 Low, 1.9-4.5 Medium, and ≥4.6 High. This division yielded nine possible switches between the first and second biopsies (Low-Low, Low-Medium, etc.). Cox-regressions were used and hazard ratios (HR) with 95% confidence interval (CI) are presented. RESULTS: The worst graft survival was observed in the High-High group, and the best graft survival was observed in the Low-Low and High-Low groups. Compared to the High-High group, a reduction of risk was observed in nearly all other decreasing groups (reductions between 65% and 80% of graft loss). After adjustment for covariates, the risk for graft-loss was lower in the Low-Low (HR = 0.24, CI 0.13-0.46), Low-Medium (HR = 0.25, CI 0.11-0.55), Medium-Low (HR = 0.29, CI 0.11-0.77), and the High-Low GMI (HR = 0.31, CI 0.10-0.98) groups compared to the High-High group as the reference. CONCLUSIONS: GMI may change dynamically, and the latest finding is of most prognostic importance. GMI should be considered in all evaluations of biopsy findings since high or increasing GMI levels are associated with shorter graft survival. Future studies need to consider therapeutic strategies to lower or maintain a low GMI. A high GMI besides a vague histological finding should be considered as a warning sign requiring more frequent clinical follow up.


Asunto(s)
Rechazo de Injerto , Supervivencia de Injerto , Glomérulos Renales , Trasplante de Riñón , Macrófagos , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios de Seguimiento , Macrófagos/patología , Pronóstico , Rechazo de Injerto/patología , Rechazo de Injerto/etiología , Biopsia , Factores de Riesgo , Glomérulos Renales/patología , Tasa de Filtración Glomerular , Adulto , Fallo Renal Crónico/cirugía , Fallo Renal Crónico/patología , Pruebas de Función Renal , Complicaciones Posoperatorias , Estudios Retrospectivos
5.
Cardiovasc Diabetol ; 23(1): 240, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978031

RESUMEN

BACKGROUND: Metabolism is increasingly recognized as a key regulator of the function and phenotype of the primary cellular constituents of the atherosclerotic vascular wall, including endothelial cells, smooth muscle cells, and inflammatory cells. However, a comprehensive analysis of metabolic changes associated with the transition of plaque from a stable to a hemorrhaged phenotype is lacking. METHODS: In this study, we integrated two large mRNA expression and protein abundance datasets (BIKE, n = 126; MaasHPS, n = 43) from human atherosclerotic carotid artery plaque to reconstruct a genome-scale metabolic network (GEM). Next, the GEM findings were linked to metabolomics data from MaasHPS, providing a comprehensive overview of metabolic changes in human plaque. RESULTS: Our study identified significant changes in lipid, cholesterol, and inositol metabolism, along with altered lysosomal lytic activity and increased inflammatory activity, in unstable plaques with intraplaque hemorrhage (IPH+) compared to non-hemorrhaged (IPH-) plaques. Moreover, topological analysis of this network model revealed that the conversion of glutamine to glutamate and their flux between the cytoplasm and mitochondria were notably compromised in hemorrhaged plaques, with a significant reduction in overall glutamate levels in IPH+ plaques. Additionally, reduced glutamate availability was associated with an increased presence of macrophages and a pro-inflammatory phenotype in IPH+ plaques, suggesting an inflammation-prone microenvironment. CONCLUSIONS: This study is the first to establish a robust and comprehensive GEM for atherosclerotic plaque, providing a valuable resource for understanding plaque metabolism. The utility of this GEM was illustrated by its ability to reliably predict dysregulation in the cholesterol hydroxylation, inositol metabolism, and the glutamine/glutamate pathway in rupture-prone hemorrhaged plaques, a finding that may pave the way to new diagnostic or therapeutic measures.


Asunto(s)
Enfermedades de las Arterias Carótidas , Ácido Glutámico , Glutamina , Macrófagos , Redes y Vías Metabólicas , Fenotipo , Placa Aterosclerótica , Humanos , Glutamina/metabolismo , Ácido Glutámico/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/genética , Rotura Espontánea , Arterias Carótidas/patología , Arterias Carótidas/metabolismo , Metabolómica , Bases de Datos Genéticas , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Metabolismo Energético , Conjuntos de Datos como Asunto , Masculino
6.
Cardiovasc Diabetol ; 23(1): 236, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970123

RESUMEN

BACKGROUND: Owing to its unique location and multifaceted metabolic functions, epicardial adipose tissue (EAT) is gradually emerging as a new metabolic target for coronary artery disease risk stratification. Microvascular obstruction (MVO) has been recognized as an independent risk factor for unfavorable prognosis in acute myocardial infarction patients. However, the concrete role of EAT in the pathogenesis of MVO formation in individuals with ST-segment elevation myocardial infarction (STEMI) remains unclear. The objective of the study is to evaluate the correlation between EAT accumulation and MVO formation measured by cardiac magnetic resonance (CMR) in STEMI patients and clarify the underlying mechanisms involved in this relationship. METHODS: Firstly, we utilized CMR technique to explore the association of EAT distribution and quantity with MVO formation in patients with STEMI. Then we utilized a mouse model with EAT depletion to explore how EAT affected MVO formation under the circumstances of myocardial ischemia/reperfusion (I/R) injury. We further investigated the immunomodulatory effect of EAT on macrophages through co-culture experiments. Finally, we searched for new therapeutic strategies targeting EAT to prevent MVO formation. RESULTS: The increase of left atrioventricular EAT mass index was independently associated with MVO formation. We also found that increased circulating levels of DPP4 and high DPP4 activity seemed to be associated with EAT increase. EAT accumulation acted as a pro-inflammatory mediator boosting the transition of macrophages towards inflammatory phenotype in myocardial I/R injury through secreting inflammatory EVs. Furthermore, our study declared the potential therapeutic effects of GLP-1 receptor agonist and GLP-1/GLP-2 receptor dual agonist for MVO prevention were at least partially ascribed to its impact on EAT modulation. CONCLUSIONS: Our work for the first time demonstrated that excessive accumulation of EAT promoted MVO formation by promoting the polarization state of cardiac macrophages towards an inflammatory phenotype. Furthermore, this study identified a very promising therapeutic strategy, GLP-1/GLP-2 receptor dual agonist, targeting EAT for MVO prevention following myocardial I/R injury.


Asunto(s)
Tejido Adiposo , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica , Pericardio , Infarto del Miocardio con Elevación del ST , Animales , Pericardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Masculino , Macrófagos/metabolismo , Macrófagos/patología , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Infarto del Miocardio con Elevación del ST/metabolismo , Infarto del Miocardio con Elevación del ST/patología , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Humanos , Femenino , Persona de Mediana Edad , Fenotipo , Dipeptidil Peptidasa 4/metabolismo , Anciano , Técnicas de Cocultivo , Adiposidad , Circulación Coronaria , Transducción de Señal , Microcirculación , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Vasos Coronarios/diagnóstico por imagen , Incretinas/farmacología , Microvasos/metabolismo , Microvasos/patología , Células Cultivadas , Ratones , Tejido Adiposo Epicárdico
7.
Bull Math Biol ; 86(8): 104, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980556

RESUMEN

Atherosclerotic plaques are fatty deposits that form in the walls of major arteries and are one of the major causes of heart attacks and strokes. Macrophages are the main immune cells in plaques and macrophage dynamics influence whether plaques grow or regress. Macrophage proliferation is a key process in atherosclerosis, particularly in the development of mid-stage plaques, but very few mathematical models include proliferation. In this paper we reframe the lipid-structured model of Ford et al. (J Theor Biol 479:48-63, 2019. https://doi.org/10.1016/j.jtbi.2019.07.003 ) to account for macrophage proliferation. Proliferation is modelled as a non-local decrease in the lipid structural variable. Steady state analysis indicates that proliferation assists in reducing eventual necrotic core lipid content and spreads the lipid load of the macrophage population amongst the cells. The contribution of plaque macrophages from proliferation relative to recruitment from the bloodstream is also examined. The model suggests that a more proliferative plaque differs from an equivalent (defined as having the same lipid content and cell numbers) recruitment-dominant plaque in the way lipid is distributed amongst the macrophages. The macrophage lipid distribution of an equivalent proliferation-dominant plaque is less skewed and exhibits a local maximum near the endogenous lipid content.


Asunto(s)
Aterosclerosis , Proliferación Celular , Metabolismo de los Lípidos , Macrófagos , Conceptos Matemáticos , Modelos Cardiovasculares , Placa Aterosclerótica , Macrófagos/patología , Macrófagos/metabolismo , Aterosclerosis/patología , Aterosclerosis/metabolismo , Placa Aterosclerótica/patología , Humanos , Animales , Simulación por Computador , Lípidos
8.
J Transl Med ; 22(1): 668, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026250

RESUMEN

BACKGROUND: The heightened risk of cardiovascular and cerebrovascular events is associated with the increased instability of atherosclerotic plaques. However, the lack of effective diagnostic biomarkers has impeded the assessment of plaque instability currently. This study was aimed to investigate and identify hub genes associated with unstable plaques through the integration of various bioinformatics tools, providing novel insights into the detection and treatment of this condition. METHODS: Weighted Gene Co-expression Network Analysis (WGCNA) combined with two machine learning methods were used to identify hub genes strongly associated with plaque instability. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) method was utilized to assess immune cell infiltration patterns in atherosclerosis patients. Additionally, Gene Set Variation Analysis (GSVA) was conducted to investigate the potential biological functions, pathways, and mechanisms of hub genes associated with unstable plaques. To further validate the diagnostic efficiency and expression of the hub genes, immunohistochemistry (IHC), quantitative real-time polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) were performed on collected human carotid plaque and blood samples. Immunofluorescence co-staining was also utilized to confirm the association between hub genes and immune cells, as well as their colocalization with mitochondria. RESULTS: The CIBERSORT analysis demonstrated a significant decrease in the infiltration of CD8 T cells and an obvious increase in the infiltration of M0 macrophages in patients with atherosclerosis. Subsequently, two highly relevant modules (blue and green) strongly associated with atherosclerotic plaque instability were identified. Through intersection with mitochondria-related genes, 50 crucial genes were identified. Further analysis employing least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) algorithms revealed six hub genes significantly associated with plaque instability. Among them, NT5DC3, ACADL, SLC25A4, ALDH1B1, and MAOB exhibited positive correlations with CD8 T cells and negative correlations with M0 macrophages, while kynurenine 3-monooxygenas (KMO) demonstrated a positive correlation with M0 macrophages and a negative correlation with CD8 T cells. IHC and RT-qPCR analyses of human carotid plaque samples, as well as ELISA analyses of blood samples, revealed significant upregulation of KMO and MAOB expression, along with decreased ALDH1B1 expression, in both stable and unstable samples compared to the control samples. However, among the three key genes mentioned above, only KMO showed a significant increase in expression in unstable plaque samples compared to stable plaque samples. Furthermore, the expression patterns of KMO in human carotid unstable plaque tissues and cultured mouse macrophage cell lines were assessed using immunofluorescence co-staining techniques. Finally, lentivirus-mediated KMO silencing was successfully transduced into the aortas of high-fat-fed ApoE-/- mice, with results indicating that KMO silencing attenuated plaque formation and promoted plaque stability in ApoE-/- mice. CONCLUSIONS: The results suggest that KMO, a mitochondria-targeted gene associated with macrophage cells, holds promise as a valuable diagnostic biomarker for assessing the instability of atherosclerotic plaques.


Asunto(s)
Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Genes Mitocondriales/genética , Redes Reguladoras de Genes , Masculino , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Femenino , Biología Computacional/métodos , Persona de Mediana Edad , Macrófagos/metabolismo , Macrófagos/patología , Mitocondrias/metabolismo
9.
PLoS One ; 19(7): e0305648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954689

RESUMEN

INTRODUCTION: Pancreatic adenocarcinoma is an extremely aggressive neoplasm, with many challenges to be overcome in order to achieve a truly effective treatment. It is characterized by a mostly immunosuppressed environment, with dysfunctional immune cells and active immunoinhibitory pathways that favor tumor evasion and progression. Thus, the study and understanding of the tumor microenvironment and the various cells subtypes and their functional capacities are essential to achieve more effective treatments, especially with the use of new immunotherapeutics. METHODS: Seventy cases of pancreatic adenocarcinoma divided into two groups 43 with resectable disease and 27 with unresectable disease were analyzed using immunohistochemical methods regarding the expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), and human leukocyte antigen G (HLA-G) molecules as well as the populations of CD4+ and CD8+ T lymphocytes, regulatory T cells (Tregs), and M2 macrophages (MM2). Several statistical tests, including multivariate analyses, were performed to examine how those immune cells and immunoinhibitory molecules impact the evolution and prognosis of pancreatic adenocarcinoma. RESULTS: CD8+ T lymphocytes and M2 macrophages predominated in the group operated on, and PD-L2 expression predominated in the unresectable group. PD-L2 was associated with T stage, lymph node metastasis, and clinical staging, while in survival analysis, PD-L2 and HLA-G were associated with a shorter survival. In the inoperable cases, Tregs cells, MM2, PD-L1, PD-L2, and HLA-G were positively correlated. CONCLUSIONS: PD-L2 and HLA-G expression correlated with worse survival in the cases studied. Tumor microenvironment was characterized by a tolerant and immunosuppressed pattern, mainly in unresectable lesions, where a broad positive influence was observed between immunoinhibitory cells and immune checkpoint proteins expressed by tumor cells.


Asunto(s)
Adenocarcinoma , Antígeno B7-H1 , Antígenos HLA-G , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/mortalidad , Masculino , Femenino , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Persona de Mediana Edad , Anciano , Microambiente Tumoral/inmunología , Antígeno B7-H1/metabolismo , Antígenos HLA-G/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Pronóstico , Linfocitos T CD8-positivos/inmunología , Adulto , Linfocitos T Reguladores/inmunología , Anciano de 80 o más Años , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología
10.
eNeuro ; 11(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834299

RESUMEN

Viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use respiratory epithelial cells as an entry point for infection. Within the nasal cavity, the olfactory epithelium (OE) is particularly sensitive to infections which may lead to olfactory dysfunction. In patients suffering from coronavirus disease 2019, deficits in olfaction have been characterized as a distinctive symptom. Here, we used the K18hACE2 mice to study the spread of SARS-CoV-2 infection and inflammation in the olfactory system (OS) after 7 d of infection. In the OE, we found that SARS-CoV-2 selectively targeted the supporting/sustentacular cells (SCs) and macrophages from the lamina propria. In the brain, SARS-CoV-2 infected some microglial cells in the olfactory bulb (OB), and there was a widespread infection of projection neurons in the OB, piriform cortex (PC), and tubular striatum (TuS). Inflammation, indicated by both elevated numbers and morphologically activated IBA1+ cells (monocyte/macrophage lineages), was preferentially increased in the OE septum, while it was homogeneously distributed throughout the layers of the OB, PC, and TuS. Myelinated OS axonal tracts, the lateral olfactory tract, and the anterior commissure, exhibited decreased levels of 2',3'-cyclic-nucleotide 3'-phosphodiesterase, indicative of myelin defects. Collectively, our work supports the hypothesis that SARS-CoV-2 infected SC and macrophages in the OE and, centrally, microglia and subpopulations of OS neurons. The observed inflammation throughout the OS areas and central myelin defects may account for the long-lasting olfactory deficit.


Asunto(s)
COVID-19 , Vaina de Mielina , Bulbo Olfatorio , Mucosa Olfatoria , SARS-CoV-2 , Animales , COVID-19/patología , COVID-19/complicaciones , Ratones , Mucosa Olfatoria/patología , Mucosa Olfatoria/virología , Bulbo Olfatorio/patología , Bulbo Olfatorio/virología , Vaina de Mielina/patología , Vaina de Mielina/metabolismo , Microglía/patología , Microglía/metabolismo , Microglía/virología , Ratones Transgénicos , Enzima Convertidora de Angiotensina 2/metabolismo , Trastornos del Olfato/patología , Trastornos del Olfato/virología , Modelos Animales de Enfermedad , Masculino , Inflamación/patología , Inflamación/virología , Macrófagos/patología , Femenino
11.
Nature ; 630(8016): 447-456, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839969

RESUMEN

Increasing rates of autoimmune and inflammatory disease present a burgeoning threat to human health1. This is compounded by the limited efficacy of available treatments1 and high failure rates during drug development2, highlighting an urgent need to better understand disease mechanisms. Here we show how functional genomics could address this challenge. By investigating an intergenic haplotype on chr21q22-which has been independently linked to inflammatory bowel disease, ankylosing spondylitis, primary sclerosing cholangitis and Takayasu's arteritis3-6-we identify that the causal gene, ETS2, is a central regulator of human inflammatory macrophages and delineate the shared disease mechanism that amplifies ETS2 expression. Genes regulated by ETS2 were prominently expressed in diseased tissues and more enriched for inflammatory bowel disease GWAS hits than most previously described pathways. Overexpressing ETS2 in resting macrophages reproduced the inflammatory state observed in chr21q22-associated diseases, with upregulation of multiple drug targets, including TNF and IL-23. Using a database of cellular signatures7, we identified drugs that might modulate this pathway and validated the potent anti-inflammatory activity of one class of small molecules in vitro and ex vivo. Together, this illustrates the power of functional genomics, applied directly in primary human cells, to identify immune-mediated disease mechanisms and potential therapeutic opportunities.


Asunto(s)
Inflamación , Macrófagos , Proteína Proto-Oncogénica c-ets-2 , Femenino , Humanos , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células Cultivadas , Cromosomas Humanos Par 21/genética , Bases de Datos Factuales , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Haplotipos/genética , Inflamación/genética , Enfermedades Inflamatorias del Intestino/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Proteína Proto-Oncogénica c-ets-2/genética , Proteína Proto-Oncogénica c-ets-2/metabolismo , Reproducibilidad de los Resultados , Factores de Necrosis Tumoral/metabolismo , Interleucina-23/metabolismo
12.
Circ Res ; 135(2): e4-e23, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38860377

RESUMEN

BACKGROUND: Cell phenotype switching is increasingly being recognized in atherosclerosis. However, our understanding of the exact stimuli for such cellular transformations and their significance for human atherosclerosis is still evolving. Intraplaque hemorrhage is thought to be a major contributor to plaque progression in part by stimulating the influx of CD163+ macrophages. Here, we explored the hypothesis that CD163+ macrophages cause plaque progression through the induction of proapoptotic endothelial-to-mesenchymal transition (EndMT) within the fibrous cap. METHODS: Human coronary artery sections from CVPath's autopsy registry were selected for pathological analysis. Athero-prone ApoE-/- and ApoE-/-/CD163-/- mice were used for in vivo studies. Human peripheral blood mononuclear cell-induced macrophages and human aortic endothelial cells were used for in vitro experiments. RESULTS: In 107 lesions with acute coronary plaque rupture, 55% had pathological evidence of intraplaque hemorrhage in nonculprit vessels/lesions. Thinner fibrous cap, greater CD163+ macrophage accumulation, and a larger number of CD31/FSP-1 (fibroblast specific protein-1) double-positive cells and TUNEL (terminal deoxynucleotidyl transferase-dUTP nick end labeling) positive cells in the fibrous cap were observed in nonculprit intraplaque hemorrhage lesions, as well as in culprit rupture sections versus nonculprit fibroatheroma sections. Human aortic endothelial cells cultured with supernatants from hemoglobin/haptoglobin-exposed macrophages showed that increased mesenchymal marker proteins (transgelin and FSP-1) while endothelial markers (VE-cadherin and CD31) were reduced, suggesting EndMT induction. Activation of NF-κB (nuclear factor kappa ß) signaling by proinflammatory cytokines released from CD163+ macrophages directly regulated the expression of Snail, a critical transcription factor during EndMT induction. Western blot analysis for cleaved caspase-3 and microarray analysis of human aortic endothelial cells indicated that apoptosis was stimulated during CD163+ macrophage-induced EndMT. Additionally, CD163 deletion in athero-prone mice suggested that CD163 is required for EndMT and plaque progression. Using single-cell RNA sequencing from human carotid endarterectomy lesions, a population of EndMT was detected, which demonstrated significant upregulation of apoptosis-related genes. CONCLUSIONS: CD163+ macrophages provoke EndMT, which may promote plaque progression through fibrous cap thinning.


Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Macrófagos , Placa Aterosclerótica , Receptores de Superficie Celular , Humanos , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Animales , Antígenos CD/metabolismo , Antígenos CD/genética , Macrófagos/metabolismo , Macrófagos/patología , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Ratones , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Masculino , Ratones Noqueados para ApoE , Ratones Endogámicos C57BL , Apoptosis , Femenino , Transición Epitelial-Mesenquimal , Vasos Coronarios/patología , Vasos Coronarios/metabolismo
13.
Cells ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38920650

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a clinically heterogeneous disease underpinned by inflammatory, demyelinating and neurodegenerative processes, the extent of which varies between individuals and over the course of the disease. Recognising the clinicopathological features that most strongly associate with disease outcomes will inform future efforts at patient phenotyping. AIMS: We used a digital pathology workflow, involving high-resolution image acquisition of immunostained slides and opensource software for quantification, to investigate the relationship between clinical and neuropathological features in an autopsy cohort of progressive MS. METHODS: Sequential sections of frontal, cingulate and occipital cortex, thalamus, brain stem (pons) and cerebellum including dentate nucleus (n = 35 progressive MS, females = 28, males = 7; age died = 53.5 years; range 38-98 years) were immunostained for myelin (anti-MOG), neurons (anti-HuC/D) and microglia/macrophages (anti-HLA). The extent of demyelination, neurodegeneration, the presence of active and/or chronic active lesions and quantification of brain and leptomeningeal inflammation was captured by digital pathology. RESULTS: Digital analysis of tissue sections revealed the variable extent of pathology that characterises progressive MS. Microglia/macrophage activation, if found at a higher level in a single block, was typically elevated across all sampled blocks. Compartmentalised (perivascular/leptomeningeal) inflammation was associated with age-related measures of disease severity and an earlier death. CONCLUSION: Digital pathology identified prognostically important clinicopathological correlations in MS. This methodology can be used to prioritise the principal pathological processes that need to be captured by future MS biomarkers.


Asunto(s)
Biomarcadores , Inflamación , Esclerosis Múltiple , Humanos , Persona de Mediana Edad , Femenino , Masculino , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Anciano , Adulto , Biomarcadores/metabolismo , Anciano de 80 o más Años , Inflamación/patología , Inflamación/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Microglía/patología , Microglía/metabolismo , Macrófagos/patología , Macrófagos/metabolismo
14.
Methods Cell Biol ; 188: 131-152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880521

RESUMEN

Renal injury often occurs as a complication in autoimmune diseases such as systemic lupus erythematosus (SLE). It is estimated that a minimum of 20% SLE patients develop lupus nephritis, a condition that can be fatal when the pathology progresses to end-stage renal disease. Studies in animal models showed that incidence of immune cell infiltrates in the kidney was linked to pathological injury and correlated with severe lupus nephritis. Thus, preventing immune cell infiltration into the kidney is a potential approach to impede the progression to an end-stage disease. A requirement to investigate the role of kidney-infiltrating leukocytes is the development of reproducible and efficient protocols for purification and characterization of immune cells in kidney samples. This chapter describes a detailed methodology that discriminates tissue-resident leukocytes from blood-circulating cells that are found in kidney. Our protocol was designed to maximize cell viability and to reduce variability among samples, with a combination of intravascular staining and magnetic bead separation for leukocyte enrichment. Experiments included as example were performed with FcγRIIb[KO] mice, a well-characterized murine model of SLE. We identified T cells and macrophages as the primary leukocyte subsets infiltrating into the kidney during severe nephritis, and we extensively characterized them phenotypically by flow cytometry.


Asunto(s)
Modelos Animales de Enfermedad , Riñón , Leucocitos , Nefritis Lúpica , Animales , Nefritis Lúpica/patología , Nefritis Lúpica/inmunología , Ratones , Riñón/patología , Leucocitos/inmunología , Leucocitos/patología , Separación Celular/métodos , Ratones Noqueados , Macrófagos/inmunología , Macrófagos/patología , Citometría de Flujo/métodos , Linfocitos T/inmunología , Receptores de IgG/metabolismo
15.
Acta Biomater ; 183: 146-156, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838904

RESUMEN

Macrophages are the primary cell type orchestrating bioresorbable vascular graft (BVG) remodeling and infiltrate from three sources: the adjacent native vessel, circulating blood, and transmural migration from outer surface of the graft. To elucidate the kinetics of macrophage infiltration into the BVG, we fabricated two different bilayer arterial BVGs consisting of a macroporous sponge layer and a microporous electrospun (ES) layer. The Outer ES graft was designed to reduce transmural cell infiltration from the outer surface and the Inner ES graft was designed to reduce cell infiltration from the circulation. These BVGs were implanted in mice as infrarenal abdominal aorta grafts and extracted at 1, 4, and 8 weeks (n = 5, 10, and 10 per group, respectively) for evaluation. Cell migration into BVGs was higher in the Inner ES graft than in the Outer ES graft. For Inner ES grafts, the majority of macrophage largely expressed a pro-inflammatory M1 phenotype but gradually changed to tissue-remodeling M2 macrophages. In contrast, in Outer ES grafts macrophages primarily maintained an M1 phenotype. The luminal surface endothelialized faster in the Inner ES graft; however, the smooth muscle cell layer was thicker in the Outer ES graft. Collagen fibers were more abundant and matured faster in the Inner ES graft than that in the Outer ES graft. In conclusion, compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs. STATEMENT OF SIGNIFICANCE: To elucidate the kinetics of macrophage infiltration into the bioresorbable vascular graft (BVG), two different bilayer arterial BVGs were implanted in mice as infrarenal abdominal aorta grafts. Cell migration into BVGs was higher in the inner electrospun graft which cells mainly infiltrate from outer surface than in the outer electrospun graft which cells mainly infiltrate from the circulating blood. In the inner electrospun grafts, the majority of macrophages changed from the M1 phenotype to the M2 phenotype, however, outer electrospun grafts maintained the M1 phenotype. Collagen fibers matured faster in the Inner electrospun graft. Compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs.


Asunto(s)
Implantes Absorbibles , Prótesis Vascular , Movimiento Celular , Colágeno , Inflamación , Macrófagos , Remodelación Vascular , Animales , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Inflamación/patología , Ratones Endogámicos C57BL , Masculino , Aorta Abdominal/patología
16.
J Pathol ; 263(4-5): 482-495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872438

RESUMEN

Liver fibrosis is the consequence of chronic liver injury in the presence of an inflammatory component. Although the main executors of this activation are known, the mechanisms that lead to the inflammatory process that mediates the production of pro-fibrotic factors are not well characterized. Epidermal growth factor receptor (EGFR) signaling in hepatocytes is essential for the regenerative processes of the liver; however, its potential role in regulating the fibrotic niche is not yet clear. Our group generated a mouse model that expresses an inactive truncated form of the EGFR specifically in hepatocytes (ΔEGFR mice). Here, we have analyzed the response of WT and ΔEGFR mice to chronic treatment with carbon tetrachloride (CCl4), which induces a pro-inflammatory and fibrotic process in the liver. The results indicated that the hallmarks of liver fibrosis were attenuated in CCl4-treated ΔEGFR mice when compared with CCl4-treated WT mice, coinciding with a faster resolution of the fibrotic process and ameliorated damage. The absence of EGFR activity in hepatocytes induced changes in the pattern of immune cells in the liver, with a notable increase in the population of M2 macrophages, more related to fibrosis resolution, as well as in the population of lymphocytes related to eradication of the damage. Transcriptome analysis of hepatocytes, and secretome studies of extracellular media from in vitro experiments, allowed us to elucidate the specific molecular mechanisms regulated by EGFR that mediate hepatocyte production of both pro-fibrotic and pro-inflammatory mediators; these have consequences for the deposition of extracellular matrix proteins, as well as for the immune microenvironment. Overall, our study uncovered novel mechanistic insights regarding EGFR kinase-dependent actions in hepatocytes that reveal its key role in chronic liver damage. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Tetracloruro de Carbono , Receptores ErbB , Hepatocitos , Transducción de Señal , Animales , Receptores ErbB/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/patología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Masculino , Comunicación Celular , Macrófagos/metabolismo , Macrófagos/patología , Ratones Transgénicos
17.
J Cancer Res Clin Oncol ; 150(6): 315, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909166

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a high-grade and heterogeneous subtype of glioma that presents a substantial challenge to human health, characterized by a poor prognosis and low survival rates. Despite its known involvement in regulating leukemia and melanoma, the function and mechanism of DNAJC1 in GBM remain poorly understood. METHODS: Utilizing data from the TCGA, CGGA, and GEO databases, we investigated the expression pattern of DNAJC1 and its correlation with clinical characteristics in GBM specimens. Loss-of-function experiments were conducted to explore the impact of DNAJC1 on GBM cell lines, with co-culture experiments assessing macrophage infiltration and functional marker expression. RESULTS: Our analysis demonstrated frequent overexpression of DNAJC1 in GBM, significantly associated with various clinical characteristics including WHO grade, IDH status, chromosome 1p/19q codeletion, and histological type. Moreover, Kaplan‒Meier and ROC analyses revealed DNAJC1 as a negative prognostic predictor and a promising diagnostic biomarker for GBM patients. Functional studies indicated that silencing DNAJC1 impeded cell proliferation and migration, induced cell cycle arrest, and enhanced apoptosis. Mechanistically, DNAJC1 was implicated in stimulating extracellular matrix reorganization, triggering the epithelial-mesenchymal transition (EMT) process, and initiating immunosuppressive macrophage infiltration. CONCLUSIONS: Our findings underscore the pivotal role of DNAJC1 in GBM pathogenesis, suggesting its potential as a diagnostic and therapeutic target for this challenging disease.


Asunto(s)
Neoplasias Encefálicas , Progresión de la Enfermedad , Matriz Extracelular , Glioblastoma , Macrófagos , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/inmunología , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/inmunología , Pronóstico
18.
Sci Adv ; 10(25): eadm9817, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896611

RESUMEN

Precision management of fibrotic lung diseases is challenging due to their diverse clinical trajectories and lack of reliable biomarkers for risk stratification and therapeutic monitoring. Here, we validated the accuracy of CMKLR1 as an imaging biomarker of the lung inflammation-fibrosis axis. By analyzing single-cell RNA sequencing datasets, we demonstrated CMKLR1 expression as a transient signature of monocyte-derived macrophages (MDMφ) enriched in patients with idiopathic pulmonary fibrosis (IPF). Consistently, we identified MDMφ as the major driver of the uptake of CMKLR1-targeting peptides in a murine model of bleomycin-induced lung fibrosis. Furthermore, CMKLR1-targeted positron emission tomography in the murine model enabled quantification and spatial mapping of inflamed lung regions infiltrated by CMKLR1-expressing macrophages and emerged as a robust predictor of subsequent lung fibrosis. Last, high CMKLR1 expression by bronchoalveolar lavage cells identified an inflammatory endotype of IPF with poor survival. Our investigation supports the potential of CMKLR1 as an imaging biomarker for endotyping and risk stratification of fibrotic lung diseases.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neumonía , Animales , Humanos , Ratones , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Neumonía/metabolismo , Neumonía/diagnóstico por imagen , Neumonía/patología , Macrófagos/metabolismo , Macrófagos/patología , Biomarcadores , Modelos Animales de Enfermedad , Tomografía de Emisión de Positrones/métodos , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Bleomicina , Pulmón/patología , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Masculino , Femenino , Ratones Endogámicos C57BL
19.
Thromb Res ; 240: 109063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878741

RESUMEN

BACKGROUND: Imaging evaluation of acute deep vein thrombosis (DVT) or post-thrombotic syndrome (PTS) in animal or clinical models is limited to anatomical assessment of the location and extent of thrombi. We hypothesize that Fe-MRI, used to evaluate macrophage content in other inflammatory diseases, can be useful to evaluate the thromboinflammatory features after DVT over time. METHODS: Nineteen wild-type CD-1 mice underwent surgical IVC ligation to induce DVT. Mice received either saline or 5 mg/kg of 14E11, a Factor XI inhibitor, before the procedure. Fe-MRI was performed on days 6-7 after ligation to evaluate thrombus volume, perfusion, and macrophage content via T2-weighted images. Mice were euthanized at days 3-15 after surgery. The thrombi and adjacent vein walls were excised, weighed, formalin-fixed, and paraffin-embedded for immunohistological analysis. Specimens were stained with specific antibodies to evaluate macrophage content, collagen deposition, neovascularization, and recanalization. Significance was determined using the Mann-Whitney U or Student's t-test. RESULTS: After IVC-ligation in control mice, thrombus weights decreased by 59 % from day 3 to 15. Thrombus volumes peaked on day 5 before decreasing by 85 % by day 13. FXI inhibition led to reduced macrophage content in both thrombi (p = .008) and vein walls (p = .01), decreased thrombus volume (p = .03), and decreased thrombus mass (p = .01) compared to control mice. CCR2+ staining corroborated these findings, showing significantly reduced macrophage presence in the thrombi (p = .002) and vein wall (p = .002). CONCLUSIONS: Fe-MRI T2 relaxation times can be used to characterize and quantify post-thrombotic changes of perfusion, macrophage content, and thrombus volume over time in a surgical mouse model of venous thrombosis. This approach could lead to better quantification of in vivo inflammation correlating monocyte and macrophage content within resolving thrombi and veins and may serve as a useful tool for research and clinically in the evaluation of the post-thrombotic environment.


Asunto(s)
Modelos Animales de Enfermedad , Óxido Ferrosoférrico , Macrófagos , Imagen por Resonancia Magnética , Trombosis de la Vena , Animales , Trombosis de la Vena/diagnóstico por imagen , Trombosis de la Vena/patología , Ratones , Macrófagos/patología , Imagen por Resonancia Magnética/métodos , Masculino , Medios de Contraste
20.
Acta Biomater ; 181: 425-439, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38729544

RESUMEN

Synovial macrophages play an important role in the progression of osteoarthritis (OA). In this study, we noted that synovial macrophages can activate pyroptosis in a gasdermin d-dependent manner and produce reactive oxygen species (ROS), aberrantly activating the mammalian target of rapamycin complex 1 (mTORC1) pathway and matrix metalloproteinase-9 (MMP9) expression in synovial tissue samples collected from both patients with OA and collagen-induced osteoarthritis (CIOA) mouse model. To overcome this, we constructed rapamycin- (RAPA, a mTORC1 inhibitor) loaded mesoporous Prussian blue nanoparticles (MPB NPs, for catalyzing ROS) and modified the NPs with MMP9-targeted peptides (favor macrophage targeting) to develop RAPA@MPB-MMP9 NPs. The inherent enzyme-like activity and RAPA released from RAPA@MPB-MMP9 NPs synergistically impeded the pyroptosis of macrophages and the activation of the mTORC1 pathway. In particular, the NPs decreased pyroptosis-mediated ROS generation, thereby inhibiting cGAS-STING signaling pathway activation caused by the release of mitochondrial DNA. Moreover, the NPs promoted macrophage mitophagy to restore mitochondrial stability, alleviate pyroptosis-related inflammatory responses, and decrease senescent synoviocytes. After the as-prepared NPs were intra-articularly injected into the CIOA mouse model, they efficiently attenuated synovial macrophage pyroptosis and cartilage degradation. In conclusion, our study findings provide a novel therapeutic strategy for OA that modulates the pyroptosis and mitophagy of synovial macrophage by utilizing functionalized NPs. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) presents a significant global challenge owing to its complex pathogenesis and finite treatment options. Synovial macrophages have emerged as key players in the progression of OA, managing inflammation and tissue destruction. In this study, we discovered a novel therapeutic strategy in which the pyroptosis and mitophagy of synovial macrophages are targeted to mitigate OA pathology. For this, we designed and prepared rapamycin-loaded mesoporous Prussian blue nanoparticles (RAPA@MPB-MMP9 NPs) to specifically target synovial macrophages and modulate their inflammatory responses. These NPs could efficiently suppress macrophage pyroptosis, diminish reactive oxygen species production, and promote mitophagy, thereby alleviating inflammation and protecting cartilage integrity. Our study findings not only clarify the intricate mechanisms underlying OA pathogenesis but also present a promising therapeutic approach for effectively managing OA by targeting dysregulation in synovial macrophages.


Asunto(s)
Macrófagos , Mitofagia , Nanopartículas , Osteoartritis , Piroptosis , Especies Reactivas de Oxígeno , Osteoartritis/patología , Osteoartritis/tratamiento farmacológico , Animales , Piroptosis/efectos de los fármacos , Nanopartículas/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Mitofagia/efectos de los fármacos , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Masculino , Sirolimus/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Progresión de la Enfermedad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Membrana Sinovial/patología , Membrana Sinovial/efectos de los fármacos , Ratones Endogámicos C57BL , Ferrocianuros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...