Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.122
Filtrar
1.
BMC Genomics ; 25(1): 705, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030501

RESUMEN

At the 3' end of the C2 gene in the mammalian TRB locus, a distinct reverse TRBV30 gene (named TRBV31 in mice) has been conserved throughout evolution. In the fully annotated TRB locus of 14 mammals (including six orders), we observed noteworthy variations in the localization and quality of the reverse V30 genes and Recombination Signal Sequences (RSSs) in the gene trees of 13 mammals. Conversely, the forward V29 genes and RSSs were generally consistent with the species tree of their corresponding species. This finding suggested that the evolution of the reverse V30 gene was not synchronous and likely played a crucial role in regulating adaptive immune responses. To further investigate this possibility, we utilized single-cell TCR sequencing (scTCR-seq) and high-throughput sequencing (HTS) to analyze TCRß CDR3 repertoires from both central and peripheral tissues of Primates (Homo sapiens and Macaca mulatta), Rodentia (Mus musculus: BALB/c, C57BL/6, and Kunming mice), Artiodactyla (Bos taurus and Bubalus bubalis), and Chiroptera (Rhinolophus affinis and Hipposideros armige). Our investigation revealed several novel observations: (1) The reverse V30 gene exhibits classical rearrangement patterns adhering to the '12/23 rule' and the 'D-J rearrangement preceding the V-(D-J) rearrangement'. This results in the formation of rearranged V30-D2J2, V30-D1J1, and V30-D1J2. However, we also identified 'special rearrangement patterns' wherein V30-D rearrangement preceding D-J rearrangement, giving rise to rearranged V30-D2-J1 and forward Vx-D2-J. (2) Compared to the 'deletional rearrangement' (looping out) of forward V1-V29 genes, the reverse V30 gene exhibits preferential utilization with 'inversional rearrangement'. This may be attributed to the shorter distance between the V30 gene and D gene and the 'inversional rearrangement' modes. In summary, in the mammalian TRB locus, the reverse V30 gene has been uniquely preserved throughout evolution and preferentially utilized in V(D)J recombination, potentially serving a significant role in adaptive immunity. These results will pave the way for novel and specialized research into the mechanisms, efficiency, and function of V(D)J recombination in mammals.


Asunto(s)
Evolución Molecular , Mamíferos , Animales , Mamíferos/genética , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones
2.
Methods Mol Biol ; 2805: 127-135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008178

RESUMEN

The modulation of cis-regulatory elements (e.g., enhancers and promoters) is a major mechanism by which gene expression can be controlled in a temporal and spatially restricted manner. However, methods for both identifying these elements and inferring their activity are limited and often require a substantial investment of time, money, and resources. Here, using mammalian skin as a model, we demonstrate a streamlined protocol by which these hurdles can be overcome using a novel chromatin profiling technique (CUT&RUN) to map histone modifications genome-wide. This protocol can be used to map the location and activity of putative cis-regulatory elements, providing mechanistic insight into how differential gene expression is controlled in mammalian tissues.


Asunto(s)
Regiones Promotoras Genéticas , Piel , Animales , Piel/metabolismo , Elementos de Facilitación Genéticos , Cromatina/genética , Cromatina/metabolismo , Humanos , Mamíferos/genética , Ratones , Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Histonas/metabolismo , Histonas/genética , Genoma/genética , Perfilación de la Expresión Génica/métodos , Inmunoprecipitación de Cromatina/métodos
3.
Nat Commun ; 15(1): 5568, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956050

RESUMEN

Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.


Asunto(s)
Genoma , Mamíferos , Animales , Genoma/genética , Mamíferos/genética , Filogenia , Evolución Molecular , Organismos Acuáticos/genética , Australia , Relojes Circadianos/genética , Evolución Biológica
4.
Heredity (Edinb) ; 133(1): 21-32, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834866

RESUMEN

Parent-of-origin-specific expression of imprinted genes is critical for successful mammalian growth and development. Insulin, coded by the INS gene, is an important growth factor expressed from the paternal allele in the yolk sac placenta of therian mammals. The tyrosine hydroxylase gene TH encodes an enzyme involved in dopamine synthesis. TH and INS are closely associated in most vertebrates, but the mouse orthologues, Th and Ins2, are separated by repeated DNA. In mice, Th is expressed from the maternal allele, but the parental origin of expression is not known for any other mammal so it is unclear whether the maternal expression observed in the mouse represents an evolutionary divergence or an ancestral condition. We compared the length of the DNA segment between TH and INS across species and show that separation of these genes occurred in the rodent lineage with an accumulation of repeated DNA. We found that the region containing TH and INS in the tammar wallaby produces at least five distinct RNA transcripts: TH, TH-INS1, TH-INS2, lncINS and INS. Using allele-specific expression analysis, we show that the TH/INS locus is expressed from the paternal allele in pre- and postnatal tammar wallaby tissues. Determining the imprinting pattern of TH/INS in other mammals might clarify if paternal expression is the ancestral condition which has been flipped to maternal expression in rodents by the accumulation of repeat sequences.


Asunto(s)
Alelos , Impresión Genómica , Insulina , Mamíferos , Tirosina 3-Monooxigenasa , Animales , Mamíferos/genética , Tirosina 3-Monooxigenasa/genética , Ratones/genética , Insulina/genética , Insulina/metabolismo , Macropodidae/genética , Femenino , Masculino
5.
Science ; 384(6700): 1065-1066, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843350

RESUMEN

Comparative genomics elucidates the steps enabling heat production in fat tissue.


Asunto(s)
Tejido Adiposo Pardo , Evolución Biológica , Mamíferos , Termogénesis , Animales , Mamíferos/genética , Mamíferos/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Humanos , Genómica
6.
Nat Commun ; 15(1): 5006, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866738

RESUMEN

Body mass results from a complex interplay between genetics and environment. Previous studies of the genetic contribution to body mass have excluded repetitive regions due to the technical limitations of platforms used for population scale studies. Here we apply genome-wide approaches, identifying an association between adult body mass and the copy number (CN) of 47S-ribosomal DNA (rDNA). rDNA codes for the 18 S, 5.8 S and 28 S ribosomal RNA (rRNA) components of the ribosome. In mammals, there are hundreds of copies of these genes. Inter-individual variation in the rDNA CN has not previously been associated with a mammalian phenotype. Here, we show that rDNA CN variation associates with post-pubertal growth rate in rats and body mass index in adult humans. rDNA CN is not associated with rRNA transcription rates in adult tissues, suggesting the mechanistic link occurs earlier in development. This aligns with the observation that the association emerges by early adulthood.


Asunto(s)
Índice de Masa Corporal , Variaciones en el Número de Copia de ADN , ADN Ribosómico , Animales , Humanos , ADN Ribosómico/genética , Masculino , Ratas , Femenino , Adulto , Mamíferos/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
7.
Genes Cells ; 29(7): 525-531, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38845473

RESUMEN

The 36th International Mammalian Genome Conference (IMGC) was held in a hybrid format at the Tsukuba International Congress Center in Tsukuba, Ibaraki, Japan, for 4 days from March 28 to 31, 2023. This international conference on functional genomics of mouse, human, and other mammalian species attracted 246 participants in total, of which 129 were from outside Japan, including Europe, the United States and Asia, and 117 participants were from Japan. The conference included three technical workshops, keynote lectures by domestic researchers, commemorative lectures for the conference awards, 57 oral presentations, and 97 poster presentations. The event was a great success. Topics included the establishment and analysis of disease models using genetically engineered or spontaneous mutant mice, systems genetic analysis using mouse strains such as wild-derived mice and recombinant inbred mouse strains, infectious diseases, immunology, and epigenetics. In addition, as a joint program, a two-day RIKEN Symposium was held, and active discussions continued over the four-day period. Also, there was a trainee symposium, in which young researchers were encouraged to participate, and excellent papers were selected as oral presentations in the main session.


Asunto(s)
Genómica , Animales , Humanos , Ratones , Genoma , Genómica/métodos , Japón , Mamíferos/genética
8.
Sci Adv ; 10(23): eadm7273, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848365

RESUMEN

By analyzing 15,000 samples from 348 mammalian species, we derive DNA methylation (DNAm) predictors of maximum life span (R = 0.89), gestation time (R = 0.96), and age at sexual maturity (R = 0.85). Our maximum life-span predictor indicates a potential innate longevity advantage for females over males in 17 mammalian species including humans. The DNAm maximum life-span predictions are not affected by caloric restriction or partial reprogramming. Genetic disruptions in the somatotropic axis such as growth hormone receptors have an impact on DNAm maximum life span only in select tissues. Cancer mortality rates show no correlation with our epigenetic estimates of life-history traits. The DNAm maximum life-span predictor does not detect variation in life span between individuals of the same species, such as between the breeds of dogs. Maximum life span is determined in part by an epigenetic signature that is an intrinsic species property and is distinct from the signatures that relate to individual mortality risk.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Longevidad , Mamíferos , Animales , Longevidad/genética , Mamíferos/genética , Femenino , Humanos , Masculino , Rasgos de la Historia de Vida , Especificidad de la Especie
9.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819455

RESUMEN

The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Prosencéfalo , Factores de Transcripción , Animales , Prosencéfalo/metabolismo , Prosencéfalo/embriología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Humanos , Mamíferos/genética , Ratones
10.
Science ; 384(6699): 1007-1012, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38815022

RESUMEN

The evolutionary histories of major clades, including mammals, often comprise changes in their diversification dynamics, but how these changes occur remains debated. We combined comprehensive phylogenetic and fossil information in a new "birth-death diffusion" model that provides a detailed characterization of variation in diversification rates in mammals. We found an early rising and sustained diversification scenario, wherein speciation rates increased before and during the Cretaceous-Paleogene (K-Pg) boundary. The K-Pg mass extinction event filtered out more slowly speciating lineages and was followed by a subsequent slowing in speciation rates rather than rebounds. These dynamics arose from an imbalanced speciation process, with separate lineages giving rise to many, less speciation-prone descendants. Diversity seems to have been brought about by these isolated, fast-speciating lineages, rather than by a few punctuated innovations.


Asunto(s)
Extinción Biológica , Fósiles , Especiación Genética , Mamíferos , Filogenia , Animales , Biodiversidad , Mamíferos/clasificación , Mamíferos/genética
11.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691389

RESUMEN

Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Espermatogénesis , Animales , Humanos , Masculino , Mamíferos/genética
12.
Sci Rep ; 14(1): 10668, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724593

RESUMEN

Currently food fraud and authenticity of products composition are topics of great concern; ingredients quantification could allow to identify small amounts of contaminats or voluntary addition of improper components. Many molecular methods are available for species identification in foodstuffs but, for a better application, they should not be affected by the interference of other ingredients. The main purpose of this work was to verify the Real Time PCR and the Digital PCR (dPCR) quantification performances on baby food samples, specifically selected for their high miscibility to limit variability; chicken was selected as target to verify the performance of quantification of methods after having spiked the same quantity in different baby foods. The other aims were: (1) to verify a constant genome copies ratio existence between mammalian and avian species (2) to verify the dPCR performance, set up on housekeeping, to quantify mammalian and avian species in commercial products. Digital PCR showed fewer differences respect to Real Time PCR, at the same 15% w/w chicken spiking level. Despite the constant difference between mammalian and avian genome copies, in samples with the same spiking weight, the confidence intervals increasing towards the extreme values, made impossible to use genome copies ratio as a sort of correction factor between species. Finally, the dPCR system using the myostatin housekeeping gene to determine the chicken content seemed reliable to verify the labelling compliance in meat-based commercial products.


Asunto(s)
Pollos , Reacción en Cadena en Tiempo Real de la Polimerasa , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Pollos/genética , Mamíferos/genética , Etiquetado de Alimentos , Análisis de los Alimentos/métodos , Aves/genética , Carne/análisis , Reacción en Cadena de la Polimerasa/métodos
13.
Sci Rep ; 14(1): 11754, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782990

RESUMEN

Mammals maintain their body temperature, yet hibernators can temporarily lower their metabolic rate as an energy-saving strategy. It has been proposed that hibernators evolved independently from homeotherms, and it is possible that the convergent evolution of hibernation involved common genomic changes among hibernator-lineages. Since hibernation is a seasonal trait, the evolution of gene regulatory regions in response to changes in season may have been important for the acquisition of hibernation traits. High-frequency accumulation of mutations in conserved non-coding elements (CNEs) could, in principle, alter the expression of neighboring genes and thereby contribute to the acquisition of new traits. To address this possibility, we performed a comparative genomic analysis of mammals to identify accelerated CNEs commonly associated with hibernation. We found that accelerated CNEs are common to hibernator-lineages and could be involved with hibernation. We also found that common factors of genes that located near accelerated CNEs and are differentially expressed between normal and hibernation periods related to gene regulation and cell-fate determination. It suggests that the molecular mechanisms controlling hibernation have undergone convergent evolution. These results help broaden our understanding of the genetic adaptations that facilitated hibernation in mammals and may offer insights pertaining to stress responses and energy conservation.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Hibernación , Mamíferos , Animales , Hibernación/genética , Mamíferos/genética , Regulación de la Expresión Génica , Genómica/métodos , Evolución Biológica
14.
Proc Natl Acad Sci U S A ; 121(23): e2401973121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809707

RESUMEN

In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Recombinación Genética , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Mamíferos/genética , Islas de CpG/genética , Euterios/genética , Ratones , Femenino , Conversión Génica , Evolución Molecular
15.
Hum Mol Genet ; 33(R1): R92-R99, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38779768

RESUMEN

The manipulation of animal mitochondrial genomes has long been a challenge due to the lack of an effective transformation method. With the discovery of specific gene editing enzymes, designed to target pathogenic mitochondrial DNA mutations (often heteroplasmic), the selective removal or modification of mutant variants has become a reality. Because mitochondria cannot efficiently import RNAs, CRISPR has not been the first choice for editing mitochondrial genes. However, the last few years witnessed an explosion in novel and optimized non-CRISPR approaches to promote double-strand breaks or base-edit of mtDNA in vivo. Engineered forms of specific nucleases and cytidine/adenine deaminases form the basis for these techniques. I will review the newest developments that constitute the current toolbox for animal mtDNA gene editing in vivo, bringing these approaches not only to the exploration of mitochondrial function, but also closer to clinical use.


Asunto(s)
ADN Mitocondrial , Edición Génica , Genoma Mitocondrial , Edición Génica/métodos , Animales , Genoma Mitocondrial/genética , Humanos , ADN Mitocondrial/genética , Sistemas CRISPR-Cas , Mitocondrias/genética , Mamíferos/genética , Mutación
16.
Sci Rep ; 14(1): 11650, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773187

RESUMEN

Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.


Asunto(s)
Evolución Molecular , Mamíferos , Neoplasias , Filogenia , Animales , Mamíferos/genética , Neoplasias/genética , Humanos , Selección Genética , Oncogenes/genética , Genes Supresores de Tumor , Predisposición Genética a la Enfermedad
17.
Genes Genomics ; 46(7): 775-783, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733518

RESUMEN

BACKGROUND: Marine mammals, which have evolved independently into three distinct lineages, share common physiological features that contribute to their adaptation to the marine environment. OBJECTIVE: To identify positively selected genes (PSGs) for adaptation to the marine environment using available genomic data from three taxonomic orders: cetaceans, pinnipeds, and sirenians. METHODS: Based on the genomes within each group of Artiodactyla, Carnivora and Afrotheria, we performed selection analysis using the branch-site model in CODEML. RESULTS: Based on the branch-site model, 460, 614, and 359 PSGs were predicted for the cetaceans, pinnipeds, and sirenians, respectively. Functional enrichment analysis indicated that genes associated with hemostasis were positively selected across all lineages of marine mammals. We observed positive selection signals for the hemostasis and coagulation-related genes plasminogen activator, urokinase (PLAU), multimerin 1 (MMRN1), gamma-glutamyl carboxylase (GGCX), and platelet endothelial aggregation receptor 1 (PEAR1). Additionally, we found out that the sodium voltage-gated channel alpha subunit 9 (SCN9A), serine/arginine repetitive matrix 4 (SRRM4), and Ki-ras-induced actin-interacting protein (KRAP) are under positive selection pressure and are associated with cognition, neurite outgrowth, and IP3-mediated Ca2 + release, respectively. CONCLUSION: This study will contribute to our understanding of the adaptive evolution of marine mammals by providing information on a group of candidate genes that are predicted to influence adaptation to aquatic environments, as well as their functional characteristics.


Asunto(s)
Adaptación Fisiológica , Cetáceos , Selección Genética , Animales , Adaptación Fisiológica/genética , Cetáceos/genética , Mamíferos/genética , Organismos Acuáticos/genética , Filogenia , Evolución Molecular , Carnívoros/genética , Artiodáctilos/genética , Artiodáctilos/fisiología , Caniformia/genética
18.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38656974

RESUMEN

MOTIVATION: Epigenetic clocks are prediction methods based on DNA methylation levels in a given species or set of species. Defined as multivariate regression models, these DNA methylation-based biomarkers of age or mortality risk are useful in species conservation efforts and in preclinical studies. RESULTS: We present an R package called MammalMethylClock for the construction, assessment, and application of epigenetic clocks in different mammalian species. The R package includes the utility for implementing pre-existing mammalian clocks from the Mammalian Methylation Consortium. AVAILABILITY AND IMPLEMENTATION: The source code and documentation manual for MammalMethylClock, and clock coefficient .csv files that are included within this software package, can be found on Zenodo at https://doi.org/10.5281/zenodo.10971037.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Mamíferos , Programas Informáticos , Animales , Mamíferos/genética , Humanos , Epigenómica/métodos
19.
Curr Opin Genet Dev ; 86: 102196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669774

RESUMEN

As the most well-studied modification in mRNA, m6A has been shown to regulate multiple biological processes, including RNA degradation, processing, and translation. Recent studies showed that m6A modification is enriched in chromatin-associated RNAs and nascent RNAs, suggesting m6A might play regulatory roles in chromatin contexts. Indeed, in the past several years, a number of studies have clarified how m6A and its modulators regulate different types of chromatin states. Specifically, in the past 2-3 years, several studies discovered the roles of m6A and/or its modulators in regulating constitutive and facultative heterochromatin, shedding interesting lights on RNA-dependent heterochromatin formation in mammalian cells. This review will summarize and discuss the mechanisms underlying m6A's regulation in different types of heterochromatin, with a specific emphasis on the regulation in mammalian embryonic stem cells, which exhibit distinct features of multiple heterochromatin marks.


Asunto(s)
Células Madre Embrionarias , Heterocromatina , Heterocromatina/genética , Heterocromatina/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/genética
20.
Cell Biochem Funct ; 42(3): e4006, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622913

RESUMEN

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long noncoding RNA (lncRNA) that is widely expressed in a variety of mammalian cell types. Altered expression levels of the lncRNA NEAT1 have been reported in liver-related disorders including cancer, fatty liver disease, liver fibrosis, viral hepatitis, and hepatic ischemia. lncRNA NEAT1 mostly acts as a competing endogenous RNA (ceRNA) to sponge various miRNAs (miRs) to regulate different functions. In regard to hepatic cancers, the elevated expression of NEAT1 has been reported to have a relation with the proliferation, migration, angiogenesis, apoptosis, as well as epithelial-mesenchymal transition (EMT) of cancer cells. Furthermore, NEAT1 upregulation has contributed to the pathogenesis of other liver diseases such as fibrosis. In this review, we summarize and discuss the molecular mechanisms by which NEAT1 contributes to liver-related disorders including acute liver failure, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, and liver carcinoma, providing novel insights and introducing NEAT1 as a potential therapeutic target in these diseases.


Asunto(s)
MicroARNs , Enfermedad del Hígado Graso no Alcohólico , ARN Largo no Codificante , Animales , Humanos , Proliferación Celular/genética , Fibrosis , Cirrosis Hepática/genética , Mamíferos/genética , Mamíferos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...