Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.071
Filtrar
1.
PeerJ ; 12: e18119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351367

RESUMEN

Atmospheric particulate matter (PM) pollution has become a major environmental risk, and green plants can mitigate air pollution by regulating their enzymatic activity, osmoregulatory substances, photosynthetic pigments, and other biochemical characteristics. The present investigation aims to evaluate the mitigation potential of five common evergreen tree species (Photinia serrulata, Ligustrum lucidum, Eriobotrya japonica, Euonymus japonicus, Pittosporum tobira) against air pollution and to assess the effect of dust retention on plant physiological functions exposed to three different pollution levels (road, campus, and park). The results found that the amount of dust retained per unit leaf area of the plants was proportional to the mass concentration of atmospheric particulate matter in the environment, and that dust accumulation was higher on the road and campus than in the park. There were significant differences in dust retention among the five tree species, with the highest leaf dust accumulation observed for E. japonica (5.45 g·m-2), and the lowest for P. tobira (1.53 g·m-2). In addition, the increase in PM adsorption by different plants was uneven with increasing pollution levels, with significant decreases in chlorophyll content, photosynthetic and transpiration rate. From a physiological perspective, P. tobira exhibited greater potential to respond to PM pollution. Biochemical indicators suggested that PM pollution caused changes in plant protective enzyme activities, with a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities, as well as promoting membrane lipid peroxidation, and appropriate stress also enables plants to counteract oxidative damage. In particular, PM exposure also induced stomatal constriction. Overall, PM retention was significantly associated with physiological and photosynthetic traits. In conclusion, our study contributes to the understanding of the effects of PM on plant physiology. Furthermore, it also provides insights into the selection of plants that are tolerant to PM pollution.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Fotosíntesis , Material Particulado/efectos adversos , Material Particulado/toxicidad , China , Fotosíntesis/efectos de los fármacos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Clorofila/metabolismo , Árboles/efectos de los fármacos , Árboles/metabolismo , Ligustrum/química , Euonymus/metabolismo , Euonymus/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Polvo/análisis , Contaminación del Aire/efectos adversos
2.
Sci Rep ; 14(1): 22867, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354012

RESUMEN

Dust particles and their associated compounds can adversely affect human health and ecosystems. The aim of this study was to investigate the concentration, health, and ecological risks of selected potentially toxic elements (e.g. Pb, Cd, Cr, Co, Cu, Zn, V, Ni, and As) bound to air particles generated by dust storms in the Sejzi plain desert area within the industrial district of Isfahan metropolitan, Iran. The enrichment factor revealed the highest values for Zn, Pb, and Cd which among them Zn showed the highest value (8.1) with the potential source of industrial activities confirmed by the integrated pollution index, accumulation coefficient, and ecological risk index. Regarding health risk analysis (non-cancer and cancer risks) the elements including Co, As, and Cr showed a significant risk for adults and children across all seasons. It's concluded that mitigation of air particles originated from both natural and industrial activities is necessary to reduce their relevant risks to human being and ecosystems in the region.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Irán , Polvo/análisis , Humanos , Medición de Riesgo , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Metales Pesados/toxicidad , Clima Desértico , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/análisis , Material Particulado/efectos adversos , Industrias , Niño , Adulto
4.
JAMA Netw Open ; 7(10): e2436915, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39356505

RESUMEN

Importance: Schizophrenia episodes may be triggered by short-term environmental stimuli. Short-term increases in ambient air pollution levels may elevate the risk of schizophrenia episodes, yet few epidemiologic studies have examined this association. Objective: To investigate whether short-term increases in air pollution levels are associated with an additional risk of schizophrenia episodes, independent of absolute air pollution concentrations, and whether sustained increases in air pollution levels for several days are associated with more pronounced risks of schizophrenia episodes. Design, Setting, and Participants: This nationwide, population-based, time-stratified case-crossover study was performed based on hospitalization records for schizophrenia across 295 administrative divisions of prefecture-level or above cities in China. Records were extracted from 2 major health insurance systems from January 1, 2013, to December 31, 2017. Thirty-six cities with a small number of schizophrenia hospitalizations (n < 50) were excluded. Data analysis for this study was performed from January to March 2024. Exposure: Daily absolute concentrations of fine particulate matter (PM2.5), inhalable particulate matter (PM10), nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide were collected. Air pollution increases between neighboring days (APINs) were generated as the differences in absolute air pollution concentrations on the current day minus that on the previous day. Sustained increases (APIN ≥5 µg/m3 for PM2.5 and PM10, APIN ≥1 µg/m3 for nitrogen dioxide and sulfur dioxide, and APIN ≥0.05 mg/m3 for carbon monoxide) lasting for 1 or more to 4 or more days were defined for different air pollutants. Main Outcome and Measure: Patients with schizophrenia episodes were identified by principal discharge diagnoses of schizophrenia. A conditional logistic regression model was used to capture the associations of absolute concentrations, APINs, and sustained increase events for different air pollutants with risks of schizophrenia hospitalizations. Results: The study included 817 296 hospitalization records for schizophrenia across 259 Chinese cities (30.6% aged 0-39 years, 56.4% aged 40-64 years, and 13.0% aged ≥65 years; 55.04% male). After adjusting for the absolute concentrations of respective air pollutants, per-IQR increases in 6-day moving average (lag0-5) APINs of PM2.5, PM10, nitrogen dioxide, sulfur dioxide, and carbon monoxide were associated with increases of 2.37% (95% CI, 0.88%-3.88%), 2.95% (95% CI, 1.46%-4.47%), 4.61% (95% CI, 2.93%-6.32%), 2.16% (95% CI, 0.59%-3.76%), and 2.02% (95% CI, 0.39%-3.68%) in schizophrenia hospitalizations, respectively. Greater risks of schizophrenia hospitalizations were associated with sustained increases in air pollutants lasting for longer durations up to 4 or more days. Conclusions and Relevance: This case-crossover study of the association between ambient air pollution increases and schizophrenia hospitalizations provides novel evidence that short-term increases in ambient air pollution levels were positively associated with an elevated risk of schizophrenia episodes. Future schizophrenia prevention practices should pay additional attention to APINs, especially sustained increases in air pollution levels for longer durations, besides the absolute air pollution concentrations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Estudios Cruzados , Hospitalización , Material Particulado , Esquizofrenia , Humanos , Esquizofrenia/epidemiología , Esquizofrenia/etiología , China/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Material Particulado/efectos adversos , Material Particulado/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Anciano , Dióxido de Azufre/análisis , Dióxido de Azufre/efectos adversos , Adulto Joven
5.
BMC Med ; 22(1): 370, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256817

RESUMEN

BACKGROUND: Uncertainty remains about the long-term effects of air pollutants (AP) on multiple diseases, especially subtypes of cardiovascular disease (CVD). We aimed to assess the individual and joint associations of fine particulate matter (PM2.5), along with its chemical components, nitrogen dioxide (NO2) and ozone (O3), with risks of 32 health conditions. METHODS: A total of 17,566 participants in Sichuan Province, China, were included in 2018 and followed until 2022, with an average follow-up period of 4.2 years. The concentrations of AP were measured using a machine-learning approach. The Cox proportional hazards model and quantile g-computation were applied to assess the associations between AP and CVD. RESULTS: Per interquartile range (IQR) increase in PM2.5 mass, NO2, O3, nitrate, ammonium, organic matter (OM), black carbon (BC), chloride, and sulfate were significantly associated with increased risks of various conditions, with hazard ratios (HRs) ranging from 1.06 to 2.48. Exposure to multiple air pollutants was associated with total cardiovascular disease (HR 1.75, 95% confidence intervals (CIs) 1.62-1.89), hypertensive diseases (1.49, 1.38-1.62), cardiac arrests (1.52, 1.30-1.77), arrhythmia (1.76, 1.44-2.15), cerebrovascular diseases (1.86, 1.65-2.10), stroke (1.77, 1.54-2.03), ischemic stroke (1.85, 1.61-2.12), atherosclerosis (1.77, 1.57-1.99), diseases of veins, lymphatic vessels, and lymph nodes (1.32, 1.15-1.51), pneumonia (1.37, 1.16-1.61), inflammatory bowel diseases (1.34, 1.16-1.55), liver diseases (1.59, 1.43-1.77), type 2 diabetes (1.48, 1.26-1.73), lipoprotein metabolism disorders (2.20, 1.96-2.47), purine metabolism disorders (1.61, 1.38-1.88), anemia (1.29, 1.15-1.45), sleep disorders (1.54, 1.33-1.78), renal failure (1.44, 1.21-1.72), kidney stone (1.27, 1.13-1.43), osteoarthritis (2.18, 2.00-2.39), osteoporosis (1.36, 1.14-1.61). OM had max weights for joint effects of AP on many conditions. CONCLUSIONS: Long-term exposure to increased levels of multiple air pollutants was associated with risks of multiple health conditions. OM accounted for substantial weight for these increased risks, suggesting it may play an important role in these associations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Material Particulado , Humanos , China/epidemiología , Contaminación del Aire/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Material Particulado/efectos adversos , Material Particulado/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Enfermedades Cardiovasculares/epidemiología , Adulto , Ozono/efectos adversos , Ozono/análisis , Anciano , Exposición a Riesgos Ambientales/efectos adversos , Factores de Riesgo , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis
6.
Sci Rep ; 14(1): 21030, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251631

RESUMEN

Numerous studies have been conducted in other countries on the health effects of exposure to particulate matter with a diameter of 10 microns or less P M 10 , but little research has been conducted in Malaysia, particularly during the haze season. This study intends to investigate how exposure of P M 10 influenced hospital admissions for respiratory diseases during the haze period in peninsula Malaysia and it was further stratified by age group, gender and respiratory diseases categories. The study includes data from all patients with respiratory diseases in 92 government hospitals, as well as P M 10 concentration and meteorological data from 92 monitoring stations in Peninsula Malaysia starting from 1st January 2000 to 31st December 2019. A quasi-poison time series regression with distributed lag nonlinear model (DLNM) was employed in this study to examine the relationship between exposure of P M 10 and hospital admissions for respiratory diseases during the haze period. Haze period for this study has been defined from June to September each year. According to the findings of this study, P M 10 was positively associated with hospitalisation of respiratory disease within 30 lag days under various lag patterns, with lag 25 showing the strongest association (RR = 1.001742, CI 1.001029,1.002456). Using median as a reference, it was discovered that females were more likely than males to be hospitalized for P M 10 exposure. Working age group will be the most affected by the increase in P M 10 exposure with a significant cumulative RR from lag 010 to lag 030. The study found that P M 10 had a significant influence on respiratory hospitalisation in peninsula Malaysia, particularly for lung diseases caused by external agents(CD5). Therefore, it is important to implement effective intervention measures to control P M 10 and reduce the burden of respiratory disease admissions.


Asunto(s)
Hospitalización , Material Particulado , Enfermedades Respiratorias , Humanos , Malasia/epidemiología , Femenino , Masculino , Hospitalización/estadística & datos numéricos , Material Particulado/análisis , Material Particulado/efectos adversos , Persona de Mediana Edad , Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/etiología , Adulto , Anciano , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Estaciones del Año , Adolescente , Adulto Joven , Niño , Preescolar
7.
Respir Res ; 25(1): 335, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251997

RESUMEN

BACKGROUND: Particulate matter with a diameter of < 2.5 µm (PM2.5) influences gene regulation via DNA methylation; however, its precise mechanism of action remains unclear. Thus, this study aimed to examine the connection between personal PM2.5 exposure and DNA methylation in CpG islands as well as explore the associated gene pathways. METHODS: A total of 95 male patients with chronic obstructive pulmonary disease (COPD) were enrolled in this study. PM2.5 concentrations were measured for 12 months, with individual exposure recorded for 24 h every 3 months. Mean indoor and estimated individual PM2.5 exposure levels were calculated for short-term (7 days), mid-term (35 days), and long-term (90 days). DNA methylation analysis was performed on the blood samples, which, after PCR amplification and hybridization, were finally sequenced using an Illumina NovaSeq 6000 system. Correlation between PM2.5 exposure and CpG methylation sites was confirmed via a mixed-effects model. Functional enrichment analysis was performed on unique CpG methylation sites associated with PM2.5 exposure to identify the relevant biological functions or pathways. RESULTS: The number of CpG sites showing differential methylation was 36, 381, and 182 for the short-, mid-, and long-term indoor models, respectively, and 3, 98, and 28 for the short-, mid-, and long-term estimated exposure models, respectively. The representative genes were TMTC2 (p = 1.63 × 10-3, R2 = 0.656), GLRX3 (p = 1.46 × 10-3, R2 = 0.623), DCAF15 (p = 2.43 × 10-4, R2 = 0.623), CNOT6L (p = 1.46 × 10-4, R2 = 0.609), BSN (p = 2.21 × 10-5, R2 = 0.606), and SENP6 (p = 1.59 × 10-4, R2 = 0.604). Functional enrichment analysis demonstrated that the related genes were mostly associated with pathways related to synaptic transmission in neurodegenerative diseases and cancer. CONCLUSION: A significant association was observed between PM2.5 exposure and DNA methylation upon short-term exposure, and the extent of DNA methylation was the highest upon mid-term exposure. Additionally, various pathways related to neurodegenerative diseases and cancer were associated with patients with COPD. GOV IDENTIFIER: NCT04878367.


Asunto(s)
Islas de CpG , Metilación de ADN , Material Particulado , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Masculino , Material Particulado/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Anciano , Persona de Mediana Edad , Islas de CpG/genética , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Factores de Tiempo
8.
JAMA Netw Open ; 7(9): e2432245, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39240563

RESUMEN

Importance: Ambient air pollution and antimicrobial resistance pose significant global public health challenges. It is not known whether ambient air pollution is associated with increased consumption of antimicrobials. Objective: To assess whether a short-term association exists between ambient air pollution levels and antimicrobial consumption among the general population seeking primary care consultations for acute respiratory symptoms. Design, Setting, and Participants: This 2-stage cross-sectional ecological time series analysis study using data on daily ambient air pollution and antimicrobial consumption was conducted in the 11 largest cities in Catalonia, Spain, from June 23, 2012, to December 31, 2019, among all inhabitants aged 12 years or older. Statistical analysis was performed from November 2022 to December 2023. Exposures: Daily ambient air pollution (particulate matter of 10 µg/m3 [PM10], particulate matter of 2.5 µg/m3 [PM2.5], and nitrogen dioxide [NO2]). Main Outcomes and Measures: The main outcome was antimicrobial consumption associated with primary care consultations for acute respiratory symptoms in the 30 days before and after the dispensing of the antimicrobial. Antimicrobial consumption was measured as defined daily doses (DDDs) per 1000 inhabitants per day. Results: Among 1 938 333 inhabitants (median age, 48 years [IQR, 34-65 years]; 55% female participants), there were 8 421 404 antimicrobial dispensations, with a median of 12.26 DDDs per 1000 inhabitants per day (IQR, 6.03-15.32 DDDs per 1000 inhabitants per day). The median adjusted morbidity score was 2.0 (IQR, 1.0-5.0). For the 1 924 814 antimicrobial dispensations associated with primary care consultations for acute respiratory symptoms, there was a significant correlation between increases of 10 µg/m3 in the concentration of the 3 pollutants studied and heightened antimicrobial consumption at day 0 (PM10: relative risk [RR], 1.01 [95% CI, 1.01-1.02]; PM2.5: RR, 1.03 [95% CI, 1.01-1.04]; NO2: RR, 1.04 [95% CI, 1.03-1.05]). A delayed association emerged between increases in PM2.5 concentration and antimicrobial consumption between day 7 (RR, 1.00 [95% CI, 1.00-1.01]) and day 10 (RR, 1.00 [95% CI, 1.00-1.01]) after exposure. Conclusions and Relevance: In this 2-stage cross-sectional study using ecological time series analysis, short-term exposure to air pollution was associated with increased antimicrobial use associated with primary care consultations for acute respiratory symptoms in the general population. This finding could contribute to informing policy decisions aimed at reducing air pollution and its associated risks, thereby promoting respiratory health and reducing antimicrobial use.


Asunto(s)
Contaminación del Aire , Humanos , Femenino , Masculino , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Persona de Mediana Edad , Estudios Transversales , Adulto , España/epidemiología , Anciano , Material Particulado/efectos adversos , Material Particulado/análisis , Antiinfecciosos/uso terapéutico , Antiinfecciosos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Adolescente , Adulto Joven , Niño , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/epidemiología
9.
Front Public Health ; 12: 1438974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39314792

RESUMEN

Objectives: Our study aims to clarify the causality between air pollutants and lung function, chronic respiratory diseases, and the potential mediating effects of inflammatory proteins. Method: We employed Mendelian Randomization (MR) analysis with comprehensive instrumental variables screening criteria to investigate the effects of air pollutants on lung function and chronic lung diseases. Our study incorporated genetic instruments for air pollutants, ensuring F-statistics above 20.86. A total of 18 MR analyses were conducted using the inverse-variance weighted approach, along with heterogeneity and pleiotropy tests to validate the results. Mediated MR analysis was utilized to evaluate the inflammatory proteins mediating the effects of air pollutants. Result: MR analysis demonstrated significant causal interactions of particulate matter 2.5 (PM2.5), PM10, and Nitrogen dioxide (NO2) with lung function decline. Specifically, PM10 negatively affected forced expiratory volume in one second (FEV1) (OR: 0.934, 95% CI: 0.904-0.965, p = 4.27 × 10-5), forced vital capacity (FVC) (OR: 0.941, 95% CI: 0.910-0.972, p = 2.86 × 10-4), and FEV1/FVC (OR: 0.965, 95% CI: 0.934-0.998, p = 0.036). PM2.5 and NO2 were identified as potential risk factors for impairing FEV1 (OR: 0.936, 95% CI: 0.879-0.998, p = 0.042) and FEV1/FVC (OR: 0.943, 95% CI: 0.896-0.992, p = 0.024), respectively. For chronic respiratory diseases, PM2.5 and NO2 were associated with increased COPD incidence (OR: 1.273, 95% CI: 1.053-1.541, p = 0.013 for PM2.5; OR: 1.357, 95% CI: 1.165-1.581, p = 8.74 × 10-5 for NO2). Sensitivity analyses confirmed the robustness of these findings, with no significant heterogeneity or horizontal pleiotropy detected. Conclusion: Our study ascertained the causal correlations of air pollutants with lung function and COPD, emphasizing the importance of reducing air pollution. Interleukin-17A mediates the reduction of FEV1 and FVC by PM10, revealing potential therapeutic targets.


Asunto(s)
Contaminantes Atmosféricos , Análisis de la Aleatorización Mendeliana , Material Particulado , Humanos , Contaminantes Atmosféricos/efectos adversos , Material Particulado/efectos adversos , Pruebas de Función Respiratoria , Contaminación del Aire/efectos adversos , Dióxido de Nitrógeno/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Enfermedad Crónica , Masculino , Volumen Espiratorio Forzado , Enfermedades Respiratorias/epidemiología
10.
Proc Natl Acad Sci U S A ; 121(40): e2403960121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39316057

RESUMEN

Despite the substantial evidence on the health effects of short-term exposure to ambient fine particles (PM2.5), including increasing studies focusing on those from wildland fire smoke, the impacts of long-term wildland fire smoke PM2.5 exposure remain unclear. We investigated the association between long-term exposure to wildland fire smoke PM2.5 and nonaccidental mortality and mortality from a wide range of specific causes in all 3,108 counties in the contiguous United States, 2007 to 2020. Controlling for nonsmoke PM2.5, air temperature, and unmeasured spatial and temporal confounders, we found a nonlinear association between 12-mo moving average concentration of smoke PM2.5 and monthly nonaccidental mortality rate. Relative to a month with the long-term smoke PM2.5 exposure below 0.1 µg/m3, nonaccidental mortality increased by 0.16 to 0.63 and 2.11 deaths per 100,000 people per month when the 12-mo moving average of PM2.5 concentration was of 0.1 to 5 and 5+ µg/m3, respectively. Cardiovascular, ischemic heart disease, digestive, endocrine, diabetes, mental, and chronic kidney disease mortality were all found to be associated with long-term wildland fire smoke PM2.5 exposure. Smoke PM2.5 contributed to approximately 11,415 nonaccidental deaths/y (95% CI: 6,754, 16,075) in the contiguous United States. Higher smoke PM2.5-related increases in mortality rates were found for people aged 65 and above. Positive interaction effects with extreme heat were also observed. Our study identified the detrimental effects of long-term exposure to wildland fire smoke PM2.5 on a wide range of mortality outcomes, underscoring the need for public health actions and communications that span the health risks of both short- and long-term exposure.


Asunto(s)
Exposición a Riesgos Ambientales , Material Particulado , Humo , Humanos , Estados Unidos/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Humo/efectos adversos , Humo/análisis , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Femenino , Masculino , Incendios Forestales , Mortalidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Anciano
11.
PeerJ ; 12: e18055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308827

RESUMEN

Background: Particulate pollution, especially PM2.5from biomass burning, affects public and human health in northern Thailand during the dry season. Therefore, PM2.5exposure increases non-communicable disease incidence and mortality. This study examined the relationship between PM2.5and NCD mortality, including heart disease, hypertension, chronic lung disease, stroke, and diabetes, in northern Thailand during 2017-2021. Methods: The analysis utilized accurate PM2.5data from the MERRA2 reanalysis, along with ground-based PM2.5measurements from the Pollution Control Department and mortality data from the Division of Non-Communicable Disease, Thailand. The cross-correlation and spearman coefficient were utilized for the time-lag, and direction of the relationship between PM2.5and mortality from NCDs, respectively. The Hazard Quotient (HQ) was used to quantify the health risk of PM2.5to people in northern Thailand. Results: High PM2.5 risk was observed in March, with peak PM2.5concentration reaching 100 µg/m3, with maximum HQ values of 1.78 ± 0.13 to 4.25 ± 0.35 and 1.45 ± 0.11 to 3.46 ± 0.29 for males and females, respectively. Hypertension significantly correlated with PM2.5levels, followed by chronic lung disease and diabetes. The cross-correlation analysis showed a strong relationship between hypertansion mortality and PM2.5at a two-year time lag in Chiang Mai (0.73) (CI [-0.43-0.98], p-value of 0.0270) and a modest relationship with chronic lung disease at Lampang (0.33) (a four-year time lag). The results from spearman correlation analysis showed that PM2.5concentrations were associated with diabetes mortality in Chiang Mai, with a coefficient of 0.9 (CI [0.09-0.99], p-value of 0.03704). Lampang and Phayao had significant associations between PM2.5 and heart disease, with coefficients of 0.97 (CI [0.66-0.99], p-value of 0.0048) and 0.90 (CI [0.09-0.99], p-value of 0.0374), respectively, whereas Phrae had a high coefficient of 0.99 on stroke.


Asunto(s)
Enfermedades no Transmisibles , Material Particulado , Humanos , Tailandia/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Enfermedades no Transmisibles/mortalidad , Enfermedades no Transmisibles/epidemiología , Femenino , Masculino , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Hipertensión/mortalidad , Hipertensión/epidemiología , Diabetes Mellitus/mortalidad , Diabetes Mellitus/epidemiología , Persona de Mediana Edad , Adulto
12.
BMJ Open ; 14(9): e085884, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39343450

RESUMEN

OBJECTIVES: To explore the associations of air pollutants and Air Quality Index (AQI) with risk of sudden sensorineural hearing loss (SSNHL) DESIGN: Cross-sectional study SETTING: Medical record data and local population data collected between 2014 and 2022 in Changshu, China were retrospectively reviewed. PARTICIPANTS: Adults aged 18 years and above who were diagnosed with SSNHL in Changshu No. 1 People's Hospital or Changshu No. 2 People's Hospital from the spring of 2014 to the fall of 2022 were included in the study. OUTCOME MEASURE: SSNHL was diagnosed by clinicians using the Chinese diagnostic criteria for SSNHL. RESULTS: Compared with those exposed to the lowest tertile of carbon monoxide (CO), the prevalence ratio for those exposed to middle and high tertiles of CO were 1.113 (95% CI 1.022 to 1.213) and 1.230 (95% CI 1.105 to 1.369), respectively. The risk of SSNHL was increased by 30.6% (95% CI 9.9% to 55.4%) per doubling increment of CO. No categorical association was found between ozone (O3) exposure and risk of SSNHL, however, an increased risk of 22.2% (0.8%-48.2%) was identified for each doubling of O3. No association was identified between other pollutants and AQI and risk of SSNHL. CONCLUSIONS: In this study, CO and O3 were associated with an increased risk of SSNHL in Changshu, China. Further studies are warranted to confirm our findings.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Pérdida Auditiva Sensorineural , Ozono , Humanos , Estudios Transversales , Masculino , China/epidemiología , Persona de Mediana Edad , Femenino , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/inducido químicamente , Pérdida Auditiva Sensorineural/etiología , Adulto , Ozono/efectos adversos , Ozono/análisis , Estudios Retrospectivos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Anciano , Pérdida Auditiva Súbita/epidemiología , Pérdida Auditiva Súbita/etiología , Factores de Riesgo , Monóxido de Carbono/efectos adversos , Monóxido de Carbono/análisis , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/efectos adversos , Material Particulado/análisis , Prevalencia
13.
Sci Rep ; 14(1): 22544, 2024 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-39343805

RESUMEN

Osteoarthritis (OA) is one of the most prevalent musculoskeletal diseases in Taiwan, posing a significant public health challenge. In recent years, outdoor air pollution has become an increasingly critical global health issue. Asian Dust Storms (ADS) are known to exacerbate various health conditions due to elevated levels of particulate matter and other pollutants. However, the relationship between ADS and knee OA remains insufficiently explored. This study investigates the association between ADS occurrences and knee OA outpatient visits from January 2006 to December 2012, aiming to understand the potential health impacts of dust storms on OA patients. Using data from the National Health Insurance Research Database (NHIRD), the Taiwan Environmental Protection Agency (TEPA), and the Taiwan Central Weather Bureau, we conducted a time-series analysis employing the autoregressive moving average with exogenous variables (ARMAX) model. This approach accounted for daily outpatient visits related to knee OA, ADS events, and various environmental and meteorological factors. The results revealed a significant increase in knee OA outpatient visits on days immediately following ADS events, with peaks observed one to two days after the event. This increase was most pronounced among females, individuals aged 61 and above, and residents in the western regions. The study demonstrates an association between ADS and increased knee OA outpatient visits, highlighting the need for public health strategies to mitigate the health impacts of dust storms.


Asunto(s)
Polvo , Osteoartritis de la Rodilla , Pacientes Ambulatorios , Humanos , Femenino , Polvo/análisis , Masculino , Osteoartritis de la Rodilla/epidemiología , Osteoartritis de la Rodilla/etiología , Persona de Mediana Edad , Taiwán/epidemiología , Anciano , Pacientes Ambulatorios/estadística & datos numéricos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Adulto , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos
14.
Nat Commun ; 15(1): 8451, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349441

RESUMEN

Growing evidence suggests that long-term air pollution exposure is a risk factor for cardiovascular mortality and morbidity. However, few studies have investigated air pollution below current regulatory limits, and causal evidence is limited. We use a double negative control approach to examine the association between long-term exposure to air pollution at low concentration and cardiovascular hospitalizations among US Medicare beneficiaries aged ≥65 years between 2000 and 2016. The expected values of the negative outcome control (preceding-year hospitalizations) regressed on exposure and negative exposure control (subsequent-year exposure) are treated as a surrogate for omitted confounders. With analyses separately restricted to low-pollution areas (PM2.5 < 9 µg/m³, NO2 < 75.2 µg/m3 [40 ppb], warm-season O3 < 88.2 µg/m3 [45 ppb]), we observed positive associations of the three pollutants with hospitalization rates of stroke, heart failure, and atrial fibrillation and flutter. The associations generally persisted in demographic subgroups. Stricter national air quality standards should be considered.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Hospitalización , Material Particulado , Humanos , Anciano , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Estados Unidos/epidemiología , Masculino , Femenino , Enfermedades Cardiovasculares/epidemiología , Hospitalización/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Material Particulado/análisis , Material Particulado/efectos adversos , Anciano de 80 o más Años , Ozono/análisis , Ozono/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Medicare , Factores de Riesgo
15.
JAMA Netw Open ; 7(9): e2433602, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39283636

RESUMEN

Importance: The role of air pollution in risk and progression of Parkinson disease (PD) is unclear. Objective: To assess whether air pollution is associated with increased risk of PD and clinical characteristics of PD. Design, Setting, and Participants: This population-based case-control study included patients with PD and matched controls from the Rochester Epidemiology Project from 1998 to 2015. Data were analyzed from January to June 2024. Exposures: Mean annual exposure to particulate matter with a diameter of 2.5 µm or less (PM2.5) from 1998 to 2015 and mean annual exposure to nitrogen dioxide (NO2) from 2000 to 2014. Main Outcomes and Measures: Outcomes of interest were PD risk, all-cause mortality, presence of tremor-predominant vs akinetic rigid PD, and development of dyskinesia. Models were adjusted for age, sex, race and ethnicity, year of index, and urban vs rural residence. Results: A total of 346 patients with PD (median [IQR] age 72 [65-80] years; 216 [62.4%] male) were identified and matched on age and sex with 4813 controls (median [IQR] age, 72 [65-79] years, 2946 [61.2%] male). Greater PM2.5 exposure was associated with increased PD risk, and this risk was greatest after restricting to populations within metropolitan cores (odds ratio [OR], 1.23; 95% CI, 1.11-1.35) for the top quintile of PM2.5 exposure compared with the bottom quintile. Greater NO2 exposure was also associated with increased PD risk when comparing the top quintile with the bottom quintile (OR, 1.13; 95% CI, 1.07-1.19). Air pollution was associated with a 36% increased risk of akinetic rigid presentation (OR per each 1-µg/m3 increase in PM2.5, 1.36; 95% CI, 1.02-1.80). In analyses among patients with PD only, higher PM2.5 exposure was associated with greater risk for developing dyskinesia (HR per 1-µg/m3 increase in PM2.5, 1.42; 95% CI, 1.17-1.73), as was increased NO2 exposure (HR per 1 µg/m3 increase in NO2, 1.13; 95% CI, 1.06-1.19). There was no association between PM2.5 and all-cause mortality among patients with PD. Conclusions and Relevance: In this case-control study of air pollution and PD, higher levels of PM2.5 and NO2 exposure were associated with increased risk of PD; also, higher levels of PM2.5 exposure were associated with increased risk of developing akinetic rigid PD and dyskinesia compared with patients with PD exposed to lower levels. These findings suggest that reducing air pollution may reduce risk of PD, modify the PD phenotype, and reduce risk of dyskinesia.


Asunto(s)
Contaminación del Aire , Exposición a Riesgos Ambientales , Dióxido de Nitrógeno , Enfermedad de Parkinson , Material Particulado , Humanos , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Masculino , Femenino , Anciano , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Estudios de Casos y Controles , Material Particulado/efectos adversos , Material Particulado/análisis , Anciano de 80 o más Años , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Factores de Riesgo , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Persona de Mediana Edad
16.
Front Endocrinol (Lausanne) ; 15: 1343172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39324126

RESUMEN

Objective: To explore the relationship between the exposure level of particulate matter 2.5 (PM2.5) and particulate matter 10 (PM10) in the air of pregnant women during preconception and first trimester of pregnancy and the risk of gestational diabetes mellitus (GDM). Methods: The data of pregnant women delivered in 22 monitoring hospitals in Hebei Province from 2019 to 2021 were collected, and the daily air quality data of their cities were used to calculate the exposure levels of PM2.5 and PM10 in different pregnancy stages, and logistic regression model was used to analyze the impact of exposure levels of PM2.5 and PM10 on GDM during preconception and first trimester of pregnancy. Results: 108,429 singleton live deliveries were included in the study, of which 12,967 (12.0%) women had a GDM diagnosis. The prevalence of GDM increased over the course of the study from 10.2% (2019) to 14.9% (2021). From 2019 to 2021, the average exposure of PM2.5 and PM10 was relatively 56.67 and 103.08µg/m3 during the period of preconception and first trimester of pregnancy in Hebei Province. Handan, Shijiazhuang, and Xingtai regions had the most severe exposure to PM2.5 and PM10, while Zhangjiakou, Chengde, and Qinhuangdao had significantly lower exposure levels than other regions. The GDM group had statistically higher exposure concentrations of PM2.5 and PM10 during the period of preconception, first trimester, preconception and first trimester (P<0.05). Multivariate logistic regression analysis showed that the risk of GDM increases by 4.5%, 6.0%, and 10.6% for every 10ug/m3 increase in the average exposure value of PM2.5 in preconception, first trimester, preconception and first trimester, and 1.7%, 2.1%, and 3.9% for PM10. Moreover, High exposure to PM2.5 in the first, second, and third months of preconception and first trimester is associated with the risk of GDM. And high exposure to PM10 in the first, second, and third months of first trimester and the first, and third months of preconception is associated with the risk of GDM. Conclusion: Exposure to high concentrations of PM2.5 and PM10 during preconception and first trimester of pregnancy can significantly increase the risk of GDM. It is important to take precautions to prevent exposure to pollutants, reduce the risk of GDM, and improve maternal and fetal outcomes.


Asunto(s)
Contaminación del Aire , Diabetes Gestacional , Exposición Materna , Material Particulado , Primer Trimestre del Embarazo , Humanos , Femenino , Embarazo , Diabetes Gestacional/epidemiología , China/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Adulto , Material Particulado/análisis , Material Particulado/efectos adversos , Exposición Materna/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Adulto Joven
17.
Artículo en Inglés | MEDLINE | ID: mdl-39326938

RESUMEN

Persons living in industrial environments are exposed to levels of air pollution that can affect their health and fertility. The Czech capital city, Prague, and the Ostrava industrial agglomeration differ in their major sources of air pollution. In Prague, heavy traffic produces high levels of nitrogen oxides throughout the year. In the Ostrava region, an iron industry and local heating are sources of particulate matter (PM) and benzo[a]pyrene (B[a]P), especially in the winter. We evaluated the effects of air pollution on human sperm mitochondrial DNA (mtDNA). Using real-time PCR, we analysed sperm mtDNA copy number and deletion rate in Prague city policemen in two seasons (spring and autumn) and compared the results with those from Ostrava. In Prague, the sperm mtDNA deletion rate was significantly higher in autumn than in spring, which is the opposite of the results from Ostrava. The sperm mtDNA copy number did not show any seasonal differences in either of the cities; it was correlated negatively with sperm concentration, motility, and viability, and with sperm chromatin integrity (assessed with the Sperm Chromatin Structure Assay). The comparison between the two cities showed that the sperm mtDNA deletion rate in spring and the sperm mtDNA copy number in autumn were significantly lower in Prague vs. Ostrava. Our study supports the hypothesis that sperm mtDNA deletion rate is affected by the composition of air pollution. Sperm mtDNA abundance is closely associated with chromatin damage and standard semen characteristics.


Asunto(s)
Contaminación del Aire , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Espermatozoides , Humanos , Masculino , ADN Mitocondrial/genética , Espermatozoides/efectos de los fármacos , República Checa , Adulto , Contaminación del Aire/efectos adversos , Estaciones del Año , Material Particulado/toxicidad , Material Particulado/efectos adversos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/efectos adversos , Motilidad Espermática/efectos de los fármacos , Policia
18.
Medicine (Baltimore) ; 103(38): e39708, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39312374

RESUMEN

Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus, which mainly leads to nephrotic syndrome. This study investigates the associations between air pollution and MN risk and from an epigenomic perspective. In this study, we examine the associations between genetically predicted deoxyribonucleic acid methylation related to air pollution and MN risk. The data of air pollution included particulate matter (PM) with a diameter of 2.5 µm or less (PM2.5), PM with a diameter between 2.5 and 10 µm (PM2.5-10), PM with a diameter of 10 µm or less (PM10), nitrogen dioxide, and nitrogen oxides. Inverse variance weighted method was used as the main analysis method, and weighted median model and Mendelian randomization-Egger methods were selected for quality control. To assess the reliability of the results of the analyses, heterogeneity test, horizontal pleiotropy test, and the leave-one-out method were applied. There was a causal relationship between nitrogen oxides and MN risk (P = .010). Other types of air pollution were found no statistical association with MN disease (PM2.5: P = .378; PM2.5-10: P = .111; PM10: P = .035; nitrogen dioxide: P = .094). There was no heterogeneity or pleiotropy in the results. Our study suggests the association between nitrogen oxides and membrane nephropathy (MN) risk from the genetic perspective. This provides a theoretical basis for the prevention of MN disease.


Asunto(s)
Contaminación del Aire , Glomerulonefritis Membranosa , Análisis de la Aleatorización Mendeliana , Material Particulado , Glomerulonefritis Membranosa/genética , Glomerulonefritis Membranosa/epidemiología , Humanos , Contaminación del Aire/efectos adversos , Material Particulado/efectos adversos , Metilación de ADN
19.
Cancer Med ; 13(18): e70241, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39315583

RESUMEN

BACKGROUND: This study aimed to evaluate the global burden of lung cancer due to ambient particulate matter (PM) pollution in women of childbearing age from 1990 to 2021. METHODS: This was a secondary analysis utilizing data from the Global Burden of Disease (GBD) 2021, with a focus on the temporal trends of the lung cancer burden attributable to ambient PM2.5 among women of childbearing age. RESULTS: In 2021, the global mortality and disability-adjusted life years (DALYs) number of lung cancer burden attributable to ambient PM2.5 among women of childbearing age were approximately 5205 and 247,211, respectively. The rate of lung cancer attributable to ambient PM2.5 among women of childbearing age increased between 1990 and 2021, with the age-standardized mortality rate (ASMR) increasing from 0.22 (95% uncertainty interval [UI]; 0.13 to 0.33) to 0.25 (95% UI; 0.14 to 0.37; average annual percent change [AAPC] = 0.40) and the age-standardized DALYs rate (ASDR) increasing from 10.39 (95% UI; 5.96 to 15.72) to 12.06 (95% UI; 6.83 to 17.51; AAPC = 0.41). The middle sociodemographic index (SDI) region, East Asia, and China had the heaviest burden, while the high SDI region showed the highest decrease. ASMR and ASDR exhibited an inverted U-shaped relationship with the SDI. CONCLUSIONS: From 1990 to 2021, the lung cancer burden attributable to ambient PM2.5 among women of childbearing age exhibited an increasing trend. Furthermore, increasing attention should be paid to the middle SDI region, East Asia, and China, as ambient PM pollution remains a critical target for intervention.


Asunto(s)
Contaminación del Aire , Carga Global de Enfermedades , Neoplasias Pulmonares , Material Particulado , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Femenino , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/inducido químicamente , Carga Global de Enfermedades/tendencias , Adulto , Persona de Mediana Edad , Contaminación del Aire/efectos adversos , Adulto Joven , Años de Vida Ajustados por Discapacidad , Salud Global/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Adolescente , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis
20.
PLoS One ; 19(9): e0307514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39316602

RESUMEN

BACKGROUND: Rheumatoid arthritis is a common rheumatic disease, and its onset is closely related to genetic and environmental factors, however, the relationship between air pollution and RA is still hotly debated. Further investigation of the relationship between air pollution and rheumatoid arthritis is conducive to a comprehensive understanding of the risk factors of the disease, providing certain value for the clinical prevention and treatment of RA. METHODS: We used a Two-Sample Mendelian Randomization approach, integrating the large-scale public genomewide association study, to assess the genetically predicted causal effect of air pollution (including: PM2.5, PM2.5-10, PM10, nitrogen dioxide, nitrogen oxides) on RA in European and European East Asian populations, respectively. Indicators related to air pollution (2,505 individuals to 423,796 individuals), including European and East Asian populations were obtained from the Integrative Epidemiology Unit open GWAS project. Published East Asian RA data were also obtained from the IEU open GWAS project (212,453 individuals), while large-scale publicly available European RA data were obtained from finngen R10 (13,621 cases and 262,844 controls). Inverse variance weighting was used as the primary analytical method, complemented by MR-egger, Weighed median, and Weighted mode results. Cochran Q tested for heterogeneity, and MR-Egger regression analyses were performed to test for multiplicity. leave-one-out analysis allowed for the robustness and reliability were assessed. RESULTS: No statistically significant effects of PM2.5, PM2.5-10, PM10, nitrogen dioxide, nitrogen oxides and RA were observed in either European or East Asian populations. Results from European data: PM2.5 (IVW OR: 0.71; 95% CI: 0.27-1.91; p = 0.498; number of SNPs: 5), PM2.5-10 (IVW OR: 1.20; 95% CI: 0.61-2.40; p = 0.596; number of SNPs: 15), PM10 (IVW OR: 1.69; 95% CI: 0.84-3.39; p = 0.142; number of SNPs: 9), nitrogen dioxide (IVW OR: 3.88; 95% CI: 0.19-77.77; p = 0.375; number of SNPs: 2), nitrogen oxides (IVW OR: 0.51; 95% CI: 0.16-1.67; p = 0.268; number of SNPs: 4). East Asian data results: PM2.5 (IVW OR: 1.16; 95% CI: 0.98-1.38; p = 0.086; number of SNPs: 4), PM2.5-10 (IVW OR: 1.14; 95% CI: 0.95-1.38; p = 0.166; number of SNPs: 2), PM10 (IVW OR: 0.95; 95% CI: 0.81-1.11; p = 0.503; number of SNPs: 3), nitrogen dioxide (IVW OR: 0.87; 95% CI: 0.76-1.00; p = 0.051; number of SNPs: 6), nitrogen oxides (IVW OR: 0.96; 95% CI: 0.82-1.14; p = 0.671; number of SNPs: 3). No signs of pleiotropy or heterogeneity were observed in the MR-Egger intercept, MR-PRESSO and Cochrane's Q (p>0.05). In addition, no outliers were found in the MR-PRESSO analysis. The results were further validated by leave-one-out tests, confirming the robustness of the findings. CONCLUSIONS: We performed transethnic MR analysis suggesting that there may not be a genetically predicted causal relationship between air pollution and RA.


Asunto(s)
Contaminación del Aire , Artritis Reumatoide , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Artritis Reumatoide/genética , Humanos , Contaminación del Aire/efectos adversos , Material Particulado/efectos adversos , Población Blanca/genética , Pueblo Asiatico/genética , Factores de Riesgo , Contaminantes Atmosféricos/efectos adversos , Predisposición Genética a la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA