Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.157
Filtrar
1.
J Parasitol ; 110(4): 300-310, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39034041

RESUMEN

Enteric parasites can have wide-ranging effects throughout an ecosystem, often driving coevolutionary and ecological processes. Parasites have long been overlooked in conservation efforts because of the negative impact inflicted on their hosts; however, parasites make up a significant component of Earth's biodiversity and host conservation efforts need to be parasite inclusive. The Vancouver Island marmot (VIM), Marmota vancouverensis, is an endangered alpine rodent endemic to Vancouver Island, British Columbia, Canada. Captive-bred VIMs are released to augment the wild population, but their susceptibility to parasites is unknown. The objectives of this study were to describe the diversity, prevalence, severity, and temporal variation of VIM enteric parasites. Noninvasive fecal samples were collected from wild and captive marmots and analyzed using a modified McMaster fecal egg floatation technique to indicate parasite prevalence and relative mean abundance. We identified oocysts and ova from 3 parasite taxa including a protozoan coccidium not previously described in the VIM (prevalence 68%), an ascarid nematode Baylisascaris laevis (prevalence 82%), and an anoplocephalid cestode Diandrya vancouverensis (prevalence 8%). Depending on the species, comparisons revealed variation in parasite infection by sex, by colony, and between wild and captive VIMs, but not among age classes or by female reproductive status. Finally, captive VIMs displayed significant monthly variation in parasite prevalence and mean egg abundance, suggesting a seasonal influence on parasite egg shedding. This information is critically important for future research investigating the influences of these trends on the health, ecology, and conservation of VIMs and their parasites.


Asunto(s)
Especies en Peligro de Extinción , Heces , Parasitosis Intestinales , Marmota , Dinámica Poblacional , Animales , Marmota/parasitología , Colombia Británica/epidemiología , Heces/parasitología , Femenino , Masculino , Prevalencia , Parasitosis Intestinales/veterinaria , Parasitosis Intestinales/epidemiología , Parasitosis Intestinales/parasitología , Enfermedades de los Roedores/parasitología , Enfermedades de los Roedores/epidemiología , Estaciones del Año , Animales Salvajes/parasitología
2.
Biol Lett ; 20(6): 20240003, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835239

RESUMEN

In group-living species, reproductive variation among individuals of the same sex is widespread. By identifying the mechanisms underlying this reproductive skew, we gain fundamental insights into the evolution and maintenance of sociality. A common mechanism, social control, is typically studied by quantifying dominance, which is one of many attributes of sociality that describes how individuals exert influence on others and is an incomprehensive measure of social control as it accounts only for direct relationships. Here, we use the global reaching centrality (GRC), which quantifies the degree of hierarchy in a social network by accounting for both direct and indirect social relationships. Using a wild, free-living population of adult female yellow-bellied marmots (Marmota flaviventris), we found a positive relationship between the reproductive skew index and GRC: more despotic social groups have higher reproductive skew. The GRC was stronger predictor for skew than traditional measures of social control (i.e. dominance). This allows deeper insights into the diverse ways individuals control other group members' reproduction, a core component in the evolution of sociality. Future studies of skew across taxa may profit by using more comprehensive, network-based measures of social control.


Asunto(s)
Marmota , Reproducción , Conducta Social , Animales , Marmota/fisiología , Reproducción/fisiología , Femenino , Predominio Social
3.
Viruses ; 16(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38932152

RESUMEN

The human hepatitis delta virus (HDV) is a satellite RNA virus that depends on hepatitis B virus (HBV) surface proteins (HBsAg) to assemble into infectious virions targeting the same organ (liver) as HBV. Until recently, the evolutionary origin of HDV remained largely unknown. The application of bioinformatics on whole sequence databases lead to discoveries of HDV-like agents (DLA) and shed light on HDV's evolution, expanding our understanding of HDV biology. DLA were identified in heterogeneous groups of vertebrates and invertebrates, highlighting that the evolution of HDV, represented by eight distinct genotypes, is broader and more complex than previously foreseen. In this study, we focused on the characterization of three mammalian DLA discovered in woodchuck (Marmota monax), white-tailed deer (Odocoileus virginianus), and lesser dog-like bat (Peropteryx macrotis) in terms of replication, cell-type permissiveness, and spreading pathways. We generated replication-competent constructs expressing 1.1-fold over-length antigenomic RNA of each DLA. Replication was initiated by transfecting the cDNAs into human (HuH7, HeLa, HEK293T, A549) and non-human (Vero E6, CHO, PaKi, LMH) cell lines. Upon transfection and replication establishment, none of the DLA expressed a large delta antigen. A cell division-mediated viral amplification assay demonstrated the capability of non-human DLA to replicate and propagate in hepatic and non-hepatic tissues, without the requirement of envelope proteins from a helper virus. Remarkably L-HDAg but not S-HDAg from HDV can artificially mediate envelopment of WoDV and DeDV ribonucleoproteins (RNPs) by HBsAg to form infectious particles, as demonstrated by co-transfection of HuH7 cells with the respective DLA expression constructs and a plasmid encoding HBV envelope proteins. These chimeric viruses are sensitive to HDV entry inhibitors and allow synchronized infections for comparative replication studies. Our results provide a more detailed understanding of the molecular biology, evolution, and virus-host interaction of this unique group of animal viroid-like agents in relation to HDV.


Asunto(s)
Virus de la Hepatitis B , Virus de la Hepatitis Delta , Marmota , Replicación Viral , Animales , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/fisiología , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Marmota/virología , División Celular , Quirópteros/virología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Línea Celular , Hepatitis B/virología , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Genotipo , Células HEK293 , Hepatitis D/virología , ARN Viral/genética , ARN Viral/metabolismo
4.
Rapid Commun Mass Spectrom ; 38(14): e9761, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38714820

RESUMEN

RATIONALE: Himalayan marmot oil (SPO) has been used for pharmaceutical purposes for centuries, but its composition is still unclear. The bioactivity of SPO highly depends on the techniques used for its processing. This study focused on the comprehensive lipidomics of SPO, especially on the ones derived from dry rendering, wet rendering, cold pressing, and ultrasound-assisted solvent extraction. METHODS: We performed lipid profiling of SPO acquired by different extraction methods using ultrahigh-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry, and 17 classes of lipids (2 BMPs, 12 LysoPCs, 9 LysoPEs, 41 PCs, 24 PEs, 23 Plasmenyl-PCs, 10 Plasmenyl-PEs, 10 MGs, 63 DGs, 187 TGs, 2 MGDGs, 3 Cer[NDS]s, 22 Cer[NS]s, 2 GlcCer[NS]s, 14 SMs, 14 CEs, and 6 AcylCarnitines) were characterized. RESULTS: Fifty-five lipids were differentially altered (VIP > 1.5, p < 0.05) between the extraction techniques, which can be used as potential biomarkers to differentiate SPO extracted by various methods. Additionally, the contents of oleic acid and arachidic acid were abundant in all samples that may suggest their medicinal values and are conducive to in-depth research. CONCLUSIONS: These findings reveal the alterations of lipid profile and free fatty acid composition in SPO obtained with different extraction methods, providing a theoretical foundation for investigating its important components as functional factors in medicines and cosmetics.


Asunto(s)
Lípidos , Marmota , Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Lípidos/química , Lípidos/análisis , Espectrometría de Masas/métodos , Aceites de Plantas/química , Aceites de Plantas/análisis , Lipidómica/métodos , Fraccionamiento Químico/métodos
5.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612565

RESUMEN

Orthohepadnavirus causes chronic hepatitis in a broad range of mammals, including primates, cats, woodchucks, and bats. Hepatitis B virus (HBV) X protein inhibits type-I interferon (IFN) signaling, thereby promoting HBV escape from the human innate immune system and establishing persistent infection. However, whether X proteins of Orthohepadnavirus viruses in other species display a similar inhibitory activity remains unknown. Here, we investigated the anti-IFN activity of 17 Orthohepadnavirus X proteins derived from various hosts. We observed conserved activity of Orthohepadnavirus X proteins in inhibiting TIR-domain-containing adaptor protein inducing IFN-ß (TRIF)-mediated IFN-ß signaling pathway through TRIF degradation. X proteins from domestic cat hepadnavirus (DCH), a novel member of Orthohepadnavirus, inhibited mitochondrial antiviral signaling protein (MAVS)-mediated IFNß signaling pathway comparable with HBV X. These results indicate that inhibition of IFN signaling is conserved in Orthohepadnavirus X proteins.


Asunto(s)
Quirópteros , Interferón Tipo I , Humanos , Animales , Gatos , Orthohepadnavirus , Transducción de Señal , Proteínas Adaptadoras del Transporte Vesicular , Marmota
6.
Viruses ; 16(4)2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675932

RESUMEN

In this study, virological surveillance focused on coronaviruses in marmots in the Alpine region in 2022, captured as part of a population control reduction program in the Livigno area. Seventy-six faecal samples were randomly collected from marmots at the time of capture and release and tested for genome detection of pan-coronavirus, pan-pestivirus, canine distemper virus, and influenza A and D virus. Nine faecal samples were positive in the Pan-CoV RT-PCR, while all were negative for the other viruses. Pan-coronavirus positives were further identified using Illumina's complete genome sequencing, which showed the highest homology with Bovine Coronavirus previously detected in roe deer in the Alps. Blood samples (n.35) were collected randomly from animals at release and tested for bovine coronavirus (BCoV) antibodies using competitive ELISA and VNT. Serological analyses revealed that 8/35 sera were positive for BCoV antibodies in both serological tests. This study provides molecular and serological evidence of the presence of BCoV in an alpine marmot population due to a likely spillover event. Marmots share areas and pastures with roe deer and other wild ruminants, and environmental transmission is a concrete possibility.


Asunto(s)
Anticuerpos Antivirales , Coronavirus Bovino , Heces , Marmota , Filogenia , Animales , Coronavirus Bovino/genética , Coronavirus Bovino/aislamiento & purificación , Marmota/virología , Heces/virología , Anticuerpos Antivirales/sangre , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/diagnóstico , Bovinos , Ensayo de Inmunoadsorción Enzimática , Genoma Viral
8.
BMC Genomics ; 25(1): 262, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459433

RESUMEN

Plague, as an ancient zoonotic disease caused by Yersinia pestis, has brought great disasters. The natural plague focus of Marmota himalayana in the Qinghai-Tibet Plateau is the largest, which has been constantly active and the leading source of human plague in China for decades. Understanding the population genetics of M. himalayana and relating that information to the biogeographic distribution of Yersinia pestis and plague outbreaks are greatly beneficial for the knowledge of plague spillover and arecrucial for pandemic prevention. In the present research, we assessed the population genetics of M. himalayana. We carried out a comparative study of plague outbreaks and the population genetics of M. himalayana on the Qinghai-Tibet Plateau. We found that M. himalayana populations are divided into two main clusters located in the south and north of the Qinghai-Tibet Plateau. Fourteen DFR genomovars of Y. pestis were found and exhibited a significant region-specific distribution. Additionally, the increased genetic diversity of plague hosts is positively associated with human plague outbreaks. This insight gained can improve our understanding of biodiversity for pathogen spillover and provide municipally directed targets for One Health surveillance development, which will be an informative next step toward increased monitoring of M. himalayana dynamics.


Asunto(s)
Marmota , Yersinia pestis , Animales , Humanos , Tibet/epidemiología , China/epidemiología , Brotes de Enfermedades , Yersinia pestis/genética , Variación Genética
9.
Int J Med Microbiol ; 314: 151597, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38217947

RESUMEN

Pasteurella multocida is a zoonotic pathogen causing serious diseases in humans and animals. Here, we report P. multocida from wildlife on China's Qinghai-Tibet plateau with a novel capsular serotype, forming a single branch on the core-genome phylogenetic tree: four strains isolated from dead Himalayan marmot (Marmota himalayana) and one genome assembled from metagenomic sequencing of a dead Woolly hare (Lepus oiostolus). Four of the strains were identified as subspecies multocida and one was septica. The mouse model showed that the challenge strain killed mice within 24 h at an infectious dose of less than 300 bacteria. The short disease course is comparable to septicemic plague: the host has died before more severe pathological changes could take place. Though pathological changes were relatively mild, cytokine storm was obvious with a significant rise of IL-12p70, IL-6, TNF-αand IL-10 (P < 0.05). Our findings suggested P. multocida is a lethal pathogen for wildlife on Qinghai-Tibet plateau, in addition to Yersinia pestis. Individuals residing within the M. himalayana plague focus are at risk for P. multocida infection, and public health warnings are necessitated.


Asunto(s)
Pasteurella multocida , Peste , Animales , Humanos , Ratones , Tibet , Marmota/microbiología , Pasteurella multocida/genética , Filogenia , Serogrupo , China , Peste/microbiología , Animales Salvajes
10.
BMJ ; 384: q41, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191195
12.
Parasitol Res ; 123(1): 7, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053002

RESUMEN

Enterocytozoon bieneusi is responsible for opportunistic infections leading to gastrointestinal diseases in humans and animals worldwide. A total of 334 fresh fecal samples were collected from wild Altai marmots (Marmota baibacina) in Xinjiang, China, and E. bieneusi was screened via PCR amplification of the internal transcribed spacer (ITS) region of the small submit ribosomal RNA (SSU rRNA). The results indicated that 22.8% (76/334) of the wild Altai marmot fecal samples were positive for E. bieneusi, and the highest positive rate was detected in Akqi (51.9%, 27/52), with a significant difference from other sampling sites (p < 0.01). Four known genotypes (BEB6, CHG3, GX2, and YAK1) and three novel genotypes (XJHT2 to XJHT4) were identified in the present study. Genotype XJHT3 was dominant and detected in 48 fecal samples. In the phylogenetic analysis, the novel genotypes XJHT2 and XJHT3 were clustered in Group 1 together with the known genotype YAK1, while genotypes CHG3 and BEB6 were clustered in Group 2. The novel genotype XJHT4 was clustered together with other rodent-derived genotypes and generated a novel Group 14. These data confirmed the host specificity and adaptation of E. bieneusi in rodents. These findings enrich our understanding of the prevalence and genetic diversity of E. bieneusi in wild Altai marmots in Xinjiang, China.


Asunto(s)
Enterocytozoon , Microsporidiosis , Animales , Humanos , Análisis de Secuencia de ADN , Marmota , Enterocytozoon/genética , ADN Espaciador Ribosómico/genética , Especificidad del Huésped , Filogenia , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Genotipo , China/epidemiología , Heces , Prevalencia
13.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37917124

RESUMEN

Six Gram-stain-positive, facultative anaerobic, nonmotile and rod-shaped strains, designated zg-Y50T, zg-Y1362, zg-Y1379T, zg-Y869, zg-629T and zg-Y636, were isolated from the intestinal contents of Marmota himalayana in Qinghai Province, PR China. Strains zg-Y50T, zg-Y1379T and zg-629T exhibited the highest 16S rRNA gene sequence similarities of 99.2, 98.9 and 98.8 % to Aeromicrobium choanae 9 H-4T, Aeromicrobium ginsengisoli JCM 14732T and Aeromicrobium flavum TYLN1T, respectively. Phylogenetic and phylogenomic analyses based on the 16S rRNA gene and genomic sequences, respectively, revealed that the six strains formed three distinct clades within the genus Aeromicrobium. The genome sizes of strains zg-Y50T, zg-Y1379T and zg-629T were 3.1-3.7 Mb, with DNA G+C contents of 69.6-70.4 mol%. Average nucleotide identity and digital DNA-DNA hybridization values between each novel strain and available members of the genus Aeromicrobium were all below species thresholds. All novel strains contained MK-9 (H4) as the major menaquinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the polar lipids. The predominant fatty acid of the six isolates was C18 : 1 ω9c. The cell-wall peptidoglycan contained ʟʟ-diaminopimelic acid as the diagnostic diamino acid. Based on the results from this polyphasic taxonomic study, three novel species in the genus Aeromicrobium are proposed, namely, Aeromicrobium duanguangcaii sp. nov. (zg-Y50T=GDMCC 1.2981T=KCTC 49764T), Aeromicrobium wangtongii sp. nov. (zg-Y1379T=GDMCC 1.2982T=KCTC 49765T) and Aeromicrobium senzhongii sp. nov. (zg-629T=CGMCC 1.17414T=JCM 33888T).


Asunto(s)
Actinomycetales , Ácidos Grasos , Animales , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Marmota
14.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38018813

RESUMEN

Four yellow-coloured strains (zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826) were isolated from the intestinal contents of Marmota himalayana and assigned to the 'Arthrobacter citreus group'. The four strains grew optimally on brain heart infusion agar with 5 % defibrinated sheep blood plate at 30 °C, pH 7.0 and with 0.5 % NaCl (w/v). Comparative analysis of their 16S rRNA genes indicated that the two strain pairs belong to the genus Arthrobacter, showing the highest similarity to Arthrobacter yangruifuii 785T (99.52 %), which was further confirmed by the 16S rRNA gene and genome-based phylogenetic analysis. The comparative genomic analysis [digital DNA-DNA hybridization, (dDDH) and average nucleotide identity (ANI)] proved that the four strains are two different species (zg-Y815T/zg-Y108, 71.7 %/96.8 %; zg-Y859T/zg-Y826, 87.3 %/98.5 %) and differ from other known species within the genus Arthrobacter (zg-Y815T, 19.6-32.3 %/77.2-88.0 %; zg-Y859T, 19.5-29.3 %/77.4-86.3 %). Strain pairs zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826 had the same major cellular fatty acids (iso-C16 : 0 and anteiso-C15 : 0), with MK-8(H2) as their dominant respiratory quinone (70.6 and 61.7 %, respectively). The leading polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol. The detected amino acids and cell-wall sugars of the two new species were identical (amino acids: alanine, glutamic acid, and lysine; sugars: rhamnose, galactose, mannose, glucose, and ribose). According to the phylogenetic, phenotypic, and chemotaxonomic analyses, we concluded that the four new strains represented two different novel species in the genus Arthrobacter, for which the names Arthrobacter zhaoxinii sp. nov. (zg-Y815T= GDMCC 1.3494T = JCM 35821T) and Arthrobacter jinronghuae sp. nov. (zg-Y859T = GDMCC 1.3493T = JCM 35822T) are proposed.


Asunto(s)
Arthrobacter , Animales , Ovinos , Ácidos Grasos/química , Fosfolípidos/química , Marmota , Filogenia , ARN Ribosómico 16S/genética , Vitamina K 2/química , Composición de Base , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Aminoácidos , Hibridación Genómica Comparativa , Azúcares
15.
J Wildl Dis ; 59(4): 734-742, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846914

RESUMEN

Rabies is an acute progressive encephalitis caused by infection with rabies viruses, with reservoirs among bats and mesocarnivores, but all mammals are susceptible. Despite its distribution and abundance, cases of rabies are much less common in rodents and lagomorphs. Familiarity with current rabies prevalence data is important for informed decisions on human postexposure prophylaxis after rodent and lagomorph bites. This study is an update of rabies cases reported in rodents and lagomorphs in the US from 2011 to 2020. Rabies reports were collected passively from laboratory testing agencies in the US and Puerto Rico from 2011 to 2020. Descriptive analysis was conducted to determine the percent positivity of rabies cases by species. A total of 401 cases of rabies in rodents and lagomorphs were reported from 2011 to 2020. Most reported cases were in groundhogs (Marmota monax), representing >90% of cases, and the trend closely aligned with rabies in raccoons (Procyon lotor). In any given year, the percent positivity of rabies in rodents and lagomorphs was <2.5%, and the trend of percent positivity from 2011 to 2020 was stable. Groundhog and North American beaver (Castor canadensis) percent positivity was significantly higher than the rest of the rodents and lagomorphs. Most rabies cases occurred during the months of May-September. Documented cases of rabies in rodents and lagomorphs are generally rare, but with variation between species. Groundhogs and North American beavers had rabies percent positivity similar to high-risk species, such as bats and raccoons, and constituted 97% of all rodent and lagomorph positive cases. Since 1993, the trend in rabies cases in groundhogs has significantly declined. These results can be used to help inform public health officials on rodent and lagomorph prevention and control efforts, as well as rabies postexposure prophylaxis.


Asunto(s)
Quirópteros , Lagomorpha , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Enfermedades de los Roedores , Animales , Animales Salvajes , Marmota , Rabia/epidemiología , Rabia/veterinaria , Rabia/prevención & control , Mapaches , Enfermedades de los Roedores/epidemiología , Roedores , Estados Unidos/epidemiología
16.
Vet Clin Pathol ; 52(4): 732-736, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37723640

RESUMEN

BACKGROUND: The Himalayan marmot (Marmota himalayana) plays a reservoir role in the epidemiology of brucellosis. However, the changes in blood biochemical parameters are still unclear in Brucella-seropositive marmots. OBJECTIVES: The present study was designed to explore the hematologic and biochemical variable changes in Brucella-seropositive marmots. METHODS: Blood samples were collected from the dorsalis pedis vein of Himalayan marmots (24 Brucella-seropositive marmots and 24 Brucella-free marmots). Ten hematologic and 10 serum biochemical variable examinations were performed and analyzed. RESULTS: Our results showed that leukocyte, platelet, neutrophil, and lymphocyte counts significantly increased, while the level of carbon dioxide combining power decreased in Brucella-infected marmots. These findings indicate that Brucella triggers an immune response in Himalayan marmots. CONCLUSIONS: This study provides a preliminary investigation of the changes in blood biochemical analytes in Brucella-infected marmots. The interaction between Brucella infection and blood biochemical indices in Himalayan marmots should be further explored.


Asunto(s)
Brucella , Marmota , Animales , Marmota/fisiología
17.
Virus Genes ; 59(6): 823-830, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37728707

RESUMEN

Due to the limited host range of HBV, research progress has been hindered by the absence of a suitable animal model. The natural history of woodchuck hepatitis virus (WHV) infection in woodchuck closely mirrors that of HBV infection in human, making this species a promising candidate for establishing both in vivo and in vitro HBV infection models. Therefore, this animal may be a valuable species to evaluate HBV vaccines and anti-HBV drugs. A significant milestone in HBV and hepatitis D virus (HDV) infection is the discovery of sodium taurocholate cotransporting polypeptide (NTCP) as the functional receptor. In an effort to enhance susceptibility to HBV infection, we introduced hNTCP into the woodchuck hepatocytes by multiple approaches including transduction of vLentivirus-hNTCP in woodchuck hepatocytes, transfection of p-lentivirus-hNTCP-eGFP plasmids into these cells, as well as transduction of vAdenovirus-hNTCP-eGFP. Encouragingly, our findings demonstrated the successful introduction of hNTCP into woodchuck hepatocytes. However, it was observed that these hNTCP-expressing hepatocytes were only susceptible to HDV infection but not HBV. This suggests the presence of additional crucial factors mediating early-stage HBV infection that are subject to stringent species-specific restrictions.


Asunto(s)
Hepatitis B , Hepatitis D , Animales , Humanos , Virus de la Hepatitis B/genética , Marmota , Hepatocitos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Virus de la Hepatitis Delta/genética , Internalización del Virus
18.
Artículo en Inglés | MEDLINE | ID: mdl-37610801

RESUMEN

Four Gram-stain-negative, oxidase-positive, non-motile, cocci-shaped bacteria strains (ZJ106T, ZJ104, ZJ785T and ZJ930) were isolated from marmot respiratory tracts. Phylogenetic analyses based on 16S rRNA genes, 53 ribosomal protein sequences and 441 core genes supported that all four strains belonged to the genus Neisseria with close relatives Neisseria weixii 10022T and Neisseria iguanae ATCC 51483T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the species-level thresholds (95-96 % for ANI, and 70 % for dDDH). The major fatty acids of all four strains were C16 : 1 ω7c /C16 : 1 ω6c, C16 : 0 and C18 : 1 ω9c. Major polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. MK-8 was the major menaquinone. Based on Virulence Factor Database analysis, the four strains were found to contain NspA and PorB H-factor binding proteins that promote evasion of host immunity. Strains ZJ106T and ZJ104 contained structures similar to the capsule synthesis manipulator of Neisseria meningitidis. Based on phenotypic and phylogenetic evidence, we propose that strains ZJ106T and ZJ785T represent two novel species of the genus Neisseria, respectively, with the names Neisseria lisongii sp. nov. and Neisseria yangbaofengii sp. nov. The type strains are ZJ106T (=GDMCC 1.3111T=JCM 35323T) and ZJ785T (=GDMCC 1.1998T=KCTC 82336T).


Asunto(s)
Ácidos Grasos , Marmota , Animales , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Neisseria/genética , Sistema Respiratorio , Nucleótidos
19.
Sci Rep ; 13(1): 13949, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626115

RESUMEN

The Escherichia marmotae is a bacterium of the Enterobacterales order, which was first isolated from the Himalayan marmot (Marmota himalayana). Recently E. marmotae has been shown to cause severe infections in humans. Wild animals were suggested to be a natural reservoir of this bacterium. The present study describes the first case of E. marmotae isolation from an apparently healthy wild bank vole (Myodes glareolus). Phenotype, as well as genotype-based techniques, were applied to characterize E. marmotae M-12 isolate. E. marmotae M-12 had the capsule-positive phenotype, high adhesion to human erythrocytes and HEp-2 cells as well as a low invasion into HEp-2 cells. E. marmotae M-12 was avirulent in mice. The phylogenomic analyses of E. marmotae showed dispersed phylogenetic structure among isolates of different origins. Virulome analysis of M-12 isolate revealed the presence of the following factors: siderophores, heme uptake systems, capsule synthesis, curli and type I fimbriae, flagella proteins, OmpA porin, etc. Comparative virulome analysis among available E. marmotae genomes revealed the presence of capsule K1 genes mostly in pathogenic isolates and OmpA porin presence among all strains. We assume that the K1 capsule and OmpA porin play a key role in the virulence of E. marmotae. Pathogenesis of the latter might be similar to extraintestinal pathogenic E. coli.


Asunto(s)
Escherichia coli , Escherichia coli Patógena Extraintestinal , Humanos , Animales , Ratones , Filogenia , Arvicolinae , Marmota , Porinas/genética
20.
PLoS One ; 18(8): e0289209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37590218

RESUMEN

Small mammal species play an important role influencing vegetation primary productivity and plant species composition, seed dispersal, soil structure, and as predator and/or prey species. Species which experience population dynamics cycles can, at high population phases, heavily impact agricultural sectors and promote rodent-borne disease transmission. To better understand the drivers behind small mammal distributions and abundances, and how these differ for individual species, it is necessary to characterise landscape variables important for the life cycles of the species in question. In this study, a suite of Earth observation derived metrics quantifying landscape characteristics and dynamics, and in-situ small mammal trapline and transect survey data, are used to generate random forest species distribution models for nine small mammal species for study sites in Narati, China and Sary Mogul, Kyrgyzstan. These species distribution models identify the important landscape proxy variables driving species abundance and distributions, in turn identifying the optimal conditions for each species. The observed relationships differed between species, with the number of landscape proxy variables identified as important for each species ranging from 3 for Microtus gregalis at Sary Mogul, to 26 for Ellobius tancrei at Narati. Results indicate that grasslands were predicted to hold higher abundances of Microtus obscurus, E. tancrei and Marmota baibacina, forest areas hold higher abundances of Myodes centralis and Sorex asper, with mixed forest-grassland boundary areas and areas close to watercourses predicted to hold higher abundances of Apodemus uralensis and Sicista tianshanica. Localised variability in vegetation and wetness conditions, as well as presence of certain habitat types, are also shown to influence these small mammal species abundances. Predictive application of the Random Forest (RF) models identified spatial hot-spots of high abundance, with model validation producing R2 values between 0.670 for M. gregalis transect data at Sary Mogul to 0.939 for E. tancrei transect data at Narati. This enhances previous work whereby optimal habitat was defined simply as presence of a given land cover type, and instead defines optimal habitat via a combination of important landscape dynamic variables, moving from a human-defined to species-defined perspective of optimal habitat. The species distribution models demonstrate differing distributions and abundances of host species across the study areas, utilising the strengths of Earth observation data to improve our understanding of landscape and ecological linkages to small mammal distributions and abundances.


Asunto(s)
Directivas Anticipadas , Mamíferos , Humanos , Animales , Agricultura , Arvicolinae , Benchmarking , Marmota , Murinae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...