Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.041
Filtrar
1.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(6): 756-762, 2024 Jun 06.
Artículo en Chino | MEDLINE | ID: mdl-38955721

RESUMEN

Allergic diseases are affected by both genetic background and environmental factors.In recent years, many studies have shown that allergic diseases are closely related to the gut microbiome.This article will elaborate on the composition of gut microbiome in early life and its relationship with allergies, the mechanism of action, and the influence of gut microbiome colonization on the atopic march, in order to improve the understanding of the relationship between allergy prevention or treatment and gut microbiome in children, and provide new ideas for the early prevention of allergic diseases and the early intervention of allergic processes.


Asunto(s)
Hipersensibilidad , Humanos , Hipersensibilidad/microbiología , Microbiota , Niño , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología
2.
Front Endocrinol (Lausanne) ; 15: 1344152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948515

RESUMEN

Background: Analyzing bacterial microbiomes consistently using next-generation sequencing (NGS) is challenging due to the diversity of synthetic platforms for 16S rRNA genes and their analytical pipelines. This study compares the efficacy of full-length (V1-V9 hypervariable regions) and partial-length (V3-V4 hypervariable regions) sequencing of synthetic 16S rRNA genes from human gut microbiomes, with a focus on childhood obesity. Methods: In this observational and comparative study, we explored the differences between these two sequencing methods in taxonomic categorization and weight status prediction among twelve children with obstructive sleep apnea. Results: The full-length NGS method by Pacbio® identified 118 genera and 248 species in the V1-V9 regions, all with a 0% unclassified rate. In contrast, the partial-length NGS method by Illumina® detected 142 genera (with a 39% unclassified rate) and 6 species (with a 99% unclassified rate) in the V3-V4 regions. These approaches showed marked differences in gut microbiome composition and functional predictions. The full-length method distinguished between obese and non-obese children using the Firmicutes/Bacteroidetes ratio, a known obesity marker (p = 0.046), whereas the partial-length method was less conclusive (p = 0.075). Additionally, out of 73 metabolic pathways identified through full-length sequencing, 35 (48%) were associated with level 1 metabolism, compared to 28 of 61 pathways (46%) identified through the partial-length method. The full-length NGS also highlighted complex associations between body mass index z-score, three bacterial species (Bacteroides ovatus, Bifidobacterium pseudocatenulatum, and Streptococcus parasanguinis ATCC 15912), and 17 metabolic pathways. Both sequencing techniques revealed relationships between gut microbiota composition and OSA-related parameters, with full-length sequencing offering more comprehensive insights into associated metabolic pathways than the V3-V4 technique. Conclusion: These findings highlight disparities in NGS-based assessments, emphasizing the value of full-length NGS with amplicon sequence variant analysis for clinical gut microbiome research. They underscore the importance of considering methodological differences in future meta-analyses.


Asunto(s)
Microbioma Gastrointestinal , Obesidad Infantil , ARN Ribosómico 16S , Apnea Obstructiva del Sueño , Humanos , Microbioma Gastrointestinal/genética , Niño , Masculino , ARN Ribosómico 16S/genética , Femenino , Apnea Obstructiva del Sueño/microbiología , Apnea Obstructiva del Sueño/genética , Obesidad Infantil/microbiología , Obesidad Infantil/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Preescolar , Peso Corporal , Adolescente
3.
Front Endocrinol (Lausanne) ; 15: 1382777, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948518

RESUMEN

Background: The concept of the gut-retinal axis proposed by previous scholars primarily focused on the relationship between intestinal microbiota and retinal diseases, and few further expanded the relationship between intestinal diseases and retinal diseases. To further substantiate the concept of the gut-retinal axis, we analyzed inflammatory bowel disease (IBD) and diabetic retinopathy (DR) using Mendelian randomization (MR), and use mediation analysis to further explore the potential substances that influence this causal relationship. Methods: The genome-wide association study's (GWAS) summary statistics for genetic variations were utilized in a Mendelian randomization (MR) investigation. GWAS data on IBD (including ulcerative colitis (UC), Crohn's disease (CD), and IBD) for non-Finnish Europeans (NFE) were sourced from published articles. In contrast, data on DR (including DR and diabetic maculopathy (DMP)) were obtained from FinnGen R9. The causal relationship has been investigated using inverse variance weighted (IVW), MR-Egger, and weighted median and sensitivity analysis was applied to verify the stability of the results. In addition, we applied mediation analysis to investigate whether circulating inflammatory proteins and plasma lipids played a mediating role, and calculated its effect ratio. Results: The causal relationship between IBD and DR was discovered by employing the inverse variance weighted (IVW) method and weighted median method. In forward MR, UC was significantly associated with lower risk of DR (IVW: OR=0.874; 95%CI= 0.835-0.916; P value= 1.28E-08) (Weighted median: OR=0.893; 95%CI= 0.837-0.954; P value= 7.40E-04). In reverse MR, it was shown that DR (IVW: OR=0.870; 95%CI= 0.828-0.914; P value= 2.79E-08)(Weighted median: OR=0.857; 95%CI= 0.801-0.916; P value= 6.40E-06) and DMP (IVW: OR=0.900; 95%CI= 0.865-0.937; P value= 3.34E-07)(Weighted median: OR=0.882; 95%CI= 0.841-0.924; P value= 1.82E-07) could reduce the risk of CD. What's more, DR is associated with a lower risk of IBD according to genetic prediction (IVW: OR=0.922; 95%CI= 0.873-0.972; P value= 0.002) (Weighted median: OR=0.924; 95%CI= 0.861-0.992; P value= 0.029). Fibroblast growth factor 21 (FGF21), phosphatidylcholine (PC), and triacylglycerol (TG) serve as mediators in these relationships. Conclusions: Our research offers novel insights and sources for investigating the gut-retina axis in the genetic relationship between IBD and DR. We discover four mediators and more about the association between the intestine and retinal disorders and provide more evidence for the gut-retinal axis theory.


Asunto(s)
Retinopatía Diabética , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino , Análisis de la Aleatorización Mendeliana , Humanos , Retinopatía Diabética/genética , Retinopatía Diabética/epidemiología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/epidemiología , Enfermedades Inflamatorias del Intestino/complicaciones , Análisis de Mediación , Retina/metabolismo , Retina/patología , Polimorfismo de Nucleótido Simple , Microbioma Gastrointestinal
5.
Naturwissenschaften ; 111(4): 36, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951264

RESUMEN

Gut microbial communities are part of the regulatory array of various processes within their hosts, ranging from nutrition to pathogen control. Recent evidence shows that dung beetle's gut microbial communities release substances with antifungal activity. Because of the enormous diversity of gut microorganisms in dung beetles, there is a possibility of discovering novel compounds with antifungal properties. We tested the antifungal activity mediated by gut microbial communities of female dung beetles against nine phytopathogenic fungi strains (Colletotrichum asianum-339, C. asianum-340, C. asianum-1, C. kahawae-390, C. karstii-358, C. siamense-220, Fusarium oxysporum-ATCC338, Nectria pseudotrichia-232, Verticillium zaelandica-22). Our tests included the gut microbial communities of three species of dung beetles: Canthon cyanellus (roller beetle), Digitonthophagus gazella (burrower beetle), and Onthophagus batesi (burrower beetle), and we followed the dual confrontation protocol, i.e., we challenged each fungal strain with the microbial communities of each species of beetles in Petri dishes containing culture medium. Our results showed that gut microbial communities of the three dung beetle species exhibit antifungal activity against at least seven of the nine phytopathogenic fungal strains. The gut microbial communities of Onthophagus batesi significantly decreased the mycelial growth of the nine phytopathogenic fungi strains; the gut microbial communities of Canthon cyanellus and Digitonthophagus gazella significantly reduced the mycelial growth of seven strains. These results provide a basis for investigating novel antifungal substances within gut microbial communities of dung beetles.


Asunto(s)
Antifúngicos , Escarabajos , Hongos , Microbioma Gastrointestinal , Animales , Escarabajos/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Antifúngicos/farmacología , Hongos/efectos de los fármacos , Femenino
6.
Front Immunol ; 15: 1298971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953021

RESUMEN

Introduction: More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods: A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results: The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion: The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.


Asunto(s)
Microbioma Gastrointestinal , Fenoles , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Fluorocarburos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Técnicas de Cocultivo , Contaminantes Ambientales/toxicidad , Bacterias/efectos de los fármacos , Bacterias/inmunología
7.
World J Gastroenterol ; 30(23): 2964-2980, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38946874

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a hepatic manifestation of the metabolic syndrome. It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most countries. MAFLD is a progressive disease with the most severe cases presenting as advanced fibrosis or cirrhosis with an increased risk of hepatocellular carcinoma. Gut microbiota play a significant role in the pathogenesis and progression of MAFLD by disrupting the gut-liver axis. The mechanisms involved in maintaining gut-liver axis homeostasis are complex. One critical aspect involves preserving an appropriate intestinal barrier permeability and levels of intestinal lumen metabolites to ensure gut-liver axis functionality. An increase in intestinal barrier permeability induces metabolic endotoxemia that leads to steatohepatitis. Moreover, alterations in the absorption of various metabolites can affect liver metabolism and induce liver steatosis and fibrosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a class of drugs developed for the treatment of type 2 diabetes mellitus. They are also commonly used to combat obesity and have been proven to be effective in reversing hepatic steatosis. The mechanisms reported to be involved in this effect include an improved regulation of glycemia, reduced lipid synthesis, ß-oxidation of free fatty acids, and induction of autophagy in hepatic cells. Recently, multiple peptide receptor agonists have been introduced and are expected to increase the effectiveness of the treatment. A modulation of gut microbiota has also been observed with the use of these drugs that may contribute to the amelioration of MAFLD. This review presents the current understanding of the role of the gut-liver axis in the development of MAFLD and use of members of the GLP-1 RA family as pleiotropic agents in the treatment of MAFLD.


Asunto(s)
Microbioma Gastrointestinal , Receptor del Péptido 1 Similar al Glucagón , Hígado , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Incretinas/uso terapéutico , Incretinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Agonistas Receptor de Péptidos Similares al Glucagón
8.
Front Cell Infect Microbiol ; 14: 1402329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947125

RESUMEN

Introduction: In infants with cholestasis, variations in the enterohepatic circulation of bile acids and the gut microbiota (GM) characteristics differ between those with biliary atresia (BA) and non-BA, prompting a differential analysis of their respective GM profiles. Methods: Using 16S rDNA gene sequencing to analyse the variance in GM composition among three groups: infants with BA (BA group, n=26), non-BA cholestasis (IC group, n=37), and healthy infants (control group, n=50). Additionally, correlation analysis was conducted between GM and liver function-related indicators. Results: Principal component analysis using Bray-Curtis distance measurement revealed a significant distinction between microbial samples in the IC group compared to the two other groups. IC-accumulated co-abundance groups exhibited positive correlations with aspartate aminotransferase, alanine aminotransferase, total bilirubin, direct bilirubin, and total bile acid serum levels. These correlations were notably reinforced upon the exclusion of microbial samples from children with BA. Conclusion: The varying "enterohepatic circulation" status of bile acids in children with BA and non-BA cholestasis contributes to distinct GM structures and functions. This divergence underscores the potential for targeted GM interventions tailored to the specific aetiologies of cholestasis.


Asunto(s)
Ácidos y Sales Biliares , Atresia Biliar , Colestasis , Microbioma Gastrointestinal , ARN Ribosómico 16S , Humanos , Atresia Biliar/microbiología , Colestasis/microbiología , Lactante , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/sangre , Masculino , Femenino , ARN Ribosómico 16S/genética , Bilirrubina/sangre , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Ribosómico/genética , Heces/microbiología
9.
Front Cell Infect Microbiol ; 14: 1383774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947126

RESUMEN

Silkworm (Bombyx mori) larvae are expected to be useful as an ingredient in entomophagy. They are full of nutrients, including indigestible proteins; however, there have been few studies on the effects of the consumption of the entire body of silkworms on the intestinal microflora. We prepared a customized diet containing silkworm larval powder (SLP), and investigated the effects of ad libitum feeding of the SLP diet on the intestinal microbiota and the amount of short-chain fatty acids (SCFAs) in mice. We found that the diversity of the cecal and fecal microbiota increased in the mice fed the SLP diet (SLP group), and that the composition of their intestinal microbiota differed from that of the control mice. Furthermore, a genus-level microbiota analysis showed that in the SLP group, the proportions of Alistipes, Lachnospiraceae A2, and RF39, which are associated with the prevention of obesity, were significantly increased, while the proportions of Helicobacter and Anaerotruncus, which are associated with obesity, were significantly decreased. Additionally, the level of butyrate was increased in the SLP group, and Clostridia UCG 014 and Lachnospiraceae FCS020 were found to be associated with the level of butyrate, one of the major SCFAs. These findings indicated that silkworm powder may be useful as an insect food that might also improve obesity.


Asunto(s)
Bombyx , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Larva , Animales , Bombyx/microbiología , Bombyx/metabolismo , Larva/microbiología , Ratones , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Polvos , Dieta , Ciego/microbiología , Ciego/metabolismo , Masculino , Obesidad/microbiología , Obesidad/metabolismo , Alimentación Animal
10.
Front Cell Infect Microbiol ; 14: 1407051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947127

RESUMEN

The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.


Asunto(s)
Ciego , Dieta Alta en Grasa , Microbioma Gastrointestinal , Obesidad , Animales , Conejos , Dieta Alta en Grasa/efectos adversos , Ciego/microbiología , Ciego/metabolismo , Obesidad/metabolismo , Obesidad/microbiología , Interacciones Microbiota-Huesped , Metagenómica , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Redes Reguladoras de Genes , Masculino , Perfilación de la Expresión Génica
11.
World J Gastroenterol ; 30(22): 2923-2926, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38947287

RESUMEN

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, showed a wide spectrum of intestinal and extra-intestinal manifestations, which rendered the patients physically inactive and impaired their quality of life. It has been found that physical activity is a non-pharmacological intervention that improves the quality of life for those patients. Irisin is one member of the myokines secreted by muscle contraction during exercise and could be used as an anti-inflammatory biomarker in assessing the physical activity of IBD patients. In addition, experimental studies showed that exogenous irisin significantly decreased the inflammatory markers and the histological changes of the intestinal mucosa observed in experimental colitis. Furthermore, irisin produces changes in the diversity of the microbiota. Therefore, endogenous or exogenous irisin, via its anti-inflammatory effects, will improve the health of IBD patients and will limit the barriers to physical activity in patients with IBD.


Asunto(s)
Biomarcadores , Ejercicio Físico , Fibronectinas , Calidad de Vida , Humanos , Fibronectinas/sangre , Ejercicio Físico/fisiología , Biomarcadores/sangre , Mucosa Intestinal/patología , Animales , Enfermedades Inflamatorias del Intestino/sangre , Enfermedad de Crohn/sangre , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/terapia , Microbioma Gastrointestinal , Colitis Ulcerosa/sangre , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/terapia , Mioquinas
12.
Vet Q ; 44(1): 1-8, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38946435

RESUMEN

This study aimed to evaluate the effect of varying levels of sorghum-based diets as an alternative to maize in broiler nutrition. A total of 320 one-day-old male Ross 708 broiler chickens were randomly allocated to four treatment groups (5 pens per treatment and 16 birds per pen), comprising a control group with a basal diet and groups receiving sorghum-based diets with 20%, 40%, and 100% maize replacement. The overall weight gain was significantly (p < 0.0001) higher in the control group, followed by 20%, 40%, and 100% sorghum replacement. Additionally, overall feed intake was significantly (p < 0.01) higher in the 20% sorghum replacement group compared to the control and other groups. Broilers fed sorghum-based diets exhibited a significantly (p < 0.01) increased feed conversion ratio. Carcass characteristics showed no significant differences between broilers fed corn and sorghum; however, the digestibility of crude protein and apparent metabolizable energy significantly (p < 0.01) increased in the 20% sorghum-corn replacement compared to the 40% and 100% replacement levels. Ileal villus height and width did not differ among the corn-sorghum-based diets, regardless of the replacement percentage. Furthermore, among the cecal microbiota, Lactobacillus count was significantly (p < 0.041) higher in the 20% corn-sorghum diet compared to the 40% and 100% replacement levels. These findings suggest that replacing corn up to 20% of corn with sorghum in broiler diet positively impact growth performance, gut health, nutrient digestibility, and cecal microbiota in broilers. However, larger replacements (40% and 100%) may have negative implications for broiler production and health.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Pollos , Dieta , Digestión , Microbioma Gastrointestinal , Sorghum , Zea mays , Animales , Pollos/microbiología , Pollos/fisiología , Alimentación Animal/análisis , Masculino , Dieta/veterinaria , Digestión/efectos de los fármacos , Nutrientes , Distribución Aleatoria
13.
Gut Microbes ; 16(1): 2360233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38949979

RESUMEN

Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.


Asunto(s)
Eje Cerebro-Intestino , Encéfalo , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiología , Humanos , Eje Cerebro-Intestino/fisiología , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/fisiopatología , Encéfalo/microbiología , Encéfalo/fisiopatología , Animales , Tracto Gastrointestinal/microbiología
14.
BMC Microbiol ; 24(1): 233, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951788

RESUMEN

BACKGROUND: Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS: A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS: Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.


Asunto(s)
Bifidobacterium , Microbioma Gastrointestinal , Probióticos , Humanos , Bifidobacterium/aislamiento & purificación , Bifidobacterium/clasificación , Bifidobacterium/genética , Adulto , Femenino , Masculino , Persona de Mediana Edad , Enfermedades Inflamatorias del Intestino/microbiología , Adulto Joven , Anciano , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/microbiología , Filogenia , Heces/microbiología , ARN Ribosómico 16S/genética , Fenotipo , Adolescente , Antibacterianos/farmacología
15.
BMC Microbiol ; 24(1): 232, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951807

RESUMEN

BACKGROUND: Migratory birds exhibit heterogeneity in foraging strategies during wintering to cope with environmental and migratory pressures, and gut bacteria respond to changes in host diet. However, less is known about the dynamics of diet and gut fungi during the wintering period in black-necked cranes (Grus nigricollis). RESULTS: In this work, we performed amplicon sequencing of the trnL-P6 loop and ITS1 regions to characterize the dietary composition and gut fungal composition of black-necked cranes during wintering. Results indicated that during the wintering period, the plant-based diet of black-necked cranes mainly consisted of families Poaceae, Solanaceae, and Polygonaceae. Among them, the abundance of Solanaceae, Polygonaceae, Fabaceae, and Caryophyllaceae was significantly higher in the late wintering period, which also led to a more even consumption of various food types by black-necked cranes during this period. The diversity of gut fungal communities and the abundance of core fungi were more conserved during the wintering period, primarily dominated by Ascomycota and Basidiomycota. LEfSe analysis (P < 0.05, LDA > 2) found that Pyxidiophora, Pseudopeziza, Sporormiella, Geotrichum, and Papiliotrema were significantly enriched in early winter, Ramularia and Dendryphion were significantly enriched in mid-winter, Barnettozyma was significantly abundant in late winter, and Pleuroascus was significantly abundant in late winter. Finally, mantel test revealed a significant correlation between winter diet and gut fungal. CONCLUSIONS: This study revealed the dynamic changes in the food composition and gut fungal community of black-necked cranes during wintering in Dashanbao. In the late wintering period, their response to environmental and migratory pressures was to broaden their diet, increase the intake of non-preferred foods, and promote a more balanced consumption ratio of various foods. Balanced food composition played an important role in stabilizing the structure of the gut fungal community. While gut fungal effectively enhanced the host's food utilization rate, they may also faced potential risks of introducing pathogenic fungi. Additionally, we recongnized the limitations of fecal testing in studying the composition of animal gut fungal, as it cannot effectively distinguished between fungal taxa from food or soil inadvertently ingested and intestines. Future research on functions such as cultivation and metagenomics may further elucidate the role of fungi in the gut ecosystem.


Asunto(s)
Aves , Dieta , Hongos , Microbioma Gastrointestinal , Estaciones del Año , Animales , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Aves/microbiología , Tracto Gastrointestinal/microbiología , ADN de Hongos/genética , Filogenia
16.
Lipids Health Dis ; 23(1): 207, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951816

RESUMEN

BACKGROUND: Ketogenic diets are increasingly popular for addressing obesity, but their impacts on the gut microbiota and metabolome remain unclear. This paper aimed to investigate how a ketogenic diet affects intestinal microorganisms and metabolites in obesity. METHODS: Male mice were provided with one of the following dietary regimens: normal chow, high-fat diet, ketogenic diet, or high-fat diet converted to ketogenic diet. Body weight and fat mass were measured weekly using high-precision electronic balances and minispec body composition analyzers. Metagenomics and non-targeted metabolomics data were used to analyze differences in intestinal contents. RESULTS: Obese mice on the ketogenic diet exhibited notable improvements in weight and body fat. However, these were accompanied by a significant decrease in intestinal microbial diversity, as well as an increase in Firmicutes abundance and a 247% increase in the Firmicutes/Bacteroidetes ratio. The ketogenic diet also altered multiple metabolic pathways in the gut, including glucose, lipid, energy, carbohydrate, amino acid, ketone body, butanoate, and methane pathways, as well as bacterial secretion and colonization pathways. These changes were associated with increased intestinal inflammation and dysbiosis in obese mice. Furthermore, the ketogenic diet enhanced the secretion of bile and the synthesis of aminoglycoside antibiotics in obese mice, which may impair the gut microbiota and be associated with intestinal inflammation and immunity. CONCLUSIONS: The study suggest that the ketogenic diet had an unfavorable risk-benefit trade-off and may compromise metabolic homeostasis in obese mice.


Asunto(s)
Dieta Alta en Grasa , Dieta Cetogénica , Microbioma Gastrointestinal , Metagenómica , Obesidad , Dieta Cetogénica/efectos adversos , Animales , Masculino , Ratones , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Metagenómica/métodos , Metabolómica/métodos , Disbiosis/microbiología , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Metaboloma , Peso Corporal
17.
Drug Des Devel Ther ; 18: 2617-2639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957410

RESUMEN

Objective: To explored the potential molecular mechanism of Sugemule-4 decoction (MMS-4D) in treating insomnia. Methods: DL-4-chlorophenylalanine (PCPA) + chronic unpredictable mild stress stimulation (CUMS) was used to induce an insomnia model in rats. After the model was successfully established, MMS-4D was intervened at low, medium, and high doses for 7 days. The open-field test (OFT) was used to preliminarily evaluate the efficacy. The potential mechanism of MMS-4D in treating insomnia was investigated using gut microbiota, serum metabolomics, and network pharmacology (NP). Experimental validation of the main components of the key pathways was carried out using ELISA and Western blot. Results: The weights of the insomnia-model rats were significantly raised (p ≤ 0.05), the total exercise distance in the OFT increased (p ≤ 0.05), the rest time shortened, and the number of standing times increased (p ≤ 0.05), after treatment with MMS-4D. Moreover, there was a substantial recovery in the 5-HT, DA, GABA, and Glu levels in the hypothalamus tissue and the 5-HT and GABA levels in the colon tissue of rats. The expression of DAT and DRD1 proteins in the hippocampus of insomnia rats reduced after drug treatment. MMS-4D may treat insomnia by regulating different crucial pathways including 5-HT -, DA -, GABA -, and Glu-mediated neuroactive light receiver interaction, cAMP signaling pathway, serotonergic, glutamatergic, dopaminergic, and GABAergic synapses. Conclusion: This study revealed that MMS-4D can improve the general state and behavioral changes of insomnia model rats. Its mechanism may be related to the reversal of abnormal pathways mediated by 5-HT, DA, GABA, and Glu, such as Serotonergic synapse, Dopaminergic synapse, Glutamatergic synapse, and GABAergic synapse.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Farmacología en Red , Ratas Sprague-Dawley , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Ratas , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Medicamentos Herbarios Chinos/farmacología , Metabolómica , Relación Dosis-Respuesta a Droga
18.
Front Immunol ; 15: 1389920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957464

RESUMEN

Probiotic consumption strongly influences local intestinal immunity and systemic immune status. Heyndrickxia coagulans strain SANK70258 (HC) is a spore-forming lactic acid bacterium that has immunostimulatory properties on peripheral tissues. However, few reports have examined the detailed effectiveness of HC on human immune function and its mechanism of action. Therefore, we conducted a randomized, double-blind, placebo-controlled, parallel-group study to comprehensively evaluate the effects of HC on immunostimulatory capacity, upper respiratory tract infection (URTI) symptoms, and changes in intestinal organic-acid composition. Results of a questionnaire survey of URTI symptoms showed that runny nose, nasal congestion, sneezing, and sore throat scores as well as the cumulative number of days of these symptoms were significantly lower in the HC group than in the placebo group during the study period. Furthermore, the salivary secretory immunoglobulin A (sIgA) concentration was significantly higher, and the natural killer (NK) cell activity tended to be higher in the HC group than in the placebo group. In addition, we performed an exposure culture assay of inactivated influenza virus on peripheral blood mononuclear cells (PBMCs) isolated from the blood of participants in the HC and placebo groups. Gene-expression analysis in PBMCs after culture completion showed that IFNα and TLR7 expression levels were significantly higher in the HC group than in the placebo group. In addition, the expression levels of CD304 tended to be higher in the HC group than in the placebo group. On the other hand, the HC group showed a significantly higher increase in the intestinal butyrate concentration than the placebo group. HC intake also significantly suppressed levels of IL-6 and TNFα produced by PBMCs after exposure to inactivated influenza virus. Collectively, these results suggest that HC activated plasmacytoid dendritic cells expressing TLR7 and CD304 and strongly induced IFNα production, subsequently activating NK cells and increasing sIgA levels, and induced anti-inflammatory effects via increased intestinal butyrate levels. These changes may contribute to the acquisition of host resistance to viral infection and URTI prevention.


Asunto(s)
Probióticos , Infecciones del Sistema Respiratorio , Humanos , Infecciones del Sistema Respiratorio/inmunología , Método Doble Ciego , Masculino , Adulto , Probióticos/administración & dosificación , Femenino , Adulto Joven , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Microbioma Gastrointestinal/inmunología , Inmunoglobulina A Secretora/inmunología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/inmunología , Inmunomodulación
19.
Oncoimmunology ; 13(1): 2374954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957477

RESUMEN

Gut microbiota impacts responses to immune checkpoint inhibitors (ICI). A high level of Faecalibacterium prausnitzii have been associated with a positive response to ICI in multiple cancer types. Here, based on fecal shotgun metagenomics data, we show in two independent cohorts of patients with non-small cell lung cancer and advanced melanoma that a high level of F. prausnitzii at baseline is positively associated with a better clinical response to ICI. In MCA205 tumor-bearing mice, administration of F. prausnitzii strain EXL01, already in clinical development for Inflammatory Bowel Disease, restores the anti-tumor response to ICI in the context of antibiotic-induced microbiota perturbation at clinical and tumor transcriptomics level. In vitro, EXL01 strain enhances T cell activation in the presence of ICI. Interestingly, oral administration of EXL01 strain did not induce any change in fecal microbiota diversity or composition, suggesting a direct effect on immune cells in the small intestine. F. prausnitzii strain EXL01 will be evaluated as an adjuvant to ICI in multiple cancers in the near future.


Asunto(s)
Faecalibacterium prausnitzii , Microbioma Gastrointestinal , Inhibidores de Puntos de Control Inmunológico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Animales , Humanos , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Faecalibacterium prausnitzii/efectos de los fármacos , Femenino , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/patología , Heces/microbiología , Masculino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Ratones Endogámicos C57BL
20.
Adv Protein Chem Struct Biol ; 141: 495-538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960484

RESUMEN

The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-ß-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.


Asunto(s)
Microbioma Gastrointestinal , Metaloproteínas , Especies Reactivas de Oxígeno , Xenobióticos , Xenobióticos/metabolismo , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...