Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Anal Bioanal Chem ; 415(29-30): 7269-7279, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857739

RESUMEN

Gangliosides are specialized glycosphingolipids most abundant in the central nervous system. Their complex amphiphilic structure is essential to the formation of membrane lipid rafts and for molecular recognition. Dysfunction of lipid rafts and ganglioside metabolism has been linked to cancer, metabolic disorders, and neurodegenerative disorders. Changes in ganglioside concentration and diversity during the progression of disease have made them potential biomarkers for early detection and shed light on disease mechanisms. Chemical derivatization facilitates whole ion analysis of gangliosides while improving ionization, providing rich fragmentation spectra, and enabling multiplexed analysis schemes such as stable isotope labeling. In this work, we report improvement to our previously reported isobaric labeling methodology for ganglioside analysis by increasing buffer concentration and removing solid-phase extraction desalting for a more complete and quantitative reaction. Identification and quantification of gangliosides are automated through MS-DIAL with an in-house ganglioside derivatives library. We have applied the updated methodology to relative quantification of gangliosides in six mouse brain regions (cerebellum, pons/medulla, midbrain, thalamus/hypothalamus, cortex, and basal ganglia) with 2 mg tissue per sample, and region-specific distributions of 88 ganglioside molecular species are described with ceramide isomers resolved. This method is promising for application to comparative analysis of gangliosides in biological samples.


Asunto(s)
Encéfalo , Gangliósidos , Ratones , Animales , Gangliósidos/química , Encéfalo/metabolismo , Mesencéfalo/química , Cerebelo
2.
J Neurosci ; 42(5): 749-761, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34887319

RESUMEN

Neuronal remodeling after brain injury is essential for functional recovery. After unilateral cortical lesion, axons from the intact cortex ectopically project to the denervated midbrain, but the molecular mechanisms remain largely unknown. To address this issue, we examined gene expression profiles in denervated and intact mouse midbrains after hemispherectomy at early developmental stages using mice of either sex, when ectopic contralateral projection occurs robustly. The analysis showed that various axon growth-related genes were upregulated in the denervated midbrain, and most of these genes are reportedly expressed by glial cells. To identify the underlying molecules, the receptors for candidate upregulated molecules were knocked out in layer 5 projection neurons in the intact cortex, using the CRISPR/Cas9-mediated method, and axonal projection from the knocked-out cortical neurons was examined after hemispherectomy. We found that the ectopic projection was significantly reduced when integrin subunit ß three or neurotrophic receptor tyrosine kinase 2 (also known as TrkB) was knocked out. Overall, the present study suggests that denervated midbrain-derived glial factors contribute to lesion-induced remodeling of the cortico-mesencephalic projection via these receptors.SIGNIFICANCE STATEMENT After brain injury, compensatory neural circuits are established that contribute to functional recovery. However, little is known about the intrinsic mechanism that underlies the injury-induced remodeling. We found that after unilateral cortical ablation expression of axon-growth promoting factors is elevated in the denervated midbrain and is involved in the formation of ectopic axonal projection from the intact cortex. Evidence further demonstrated that these factors are expressed by astrocytes and microglia, which are activated in the denervated midbrain. Thus, our present study provides a new insight into the mechanism of lesion-induced axonal remodeling and further therapeutic strategies after brain injury.


Asunto(s)
Lesiones Encefálicas/metabolismo , Corteza Cerebral/metabolismo , Hemisferectomía/tendencias , Mesencéfalo/metabolismo , Plasticidad Neuronal/fisiología , Animales , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Corteza Cerebral/química , Corteza Cerebral/citología , Desnervación/tendencias , Técnicas de Inactivación de Genes/métodos , Mesencéfalo/química , Mesencéfalo/citología , Ratones , Ratones Endogámicos ICR , Regeneración Nerviosa/fisiología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Técnicas de Cultivo de Órganos , Receptor trkB/análisis , Receptor trkB/genética , Receptor trkB/metabolismo
3.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884468

RESUMEN

Nkx2.9 is a member of the NK homeobox family and resembles Nkx2.2 both in homology and expression pattern. However, while Nkx2.2 is required for development of serotonergic neurons, the role of Nkx2.9 in the mid-hindbrain region is still ill-defined. We have previously shown that Nkx2.9 expression is downregulated upon loss of En1 during development. Here, we determined whether mdDA neurons require Nkx2.9 during their development. We show that Nkx2.9 is strongly expressed in the IsO and in the VZ and SVZ of the embryonic midbrain, and the majority of mdDA neurons expressed Nkx2.9 during their development. Although the expression of Dat and Cck are slightly affected during development, the overall development and cytoarchitecture of TH-expressing neurons is not affected in the adult Nkx2.9-depleted midbrain. Transcriptome analysis at E14.5 indicated that genes involved in mid- and hindbrain development are affected by Nkx2.9-ablation, such as Wnt8b and Tph2. Although the expression of Tph2 extends more rostral into the isthmic area in the Nkx2.9 mutants, the establishment of the IsO is not affected. Taken together, these data point to a minor role for Nkx2.9 in mid-hindbrain patterning by repressing a hindbrain-specific cell-fate in the IsO and by subtle regulation of mdDA neuronal subset specification.


Asunto(s)
Neuronas Dopaminérgicas/química , Perfilación de la Expresión Génica/métodos , Proteínas de Homeodominio/genética , Rombencéfalo/crecimiento & desarrollo , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/química , Mesencéfalo/citología , Ratones , Rombencéfalo/química , Análisis de Secuencia de ARN
4.
J Chem Neuroanat ; 117: 102009, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34329711

RESUMEN

The pathogenesis of Perioperative neurocognitive disorders (PND) is a synergistic effect of many factors. Up to now, the exact mechanism remains unclear. The dopamine pathway in the brain is one of the paths involved in the means of cognitive function. Therefore, the purpose of this study was to investigate the relationship between changes in dopamine transporters in the ventral tegmental area (VTA) of the midbrain and postoperative cognitive dysfunction in elderly rats. In this study, a mental dysfunction model in elderly rats was established after splenectomy under general anesthesia. Eighty male SD rats, aged 18-20 months, with a body mass of 300-500 g. Randomly divided into eight groups: Normal group (Normal, N) and Sham group (sham, S), Model 3 day group(PND, P3), Model 7 day group(PND, P7), Virus 3 days AAV·DAT·RNAi (AAV3), Virus 7 days AAV·DAT·RNAi (AAV7), Virus control for three days AAV·NC(NC3), Virus control for seven days AAV·NC(NC7). The results show that knockdown of dopamine transporter in the VTA region can significantly improve the cognitive dysfunction of elderly rats after surgery. These results suggest that dopamine transporter in the VTA region is involved in cognitive dysfunction in elderly rats. The effect of DAT changes in the VTA region on postoperative cognitive function in elderly rats may be related to the regulation of α-syn and Aß1-42 protein aggregation in the hippocampus.


Asunto(s)
Envejecimiento/metabolismo , Cognición/fisiología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Mesencéfalo/metabolismo , Área Tegmental Ventral/metabolismo , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/administración & dosificación , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/análisis , Mesencéfalo/química , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , ARN Viral/administración & dosificación , ARN Viral/análisis , ARN Viral/metabolismo , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/química , alfa-Sinucleína/análisis , alfa-Sinucleína/metabolismo
5.
J Chem Neuroanat ; 116: 101992, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34166778

RESUMEN

We present a robust, fresh-frozen approach to immunohistochemistry (IHC), without committing the tissue to IHC via fixation and cryopreservation while maintaining long-term storage, using LiCor-based infrared (IR) quantification for sensitive assessment of TH in immunoreacted midbrain sections for quantitative comparison across studies. In fresh-frozen tissue stored up to 1 year prior to IHC reaction, we found our method to be highly sensitive to rotenone treatment in 3-month-old Sprague-Dawley rats, and correlated with a significant decline in rotarod latency-to-fall measurement by approximately 2.5 fold. The measured midbrain region revealed a 31 % lower TH signal when compared to control (p < 0.01 by t test, n = 5). Bivariate analysis of integrated TH counts versus rotarod latency-to-fall indicates a positive slope and modest but significant correlation of R2 = 0.68 (p < 0.05, n = 10). These results indicate this rapid, instrument-based quantification method by IR detection successfully quantifies TH levels in rat brain tissue, while taking only 5 days from euthanasia to data output. This approach also allows for the identification of multiple targets by IHC with the simultaneous performance of downstream molecular analysis within the same animal tissue, allowing for the use of fewer animals per study.


Asunto(s)
Mesencéfalo/química , Mesencéfalo/enzimología , Desempeño Psicomotor/fisiología , Tirosina 3-Monooxigenasa/análisis , Tirosina 3-Monooxigenasa/metabolismo , Animales , Insecticidas/toxicidad , Masculino , Mesencéfalo/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Rotenona/toxicidad , Espectroscopía Infrarroja Corta/métodos , Factores de Tiempo
6.
Mikrochim Acta ; 188(6): 203, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34043106

RESUMEN

Molecularly imprinted polymer (MIP)-based electrochemical sensors for the protein α-synuclein (a marker for Parkinson's disease) were developed using a peptide epitope from the protein. MIPs doped with various concentrations and species of transition metal dichalcogenides (TMDs) to enhance conductivity were electropolymerized with and without template molecules. The current during the electropolymerization was compared with that associated with the electrochemical response (at 0.24~0.29 V vs. ref. electrode) to target peptide molecules in the finished sensor. We found that this relationship can aid in the rational design of conductive MIPs for the recognition of biomarkers in biological fluids. The sensing range and limit of detection of TMD-doped imprinted poly(AN-co-MSAN)-coated electrodes were 0.001-100 pg/mL and 0.5 fg/mL (SNR = 3), respectively. To show the potential applicability of the MIP electrochemical sensor, cell culture medium from PD patient-specific midbrain organoids generated from induced pluripotent stem cells was analyzed. α-Synuclein levels were found to be significantly reduced in the organoids from PD patients, compared to those generated from age-matched controls. The relative standard deviation and recovery are less than 5% and 95-115%, respectively. Preparation of TMD-doped α-synuclein (SNCA) peptide-imprinted poly(AN-co-MSAN)-coated electrodes.


Asunto(s)
Disulfuros/química , Polímeros Impresos Molecularmente/química , Molibdeno/química , Sulfuros/química , Compuestos de Tungsteno/química , alfa-Sinucleína/análisis , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Mesencéfalo/química , Organoides/química , Enfermedad de Parkinson/diagnóstico , Fragmentos de Péptidos/química , alfa-Sinucleína/química
7.
J Comp Neurol ; 529(9): 2243-2264, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33340092

RESUMEN

Eupnea is generated by neural circuits located in the ponto-medullary brainstem, but can be modulated by higher brain inputs which contribute to volitional control of breathing and the expression of orofacial behaviors, such as vocalization, sniffing, coughing, and swallowing. Surprisingly, the anatomical organization of descending inputs that connect the forebrain with the brainstem respiratory network remains poorly defined. We hypothesized that descending forebrain projections target multiple distributed respiratory control nuclei across the neuroaxis. To test our hypothesis, we made discrete unilateral microinjections of the retrograde tracer cholera toxin subunit B in the midbrain periaqueductal gray (PAG), the pontine Kölliker-Fuse nucleus (KFn), the medullary Bötzinger complex (BötC), pre-BötC, or caudal midline raphé nuclei. We quantified the regional distribution of retrogradely labeled neurons in the forebrain 12-14 days postinjection. Overall, our data reveal that descending inputs from cortical areas predominantly target the PAG and KFn. Differential forebrain regions innervating the PAG (prefrontal, cingulate cortices, and lateral septum) and KFn (rhinal, piriform, and somatosensory cortices) imply that volitional motor commands for vocalization are specifically relayed via the PAG, while the KFn may receive commands to coordinate breathing with other orofacial behaviors (e.g., sniffing, swallowing). Additionally, we observed that the limbic or autonomic (interoceptive) systems are connected to broadly distributed downstream bulbar respiratory networks. Collectively, these data provide a neural substrate to explain how volitional, state-dependent, and emotional modulation of breathing is regulated by the forebrain.


Asunto(s)
Bulbo Raquídeo/fisiología , Mesencéfalo/fisiología , Neuronas/fisiología , Puente/fisiología , Prosencéfalo/fisiología , Mecánica Respiratoria/fisiología , Animales , Femenino , Masculino , Bulbo Raquídeo/química , Mesencéfalo/química , Microinyecciones/métodos , Vías Nerviosas/química , Vías Nerviosas/fisiología , Neuronas/química , Puente/química , Prosencéfalo/química , Trazadores Radiactivos , Ratas , Ratas Sprague-Dawley
8.
Pharmacol Rep ; 73(1): 73-84, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32936422

RESUMEN

BACKGROUND: Ceramides are lipid molecules determining cell integrity and intercellular signaling, and thus, involved in the pathogenesis of several psychiatric and neurodegenerative disorders. However, little is known about the role of particular enzymes of the ceramide metabolism in the mechanisms of normal behavioral plasticity. Here, we studied the contribution of neutral ceramidase (NC), one of the main enzymes mediating ceramide degradation, in the mechanisms of learning and memory in rats and non-human primates. METHODS: Naïve Wistar rats and black tufted-ear marmosets (Callithrix penicillata) were tested in several tests for short- and long-term memory and then divided into groups with various memory performance. The activities of NC and acid ceramidase (AC) were measured in these animals. Additionally, anxiety and depression-like behavior and brain levels of monoamines were assessed in the rats. RESULTS: We observed a predictive role of NC activity in the blood serum for superior performance of long-term object memory tasks in both species. A brain area analysis suggested that high NC activity in the ventral mesencephalon (VM) predicts better short-term memory performance in rats. High NC activity in the VM was also associated with worse long-term object memory, which might be mediated by an enhanced depression-like state and a monoaminergic imbalance. CONCLUSIONS: Altogether, these data suggest a role for NC in short- and long-term memory of various mammalian species. Serum activity of NC may possess a predictive role in the assessing the performance of certain types of memory.


Asunto(s)
Ceramidasas/análisis , Cognición/fisiología , Animales , Ansiedad/psicología , Monoaminas Biogénicas/metabolismo , Biomarcadores , Química Encefálica , Callithrix , Ceramidasas/sangre , Ceramidasas/fisiología , Depresión/psicología , Masculino , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Mesencéfalo/química , Valor Predictivo de las Pruebas , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Wistar
9.
Biomolecules ; 10(9)2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899172

RESUMEN

Midbrain dopamine neurons have crucial functions in motor and emotional control and their degeneration leads to several neurological dysfunctions such as Parkinson's disease, addiction, depression, schizophrenia, and others. Despite advances in the understanding of specific altered proteins and coding genes, little is known about cumulative changes in the transcriptional landscape of noncoding genes in midbrain dopamine neurons. Noncoding RNAs-specifically microRNAs and long noncoding RNAs-are emerging as crucial post-transcriptional regulators of gene expression in the brain. The identification of noncoding RNA networks underlying all stages of dopamine neuron development and plasticity is an essential step to deeply understand their physiological role and also their involvement in the etiology of dopaminergic diseases. Here, we provide an update about noncoding RNAs involved in dopaminergic development and metabolism, and the related evidence of these biomolecules for applications in potential treatments for dopaminergic neurodegeneration.


Asunto(s)
Neuronas Dopaminérgicas/química , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/química , Mesencéfalo/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , ARN no Traducido/fisiología , ARN no Traducido/uso terapéutico , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Regulación de la Expresión Génica , Humanos , Enfermedad de Parkinson/genética
10.
Anal Bioanal Chem ; 412(24): 6611-6624, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32666141

RESUMEN

Glucose and lactate provide energy for cellular function in the brain and serve as an important carbon source in the synthesis of a variety of biomolecules. Thus, there is a critical need to quantitatively monitor these molecules in situ on a time scale commensurate with neuronal function. In this work, carbon-fiber microbiosensors were coupled with fast-scan cyclic voltammetry to monitor glucose and lactate fluctuations at a discrete site within rat striatum upon electrical stimulation of the midbrain projection to the region. Systematic variation of stimulation parameters revealed the distinct dynamics by which glucose and lactate responded to the metabolic demand of synaptic function. Immediately upon stimulation, extracellular glucose and lactate availability rapidly increased. If stimulation was sufficiently intense, concentrations then immediately fell below baseline in response to incurred metabolic demand. The dynamics were dependent on stimulation frequency, such that more robust fluctuations were observed when the same number of pulses was delivered at a higher frequency. The rates at which glucose was supplied to, and depleted from, the local recording region were dependent on stimulation intensity, and glucose dynamics led those of lactate in response to the most substantial stimulations. Glucose fluctuated over a larger concentration range than lactate as stimulation duration increased, and glucose fell further from baseline concentrations. These real-time measurements provide an unprecedented direct comparison of glucose and lactate dynamics in response to metabolic demand elicited by neuronal activation. Graphical abstract.


Asunto(s)
Cuerpo Estriado/metabolismo , Estimulación Eléctrica , Glucosa/metabolismo , Ácido Láctico/metabolismo , Mesencéfalo/metabolismo , Animales , Técnicas Biosensibles , Cuerpo Estriado/química , Técnicas Electroquímicas , Glucosa/análisis , Ácido Láctico/análisis , Masculino , Mesencéfalo/química , Microelectrodos , Ratas , Ratas Sprague-Dawley
11.
Nat Neurosci ; 22(7): 1099-1109, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31235907

RESUMEN

Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Key neuropathological hallmarks are Lewy bodies and Lewy neurites: neuronal inclusions immunopositive for the protein α-synuclein. In-depth ultrastructural analysis of Lewy pathology is crucial to understanding pathogenesis of this disease. Using correlative light and electron microscopy and tomography on postmortem human brain tissue from Parkinson's disease brain donors, we identified α-synuclein immunopositive Lewy pathology and show a crowded environment of membranes therein, including vesicular structures and dysmorphic organelles. Filaments interspersed between the membranes and organelles were identifiable in many but not all α-synuclein inclusions. Crowding of organellar components was confirmed by stimulated emission depletion (STED)-based super-resolution microscopy, and high lipid content within α-synuclein immunopositive inclusions was corroborated by confocal imaging, Fourier-transform coherent anti-Stokes Raman scattering infrared imaging and lipidomics. Applying such correlative high-resolution imaging and biophysical approaches, we discovered an aggregated protein-lipid compartmentalization not previously described in the Parkinsons' disease brain.


Asunto(s)
Membranas Intracelulares/ultraestructura , Cuerpos de Lewy/ultraestructura , Enfermedad por Cuerpos de Lewy/patología , Lípidos de la Membrana/análisis , Orgánulos/ultraestructura , Enfermedad de Parkinson/patología , alfa-Sinucleína/análisis , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Hipocampo/química , Hipocampo/ultraestructura , Humanos , Imagenología Tridimensional , Cuerpos de Lewy/química , Enfermedad por Cuerpos de Lewy/metabolismo , Mesencéfalo/química , Mesencéfalo/ultraestructura , Microscopía Confocal , Microscopía Electrónica/métodos , Microscopía Fluorescente , Enfermedad de Parkinson/metabolismo , Sustancia Negra/química , Sustancia Negra/ultraestructura , Secuenciación del Exoma
12.
Sci Rep ; 9(1): 1534, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733491

RESUMEN

Opioid abuse is now the most common cause of accidental death in the US. Although opioids and most other drugs of abuse acutely increase signaling mediated by midbrain dopamine (DA)-synthesizing neurons, little is known about long-lasting changes in DA cells that may contribute to continued opioid abuse, craving, and relapse. A better understanding of the molecular and cellular bases of opioid abuse could lead to advancements in therapeutics. This study comprises, to our knowledge, the first unbiased examination of genome-wide changes in midbrain gene expression associated with human opioid abuse. Our analyses identified differentially expressed genes and distinct gene networks associated with opioid abuse, specific genes with predictive capability for subject assignment to the opioid abuse cohort, and genes most similarly affected in chronic opioid and cocaine abusers. We also identified differentially expressed long noncoding RNAs capable of regulating known drug-responsive protein-coding genes. Opioid-regulated genes identified in this study warrant further investigation as potential biomarkers and/or therapeutic targets for human substance abuse.


Asunto(s)
Biomarcadores/metabolismo , Cocaína/farmacología , Redes Reguladoras de Genes , Mesencéfalo/metabolismo , Trastornos Relacionados con Opioides/patología , ARN Largo no Codificante/metabolismo , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Área Bajo la Curva , Estudios de Casos y Controles , Humanos , Concentración de Iones de Hidrógeno , Mesencéfalo/química , Mesencéfalo/efectos de los fármacos , Persona de Mediana Edad , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/metabolismo , Curva ROC
13.
Front Neural Circuits ; 12: 70, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210308

RESUMEN

The dopaminergic neurons of the ventral tegmental area (VTA) have been identified with the ability to co-release dopamine and glutamate. This ability was first documented in the nucleus accumbens but showed to be absent in the dorsal striatum. Recently the ability to release glutamate from a subpopulation of the VTA dopaminergic neurons has been shown to control the prefrontal cortex (PFC) excitation through the exclusive innervation of GABAergic fast spiking interneurons. Here, using an optogenetic approach, we expand this view by presenting that the VTA dopaminergic neurons do not only innervate interneurons but also pyramidal PFC neurons. This finding opens the range of possibilities for the VTA dopaminergic neurons to modulate the activity of PFC.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Ácido Glutámico/metabolismo , Mesencéfalo/metabolismo , Corteza Prefrontal/metabolismo , Transducción de Señal/fisiología , Animales , Neuronas Dopaminérgicas/química , Femenino , Masculino , Mesencéfalo/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Técnicas de Cultivo de Órganos , Corteza Prefrontal/química
14.
Neuron ; 98(1): 192-207.e10, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29621487

RESUMEN

Maternal behaviors are essential for the survival of the young. Previous studies implicated the medial preoptic area (MPOA) as an important region for maternal behaviors, but details of the maternal circuit remain incompletely understood. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the MPOA as key mediators of pup approach and retrieval. Reversible inactivation of MPOAEsr1+ cells impairs those behaviors, whereas optogenetic activation induces immediate pup retrieval. In vivo recordings demonstrate preferential activation of MPOAEsr1+ cells during maternal behaviors and changes in MPOA cell responses across reproductive states. Furthermore, channelrhodopsin-assisted circuit mapping reveals a strong inhibitory projection from MPOAEsr1+ cells to ventral tegmental area (VTA) non-dopaminergic cells. Pathway-specific manipulations reveal that this projection is essential for driving pup approach and retrieval and that VTA dopaminergic cells are reliably activated during those behaviors. Altogether, this study provides new insight into the neural circuit that generates maternal behaviors.


Asunto(s)
Hipotálamo/metabolismo , Conducta Materna/fisiología , Mesencéfalo/metabolismo , Área Preóptica/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Receptor alfa de Estrógeno/biosíntesis , Femenino , Hipotálamo/química , Conducta Materna/psicología , Mesencéfalo/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/química , Vías Nerviosas/metabolismo , Técnicas de Cultivo de Órganos , Área Preóptica/química , Área Tegmental Ventral/química
15.
Cell Tissue Res ; 370(2): 211-225, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28799057

RESUMEN

The temporal dynamic expression of Sonic Hedgehog (SHH) and signaling during early midbrain dopaminergic (mDA) neuron development is one of the key players in establishing mDA progenitor diversity. However, whether SHH signaling is also required during later developmental stages and in mature mDA neurons is less understood. We study the expression of SHH receptors Ptch1 and Gas1 (growth arrest-specific 1) and of the transcription factors Gli1, Gli2 and Gli3 in mouse midbrain during embryonic development [embryonic day (E) 12.5 onwards)], in newborn and adult mice using in situ hybridization and immunohistochemistry. Moreover, we examine the expression and regulation of dopaminergic neuronal progenitor markers, midbrain dopaminergic neuronal markers and markers of the SHH signaling pathway in undifferentiated and butyric acid-treated (differentiated) MN9D cells in the presence or absence of exogenous SHH in vitro by RT-PCR, immunoblotting and immunocytochemistry. Gli1 was expressed in the lateral mesencephalic domains, whereas Gli2 and Gli3 were expressed dorsolaterally and complemented by ventrolateral expression of Ptch1. Co-localization with tyrosine hydroxylase could not be observed. GAS1 was exclusively expressed in the dorsal mesencephalon at E11.5 and co-localized with Ki67. In contrast, MN9D cells expressed all the genes investigated and treatment of the cells with butyric acid significantly upregulated their expression. The results suggest that SHH is only indirectly involved in the differentiation and survival of mDA neurons and that the MN9D cell line is a valuable model for investigating early development but not the differentiation and survival of mDA neurons.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Mesencéfalo/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Línea Celular , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas Hedgehog/análisis , Inmunohistoquímica , Hibridación in Situ , Mesencéfalo/química , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
16.
J Neurosci ; 37(15): 4128-4144, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28283558

RESUMEN

The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits.SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Integrasas/análisis , Mesencéfalo/química , Neuronas/química , Seudorrabia , Recompensa , Animales , Femenino , Integrasas/metabolismo , Masculino , Mesencéfalo/anatomía & histología , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Seudorrabia/metabolismo
17.
J Comp Neurol ; 524(12): 2479-91, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-26780193

RESUMEN

In many vertebrates parallel processing in topographically ordered maps is essential for efficient sensory processing. In the active electrosensory pathway of mormyrids afferent input is processed in two parallel somatotopically ordered hindbrain maps of the electrosensory lateral line lobe (ELL), the dorsolateral zone (DLZ), and the medial zone (MZ). Here phase and amplitude modulations of the self-generated electric field were processed separately. Behavioral data indicates that this information must be merged for the sensory system to categorically distinguish capacitive and resistive properties of objects. While projections between both zones of the ELL have been found, the available physiological data suggests that this merging takes place in the midbrain torus semicircularis (TS). Previous anatomical data indicate that the detailed somatotopic representation present in the ELL is lost in the nucleus lateralis (NL) of the TS, while a rough rostrocaudal mapping is maintained. In our study we investigated the projections from the hindbrain to the midbrain in more detail, using tracer injections. Our data reveals that afferents from both maps of the ELL terminate in a detailed somatotopic manner within the midbrain NL. Furthermore, we provide data indicating that phase and amplitude information may indeed be processed jointly in the NL. J. Comp. Neurol. 524:2479-2491, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico/métodos , Pez Eléctrico/fisiología , Órgano Eléctrico/fisiología , Mesencéfalo/fisiología , Sensación/fisiología , Vías Aferentes/química , Vías Aferentes/fisiología , Animales , Órgano Eléctrico/química , Mesencéfalo/química , Núcleos Septales/química , Núcleos Septales/fisiología
18.
Amino Acids ; 47(5): 1053-63, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25691144

RESUMEN

TFF3 is a member of the trefoil factor family (TFF) predominantly secreted by mucous epithelia. Minute amounts are also expressed in the immune system and the brain. In the latter, particularly the hypothalamo-pituitary axis has been investigated in detail in the past. Functionally, cerebral TFF3 has been reported to be involved in several processes such as fear, depression, learning and object recognition, and opiate addiction. Furthermore, TFF3 has been linked with neurodegenerative and neuropsychiatric disorders (e.g., Alzheimer's disease, schizophrenia, and alcoholism). Here, using immunohistochemistry, a systematic survey of the TFF3 localization in the adult human brain is presented focusing on extrahypothalamic brain areas. In addition, the distribution of TFF3 in the developing human brain is described. Taken together, neurons were identified as the predominant cell type to express TFF3, but to different extent; TFF3 was particularly enriched in various midbrain and brain stem nuclei. Besides, TFF3 immunostaining staining was observed in oligodendroglia and the choroid plexus epithelium. The wide cerebral distribution should help to explain its multiple effects in the CNS.


Asunto(s)
Plexo Coroideo/metabolismo , Mesencéfalo/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Péptidos/genética , Aborto Espontáneo , Adulto , Amígdala del Cerebelo/química , Amígdala del Cerebelo/metabolismo , Mapeo Encefálico , Cerebelo/química , Cerebelo/metabolismo , Corteza Cerebral/química , Corteza Cerebral/metabolismo , Plexo Coroideo/química , Femenino , Feto , Expresión Génica , Hipocampo/química , Hipocampo/metabolismo , Humanos , Hipotálamo/química , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Mesencéfalo/química , Persona de Mediana Edad , Neuronas/química , Oligodendroglía/química , Especificidad de Órganos , Péptidos/metabolismo , Hipófisis/química , Hipófisis/metabolismo , Neurohipófisis/química , Neurohipófisis/metabolismo , Factor Trefoil-3 , Sustancia Blanca/química , Sustancia Blanca/metabolismo
19.
Metab Brain Dis ; 30(1): 205-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25123753

RESUMEN

Parkinson's disease (PD) is a neurodegenerative movement disorder due to selective loss of dopaminergic neurons of mesencephalic substantia nigra pars compacta (SNC) with debilitating motor symptoms. Current treatments for PD afford symptomatic relief with no prevention of disease progression. Due to the antioxidant and neuroprotective potential of sinapic acid, this study was conducted to evaluate whether this agent could be of benefit in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were pretreated p.o. with sinapic acid at doses of 10 or 20 mg/kg. One week after surgery, apomorphine caused significant contralateral rotations, a significant reduction in the number of Nissl-stained and tyrosine hydroxylase (TH)-positive neurons and a significant increase of iron reactivity on the left side of SNC. Meanwhile, malondialdehyde (MDA) and nitrite levels in midbrain homogenate significantly increased and activity of superoxide dismutase (SOD) significantly reduced in the 6-OHDA-lesioned group. In addition, sinapic acid at a dose of 20 mg/kg significantly improved turning behavior, prevented loss of SNC dopaminergic neurons, lowered iron reactivity, and attenuated level of MDA and nitrite. These results indicate the neuroprotective potential of sinapic acid against 6-OHDA neurotoxicity that is partially due to the attenuation of oxidative stress and possibly lowering nigral iron level.


Asunto(s)
Antioxidantes/uso terapéutico , Ácidos Cumáricos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/tratamiento farmacológico , Animales , Apomorfina/toxicidad , Recuento de Células , Neuronas Dopaminérgicas/patología , Hierro/análisis , Peroxidación de Lípido/efectos de los fármacos , Masculino , Mesencéfalo/química , Proteínas del Tejido Nervioso/análisis , Nitritos/análisis , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Fitoterapia , Distribución Aleatoria , Ratas , Ratas Wistar , Conducta Estereotipada/efectos de los fármacos , Superóxido Dismutasa/análisis , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Tirosina 3-Monooxigenasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...