Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
AAPS PharmSciTech ; 25(7): 193, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168956

RESUMEN

Physiologically based pharmacokinetic (PBPK) or physiologically based biopharmaceutics models (PBBM) demonstrated plethora of applications in both new drugs and generic product development. Justification of dissolution specifications and establishment of dissolution safe space is an important application of such modeling approaches. In case of molecules exhibiting saturable absorption behavior, justification of dissolution specifications requires development of a model that incorporates effects of transporters is critical to simulate in vivo scenario. In the present case, we have developed a semi-mechanistic PBBM to describe the non-linearity of BCS class III molecule metformin for justification of dissolution specifications of extended release formulation at strengths 500 mg and 1000 mg. Semi-mechanistic PBBM was built using physicochemical properties, dissolution and non-linearity was accounted through incorporation of multiple transporter kinetics at absorption level. The model was extensively validated using literature reported intravenous, oral (immediate & extended release) formulations and further validated using in-house bioequivalence data in fasting and fed conditions. Virtual dissolution profiles at lower and upper specifications were generated to justify the dissolution specifications. The model predicted literature as well as in-house clinical study data with acceptable prediction errors. Further, virtual bioequivalence trials predicted the bioequivalence outcome that matched with clinical study data. The model predicted bioequivalence when lower and upper specifications were compared against pivotal test formulations thereby justifying dissolution specifications. Overall, complex and saturable absorption pathway of metformin was successfully simulated and this work resulted in regulatory acceptance of dissolution specifications which has ability to reduce multiple dissolution testing.


Asunto(s)
Biofarmacia , Preparaciones de Acción Retardada , Metformina , Modelos Biológicos , Solubilidad , Equivalencia Terapéutica , Metformina/farmacocinética , Metformina/administración & dosificación , Metformina/química , Preparaciones de Acción Retardada/farmacocinética , Humanos , Biofarmacia/métodos , Liberación de Fármacos , Química Farmacéutica/métodos , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Administración Oral , Absorción Intestinal
2.
PLoS One ; 19(8): e0307166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133725

RESUMEN

Metformin, the primary therapy for type 2 diabetes mellitus (T2DM), showed limitations such as varying absorption, rapid system clearance, required large amount, resistance, longstanding side effects. Use of Nano formulations for pharmaceuticals is emerging as a viable technique to reduce negative consequences of drug, while simultaneously attaining precise release and targeted distribution. This study developed a Polyethylene Glycol conjugated Graphene Oxide Quantum dots (GOQD-PEG) nanocomposite for the sustained release of metformin. Herein, we evaluated the effectiveness of metformin-loaded nanoconjugate in in vitro insulin resistance model. Results demonstrated drug loaded nanoconjugate successfully restored glucose uptake and reversed insulin resistance in in vitro conditions at reduced dosage compared to free metformin.


Asunto(s)
Preparaciones de Acción Retardada , Grafito , Resistencia a la Insulina , Metformina , Nanoconjugados , Polietilenglicoles , Puntos Cuánticos , Grafito/química , Puntos Cuánticos/química , Metformina/administración & dosificación , Metformina/farmacología , Metformina/farmacocinética , Metformina/química , Polietilenglicoles/química , Nanoconjugados/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Sistemas de Liberación de Medicamentos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa/metabolismo , Glucosa/química
3.
Int J Biol Macromol ; 277(Pt 1): 133684, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084979

RESUMEN

For Bacterial Nanocellulose (BNC) production, standard methods are well-established, but there is a pressing need to explore cost-effective alternatives for BNC commercialization. This study investigates the feasibility of using syrup prepared from maize stalk as a valuable nutrient and sustainable carbon source for BNC production. Our study achieved a remarkable BNC production yield of 19.457 g L-1 by utilizing Komagataeibacter saccharivorans NUWB1 in combination with components from the Hestrin-Schramm (HS) medium. Physicochemical properties revealed that the obtained BNC exhibited a crystallinity index of 60.5 %, tensile strength of 43.5 MPa along with enhanced thermostability reaching up to 360 °C. N2 adsorption-desorption isotherm of the BNC displayed characteristics of type IV, indicating the presence of a mesoporous structure. The produced BNC underwent thorough investigation, focusing on its efficacy in addressing environmental concerns, particularly in removing emerging pharmaceutical pollutants like Metformin and Paracetamol. Remarkably, the BNC exhibited strong adsorption capabilities, aligning with the Langmuir isotherm and pseudo-second-order model. Thermodynamic analysis confirmed a spontaneous and endothermic adsorption process. Furthermore, the BNC showed potential for regeneration, enabling up to five recycling cycles. Cytotoxicity and oxidative stress assays validated the biocompatibility of BNC. Lastly, the BNC films displayed an impressive 88.73 % biodegradation within 21 days.


Asunto(s)
Celulosa , Celulosa/química , Adsorción , Biodegradación Ambiental , Agricultura/métodos , Acetobacteraceae/química , Acetobacteraceae/metabolismo , Zea mays/química , Contaminantes Químicos del Agua/química , Metformina/química , Nanopartículas/química , Acetaminofén/química , Nanoestructuras/química
4.
J Mater Chem B ; 12(32): 7934-7945, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39037293

RESUMEN

Intravenous injectable metformin-Cu(II)-EGCG infinite coordination polymer nanoparticles (metformin-Cu(II)-EGCG ICP NPs) have been synthesized, and an efficient strategy for synergistic tumor therapy by utilizing these nanoparticles in conjunction with micro-electrothermal needles (MENs) was proposed. These nanoparticles display exceptional uniformity with a diameter of 117.5 ± 53.3 nm, exhibit an extraordinary drug loading capacity of 90% and allow for precise control over the drug ratio within the range of 1 : 1 to 1 : 20 while maintaining excellent thermal stability. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction were employed to determine their chemical structure and coordination state. The combination index (CI) value of the metformin-Cu(II)-EGCG ICP NPs was calculated to be 0.19, surpassing that of the two individual drugs and metformin mixed with EGCG (0.98). Importantly, upon intravenous injection, metformin in nanoparticles demonstrated exceptional stability in the bloodstream, while both drugs were rapidly released within the acidic tumor microenvironment. Animal experiments showcased an impressive tumor inhibition rate of 100% within a mere 20-day time frame after the synergistic therapy with a lower dosage (5.0 mg kg-1 of nanoparticles), coupled with a minimal tumor recurrence rate of only 18.75% over a 60-day observation period. These findings indicate the promising prospects of these nanoparticles in tumor treatment.


Asunto(s)
Antineoplásicos , Cobre , Metformina , Nanopartículas , Polímeros , Metformina/química , Metformina/farmacología , Metformina/administración & dosificación , Nanopartículas/química , Animales , Cobre/química , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Polímeros/química , Humanos , Inyecciones Intravenosas , Tamaño de la Partícula , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral
5.
J Agric Food Chem ; 72(32): 17977-17988, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39085762

RESUMEN

The effects of metformin on invertase activity and its inhibition on sucrose digestion were studied. The rapid unfolding kinetics of invertases, followed a two-state model with an inactive intermediate formation. The dynamic interaction between metformin and invertase caused the secondary structure of the enzyme to become less ß-sheet, more α-helix, and random coiling oriented, which weakened the binding force between enzyme and its substrate. Metformin acted as a chaotrope and disrupted the hydrogen bonds of water, which facilitated the unfolding of invertase. However, some sugar alcohols, which promoted the H-bond formation of water, could repair the secondary structure of metformin-denatured invertase and therefore regulate the enzyme activity. This research enriches our understanding of the mechanism of enzyme unfolding induced by guanidine compounds. Moreover, because metformin and sugar substitutes are of concern to diabetes, this research also provides useful information for understanding the activity of the digestive enzyme that coexists with metformin and sugar alcohols.


Asunto(s)
Metformina , beta-Fructofuranosidasa , Metformina/química , Metformina/farmacología , Cinética , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/metabolismo , Sacarosa/química , Sacarosa/metabolismo , Desplegamiento Proteico/efectos de los fármacos , Enlace de Hidrógeno , Estructura Secundaria de Proteína , Digestión/efectos de los fármacos
6.
Nat Commun ; 15(1): 6121, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033196

RESUMEN

The biguanide drug metformin is a first-line blood glucose-lowering medication for type 2 diabetes, leading to its presence in the global environment. However, little is known about the fate of metformin by microbial catabolism. Here, we characterize a Ni2+-dependent heterohexameric enzyme (MetCaCb) from the ureohydrolase superfamily, catalyzing the hydrolysis of metformin into guanylurea and dimethylamine. Either subunit alone is catalytically inactive, but together they work as an active enzyme highly specific for metformin. The crystal structure of the MetCaCb complex shows the coordination of the binuclear metal cluster only in MetCa, with MetCb as a protein binder of its active cognate. An in-silico search and functional assay discover a group of MetCaCb-like protein pairs exhibiting metformin hydrolase activity in the environment. Our findings not only establish the genetic and biochemical foundation for metformin catabolism but also provide additional insights into the adaption of the ancient enzymes toward newly occurred substrate.


Asunto(s)
Hidrolasas , Metformina , Níquel , Metformina/metabolismo , Metformina/química , Níquel/metabolismo , Níquel/química , Hidrolasas/metabolismo , Hidrolasas/química , Hidrolasas/genética , Cristalografía por Rayos X , Hidrólisis , Especificidad por Sustrato , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares
7.
J Nanobiotechnology ; 22(1): 444, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068417

RESUMEN

The proficient handling of diabetic wounds, a rising issue coinciding with the global escalation of diabetes cases, poses significant clinical difficulties. A range of biofunctional dressings have been engineered and produced to expedite the healing process of diabetic wounds. This study proposes a multifunctional hydrogel dressing for diabetic wound healing, which is composed of Polyvinyl Alcohol (PVA) and N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-teramethylpropane-1, 3-diaminium (TSPBA), and a dual-drug loaded Gelatin methacryloyl (GM) microgel. The GM microgel is loaded with sodium fusidate (SF) and nanoliposomes (LP) that contain metformin hydrochloride (MH). Notably, adhesive and self-healing properties the hydrogel enhance their therapeutic potential and ease of application. In vitro assessments indicate that SF-infused hydrogel can eliminate more than 98% of bacteria within 24 h and maintain a sustained release over 15 days. Additionally, MH incorporated within the hydrogel has demonstrated effective glucose level regulation for a duration exceeding 15 days. The hydrogel demonstrates a sustained ability to neutralize ROS throughout the entire healing process, predominantly by electron donation and sequestration. This multifunctional hydrogel dressing, which integrated biological functions of efficient bactericidal activity against both MSSA and MRSA strains, blood glucose modulation, and control of active oxygen levels, has successfully promoted the healing of diabetic wounds in rats in 14 days. The hydrogel dressing exhibited significant effectiveness in facilitating the healing process of diabetic wounds, highlighting its considerable promise for clinical translation.


Asunto(s)
Antibacterianos , Vendajes , Hidrogeles , Alcohol Polivinílico , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ratas , Antibacterianos/farmacología , Antibacterianos/química , Alcohol Polivinílico/química , Masculino , Hiperglucemia/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Ratas Sprague-Dawley , Gelatina/química , Metformina/farmacología , Metformina/química , Liposomas/química , Staphylococcus aureus/efectos de los fármacos , Metacrilatos/química , Metacrilatos/farmacología , Adhesivos/química , Adhesivos/farmacología , Inyecciones
8.
Talanta ; 277: 126353, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838561

RESUMEN

In this study, deep UV resonance Raman spectroscopy (DUV-RRS) was coupled with high performance liquid chromatography (HPLC) to be applied in the field of pharmaceutical analysis. Naproxen, Metformin and Epirubicin were employed as active pharmaceutical ingredients (APIs) covering different areas of the pharmacological spectrum. Raman signals were successfully generated and attributed to the test substances, even in the presence of the dominant solvent bands of the mobile phase. To increase sensitivity, a low-flow method was developed to extend the exposure time of the sample. This approach enabled the use of a deep UV pulse laser with a low average power of 0.5 mW. Compared to previous studies, where energy-intensive argon ion lasers were commonly used, we were able to achieve similar detection limits with our setup. Using affordable lasers with low operating costs may facilitate the transfer of the results of this study into practical applications.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Cromatografía Líquida de Alta Presión/métodos , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Naproxeno/análisis , Metformina/análisis , Metformina/química , Epirrubicina/análisis , Rayos Ultravioleta , Medicamentos a Granel
9.
Int J Biol Macromol ; 272(Pt 1): 132860, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834117

RESUMEN

To explore the adjuvant therapy drugs of low-dose metformin, one homogeneous polysaccharide named APS-D1 was purified from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Its chemical structure was characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-D1 (7.36 kDa) consisted of glucose, galactose, and arabinose (97.51 %:1.56 %:0.93 %). It consisted of →4)-α-D-Glcp-(1→ residue backbone with →3)-ß-D-Galp-(1→ residue and terminal-α/ß-D-Glcp-(1→ side chains. APS-D1 could significantly improve inflammation (TNF-α, LPS, and IL-10) in vivo. Moreover, APS-D1 improved the curative effect of low-dose metformin without adverse events. APS-D1 combined with low-dose metformin regulated several gut bacteria, in which APS-D1 enriched Staphylococcus lentus to produce l-carnitine (one of 136 metabolites of S. lentus). S. lentus and l-carnitine could improve diabetes, and reduction of S. lentusl-carnitine production impaired diabetes improvement. The combination, S. lentus, and l-carnitine could promote fatty acid oxidation (CPT1) and inhibit gluconeogenesis (PCK and G6Pase). The results indicated that APS-D1 enhanced the curative effect of low-dose metformin to improve diabetes by enriching S. lentus, in which the effect of S. lentus was mediated by l-carnitine. Collectively, these findings support that low-dose metformin supplemented with APS-D1 may be a favorable therapeutic strategy for type 2 diabetes.


Asunto(s)
Metformina , Polisacáridos , Staphylococcus , Metformina/farmacología , Metformina/química , Animales , Polisacáridos/farmacología , Polisacáridos/química , Staphylococcus/efectos de los fármacos , Ratones , Planta del Astrágalo/química , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Peso Molecular
10.
Int J Pharm ; 660: 124358, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38897492

RESUMEN

Nowadays, electrospun fibrous mats are used as drug delivery systems for loading of potential drugs in order to kill cancer cells. In the study, a skin patch for treating melanoma cancer after surgery was made using polycaprolactone and polymetformin microfibers that were loaded with doxycycline (PolyMet/PCL@DOX), an anti-cancer stem cell agent. The morphology, structure, mechanical characteristics, swelling, and porosity of the electrospun microfibers were examined. Drug release andanticancereffectiveness of PolyMet/PCL@DOXwas evaluated against A375 melanoma cancer stem cells using the MTS, Flow cytometry, colony formation and CD44 expression assays. Scanning electron microscopy (SEM) verified the micro fibrous structure with a diameter of about 2.31 µm. The porosity and swelling percentages for microfibers was 73.5 % and 2.9 %, respectively. The tensile strength at the breaking point was equal to 3.84 MPa. The IC50 of PolyMet/PCL@DOX was 7.4 µg/mL. The survival rate of A375 cells after 72 h of PolyMet/PCL@DOX treatment was 43.9 %. The colony formation capacity of A375 cells decreased after PolyMet/PCL@DOX treatment. The level of CD44 expression in the PolyMet/PCL@DOX group decreased compared to the control group. Generally, PolyMet/PCL@DOX microfibers can be a promising candidate as a patch after surgery to eradicate cancer stem cells, effectively.


Asunto(s)
Doxiciclina , Liberación de Fármacos , Melanoma , Células Madre Neoplásicas , Poliésteres , Doxiciclina/administración & dosificación , Doxiciclina/farmacología , Doxiciclina/química , Poliésteres/química , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral , Metformina/farmacología , Metformina/administración & dosificación , Metformina/química , Supervivencia Celular/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Porosidad , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/química
11.
Sci Rep ; 14(1): 13910, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886399

RESUMEN

N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA), group 2A carcinogens, were detected in finished drug products, including metformin, ranitidine, sartans and other drugs which caused multiple recalls in the USA and Europe. Important studies also reported the formation of NDMA when ranitidine and nitrite were added to simulated gastric fluid. Our objective was to screen finished drug products from Europe and USA for nitrosamine impurities and investigate the formation of NDMA in metformin finished drug products when added to simulated gastric fluid. One dosage unit of 30 different commercially available drugs, including metformin, sartans, and ranitidine were tested for NDMA, NDEA, and dimethylformamide (DMF) impurities, using a liquid chromatography-mass spectrometry (LC-MS) method. Then, 6 metformin finished drug products were tested in stomach conditions for 2 h at 37 °C in a 100 mL solution with a pH of 2.5 and different nitrite concentrations (40, 10, 1, 0.1 mM) and tested for NDMA, and DMF using LC-MS. We measured NDMA, NDEA, and DMF in 30 finished drug products. NDMA and DMF were quantified for metformin drug products in simulated gastric fluid with different nitrite concentrations. None of the 30 drugs showed concerning levels of NDMA, NDEA, or DMF when tested as single tablets. However, when metformin tablets are added to simulated gastric fluid solutions with high nitrite concentrations (40 mM and 10 mM), NDMA can reach amounts of thousands of nanograms per tablet. At the closest concentration to physiologic conditions we used, 1 mM, NDMA is still present in the hundreds of nanograms in some metformin products. In this in vitro study, nitrite concentration had a very important effect on NDMA quantification in metformin tablets added to simulated gastric fluid. 1 mM nitrite caused an increase above the acceptable daily intake set by the U.S. Food and Drug Administration (FDA) for some of the metformin drugs. 10 mM, 40 mM nitrite solutions generated NDMA amounts exceeding by more than a hundred times the acceptable daily intake set by the FDA of 96 nanograms. These findings suggest that metformin can react with nitrite in gastric-like conditions and generate NDMA. Thus, patients taking metformin could be exposed to NDMA when high nitrite levels are present in their stomach, and we recommend including a statement within the Patient Package Inserts/Instructions for use.


Asunto(s)
Dimetilnitrosamina , Metformina , Nitritos , Metformina/análisis , Metformina/química , Dimetilnitrosamina/análisis , Dimetilnitrosamina/química , Nitritos/análisis , Contaminación de Medicamentos , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Jugo Gástrico/química
12.
Arch Biochem Biophys ; 758: 110062, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880320

RESUMEN

Carvacrol (CV) is an organic compound found in the essential oils of many aromatic herbs. It is nearly unfeasible to analyze all the current human proteins for a query ligand using in vitro and in vivo methods. This study aimed to clarify whether CV possesses an anti-diabetic feature via Docking-based inverse docking and molecular dynamic (MD) simulation and in vitro characterization against a set of novel human protein targets. Herein, the best poses of CV docking simulations according to binding energy ranged from -7.9 to -3.5 (kcal/mol). After pathway analysis of the protein list through GeneMANIA and WebGestalt, eight interacting proteins (DPP4, FBP1, GCK, HSD11ß1, INSR, PYGL, PPARA, and PPARG) with CV were determined, and these proteins exhibited stable structures during the MD process with CV. In vitro application, statistically significant results were achieved only in combined doses with CV or metformin. Considering all these findings, PPARG and INSR, among these target proteins of CV, are FDA-approved targets for treating diabetes. Therefore, CV may be on its way to becoming a promising therapeutic compound for treating Diabetes Mellitus (DM). Our outcomes expose formerly unexplored potential target human proteins, whose association with diabetic disorders might guide new potential treatments for DM.


Asunto(s)
Cimenos , Hipoglucemiantes , Metformina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Monoterpenos , Humanos , Cimenos/farmacología , Cimenos/química , Metformina/farmacología , Metformina/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Monoterpenos/farmacología , Monoterpenos/química , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Receptor de Insulina/metabolismo , PPAR gamma/metabolismo , PPAR gamma/química , Unión Proteica , Simulación por Computador , Antígenos CD
13.
Int J Pharm ; 659: 124265, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795935

RESUMEN

Metformin (MET) can be an alternative therapeutic strategy for managing ocular burn primarily because of its pleiotropic mechanism. Longer retention on the ocular surface and sustained release are necessary to ensure the efficacy of MET for ocular application. Although the high aqueous solubility of MET is good for formulation and biocompatibility, it makes MET prone to high nasolacrimal drainage. This limits ocular residence and may be a challenge in its application. To address this, polymers approved for ophthalmic application with natural origin were analyzed through in silico methods to determine their ability to bind to mucin and interact with MET. An ocular insert of MET (3 mg/6 mm) was developed using a scalable solvent casting method without using preservatives. The relative composition of the insert was 58 ± 2.06 %w/w MET with approximately 14 %w/w tamarind seed polysaccharide (TSP), and 28 %w/w propylene glycol (PG). Its stability was demonstrated as per the ICH Q1A (R2) guidelines. Compatibility, ocular retention, drug release, and other functional parameters were evaluated. In rabbits, efficacy was demonstrated in the 'corneal alkali burn preclinical model'. TSP showed potential for mucoadhesion and interaction with MET. With adequate stability and sterility, the insert contributed to adequate retention of MET (10-12 h) in vivo and slow release (30 h) in vitro. This resulted in significant efficacy in vivo.


Asunto(s)
Preparaciones de Acción Retardada , Liberación de Fármacos , Quemaduras Oculares , Metformina , Polisacáridos , Semillas , Tamarindus , Animales , Metformina/química , Metformina/administración & dosificación , Conejos , Tamarindus/química , Polisacáridos/química , Semillas/química , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/inducido químicamente , Administración Oftálmica , Implantes de Medicamentos , Masculino , Quemaduras Químicas/tratamiento farmacológico , Estabilidad de Medicamentos , Lesiones de la Cornea/tratamiento farmacológico , Córnea/metabolismo , Córnea/efectos de los fármacos , Propilenglicol/química , Solubilidad
14.
Int J Biol Macromol ; 274(Pt 1): 132767, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821296

RESUMEN

This study introduces a pH-responsive hydrogel developed from Delonix regia and mucin co-poly(acrylate) through free radical polymerization to enhance controlled drug delivery systems. Characterization using FTIR, DSC, TGA, SEM, PXRD, and EDX spectroscopy detailed the hydrogel's amorphous and crystalline structures, thermal stability, surface characteristics, and elemental composition. Tested at a pH of 7.4-mimicking intestinal conditions-the hydrogel demonstrated significant swelling, indicating its capability for targeted drug release. With Metformin HCl as a model drug, the hydrogel exhibited a promising sustained release profile, underscoring its potential for oral administration. Safety and biocompatibility were assessed through acute oral toxicity studies in albino rabbits, encompassing biochemical, hematological, and histopathological evaluations. X-ray imaging confirmed the hydrogel's navigability through the gastrointestinal tract, affirming its application in drug delivery. By potentially mitigating gastrointestinal side effects, enhancing patient compliance, and improving therapeutic efficacy, this Delonix regia/mucin co-poly(acrylate) hydrogel represents a step in pharmaceutical sciences, exploring innovative materials and methodologies for drug delivery.


Asunto(s)
Liberación de Fármacos , Hidrogeles , Metformina , Mucinas , Metformina/química , Metformina/administración & dosificación , Metformina/farmacología , Metformina/farmacocinética , Hidrogeles/química , Concentración de Iones de Hidrógeno , Animales , Conejos , Mucinas/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Preparaciones de Acción Retardada/química , Resinas Acrílicas/química
15.
Int J Biol Macromol ; 271(Pt 1): 132568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782329

RESUMEN

The aim of this research is to prepare and identify functionalized carboxymethylcellulose/mesoporous silica nanohydrogels (CMC/NH2-MCM-41) for obtaining a pH-sensitive system for the controlled release of drugs. The beads of CMC/NH2-MCM-41 nanocomposites were prepared by dispersing NH2-MCM-41 in a CMC polymer matrix and crosslinking with ferric ions (Fe3+). The SEM analysis of samples revealed enhancement in surface porosity of the functionalized nanohydrogel beads compared to the conventional beads. Swelling of the prepared functionalized nanohydrogels was evaluated at various pH values including pH = 7.35-7.45 (simulated body fluid or healthy cells), pH = 6 (simulated intestinal fluid), and pH = 1.5-3.5 (simulated gastric fluid). The swelling of CMC/MCM-41 and CMC/NH2-MCM-41 nanohydrogels at the pH values of simulated body fluid and simulated intestinal fluid is much higher than that of simulated gastric fluid, indicating successful synthesis of pH-sensitive nanohydrogels for drug delivery. The drug loading results showed that drug release in the CMC/NH2-MCM-41 system is much slower than that in the CMC/MCM-41 system. The results of the survival studies for the manufactured systems showed a very good biocompatibility of the designed drug delivery systems for biological applications. By coating the surface of functionalized mesopores with CMC hydrogel, we were able to develop a pH-sensitive intelligent drug delivery system.


Asunto(s)
Carboximetilcelulosa de Sodio , Doxorrubicina , Portadores de Fármacos , Liberación de Fármacos , Hidrogeles , Metformina , Naproxeno , Hidrogeles/química , Carboximetilcelulosa de Sodio/química , Concentración de Iones de Hidrógeno , Metformina/química , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Naproxeno/química , Portadores de Fármacos/química , Dióxido de Silicio/química , Sistemas de Liberación de Medicamentos , Humanos , Diseño de Fármacos , Porosidad
16.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792167

RESUMEN

Methylglyoxal-induced ROS elevation is the primary cause of neuronal damage. Metformin is a traditional hypoglycemic drug that has been reported to be beneficial to the nervous system. In this study, flavonoids were found to enhance the protective effect of metformin when added at a molar concentration of 0.5%. The structure-activity relationship (SAR) analysis indicated that ortho- substitution in the B ring, and the absence of double bonds between the 2 and 3 position combined with the gallate substitution with R configuration at the 3 position in the C ring played crucial roles in the synergistic effects, which could be beneficial for designing a combination of the compounds. Additionally, the mechanism study revealed that a typical flavonoid, EGCG, enhanced ROS scavenging and anti-apoptotic ability via the BCL2/Bax/Cyto C/Caspase-3 pathway, and synergistically inhibited the expression of GSK-3ß, BACE-1, and APP in PC-12 cells when used in combination with metformin. The dose of metformin used in the combination was only 1/4 of the conventional dose when used alone. These results suggested that ROS-mediated apoptosis and the pathways related to amyloid plaques (Aß) formation can be the targets for the synergistic neuroprotective effects of flavonoids and metformin.


Asunto(s)
Apoptosis , Sinergismo Farmacológico , Flavonoides , Metformina , Piruvaldehído , Especies Reactivas de Oxígeno , Metformina/farmacología , Metformina/química , Ratas , Flavonoides/farmacología , Flavonoides/química , Células PC12 , Animales , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Transducción de Señal/efectos de los fármacos
17.
Biometals ; 37(4): 983-1022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38578560

RESUMEN

Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Metformina , SARS-CoV-2 , Zinc , Metformina/farmacología , Metformina/química , Humanos , Zinc/química , Zinc/metabolismo , Zinc/farmacología , SARS-CoV-2/efectos de los fármacos , COVID-19/virología , Antivirales/farmacología , Antivirales/química , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química
18.
Sci Rep ; 14(1): 9410, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658742

RESUMEN

Diabetes mellitus (DM) is a persistent, progressive, and multifaceted disease characterized by elevated blood glucose levels. Type 2 diabetes mellitus is associated with a relative deficit in insulin mainly due to beta cell dysfunction and peripheral insulin resistance. Metformin has been widely prescribed as a primary treatment option to address this condition. On the other hand, an emerging glucose-reducing agent known as imeglimin has garnered attention due to its similarity to metformin in terms of chemical structure. In this study, an innovative series of imeglimin derivatives, labeled 3(a-j), were synthesized through a one-step reaction involving an aldehyde and metformin. The chemical structures of these derivatives were thoroughly characterized using ESI-MS, 1H, and 13C NMR spectroscopy. In vivo tests on a zebrafish diabetic model were used to evaluate the efficacy of the synthesized compounds. All compounds 3(a-j) showed significant antidiabetic effects. It is worth mentioning that compounds 3b (FBS = 72.3 ± 7.2 mg/dL) and 3g (FBS = 72.7 ± 4.3 mg/dL) have antidiabetic effects comparable to those of the standard drugs metformin (FBS = 74.0 ± 5.1 mg/dL) and imeglimin (82.3 ± 5.2 mg/dL). In addition, a docking study was performed to predict the possible interactions between the synthesized compounds and both SIRT1 and GSK-3ß targets. The docking results were in good agreement with the experimental assay results.


Asunto(s)
Diabetes Mellitus Experimental , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Triazinas , Pez Cebra , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Metformina/farmacología , Metformina/química , Metformina/síntesis química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucemia/metabolismo , Modelos Animales de Enfermedad
19.
Int J Pharm ; 657: 124126, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38626845

RESUMEN

As the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method. The structures of these crystals were confirmed by single crystal and powder X-ray diffraction, Hirshfeld surface, Fourier transform infrared spectroscopy and thermal analysis. Both MET-IBU and MET-NAP showed significantly improved solubility and intrinsic dissolution rate than the pure IBU or NAP. The stability test indicated that MET-IBU and MET-NAP have excellent physical stability under stressing test (10 days) and accelerated conditions (3 months). Moreover, isobolographic analysis suggested that MET-IBU and MET-NAP exerted potent and synergistic antinociceptive effects in λ-Carrageenan-induced inflammatory pain in mice, and both of them had an advantage in rapid pain relief. These results demonstrated the potential of MET-IBU and MET-NAP to achieve synergistic antinociceptive effects by developing drug-drug salt crystals.


Asunto(s)
Analgésicos , Cristalización , Sinergismo Farmacológico , Ibuprofeno , Metformina , Naproxeno , Solubilidad , Metformina/química , Metformina/administración & dosificación , Metformina/farmacología , Animales , Naproxeno/química , Naproxeno/administración & dosificación , Ibuprofeno/química , Ibuprofeno/administración & dosificación , Ibuprofeno/farmacología , Analgésicos/química , Analgésicos/administración & dosificación , Analgésicos/farmacología , Ratones , Masculino , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Dolor/tratamiento farmacológico , Estabilidad de Medicamentos , Carragenina , Liberación de Fármacos , Sales (Química)/química
20.
Clin Toxicol (Phila) ; 62(4): 237-241, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646866

RESUMEN

INTRODUCTION: Metformin is a biguanide used to manage patients with type 2 diabetes mellitus. However, metabolic acidosis with an elevated lactate concentration and death caused by metformin overdoses are toxicological concerns. Although activated charcoal has been widely used for gastrointestinal decontamination in cases of acute poisoning, there is no evidence regarding its efficacy in treating metformin overdoses. We therefore evaluated the adsorptive capacity of activated charcoal for metformin in vitro. METHODS: Activated charcoal (specific surface area: 1,080 m2/g) mixed with various concentrations of metformin solution was dissolved in simulated gastric and intestinal fluids at 37° Celsius. The suspension was then filtered and the metformin concentration in the filtrate was determined using high-performance liquid chromatography. The maximum adsorptive capacity for metformin was calculated using the Langmuir adsorption isotherm equation. RESULTS: The amount of metformin adsorbed per gram of activated charcoal ranged from 0.7 to 8.1 mg/g at pH 1.2, and from 8.4 to 48.2 mg/g at pH 6.8. The corresponding maximum adsorptive capacities were 10.6 mg/g and 55.9 mg/g respectively. DISCUSSION: The maximum adsorptive capacity of activated charcoal for metformin was similar to that of its capacity for other poorly adsorbed substances. This is likely because metformin is water-soluble and has high polarity-factors that correlate with poor adsorption on activated charcoal. CONCLUSIONS: The maximum adsorption of metformin by activated charcoal was low. Therefore, activated charcoal may not be effective for treating patients with metformin overdose.


Asunto(s)
Carbón Orgánico , Metformina , Carbón Orgánico/química , Carbón Orgánico/uso terapéutico , Metformina/química , Metformina/toxicidad , Adsorción , Hipoglucemiantes/química , Hipoglucemiantes/toxicidad , Sobredosis de Droga/tratamiento farmacológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...