Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.665
Filtrar
1.
Cell Biochem Funct ; 42(5): e4085, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951992

RESUMEN

This review rigorously investigates the early cerebral changes associated with Alzheimer's disease, which manifest long before clinical symptoms arise. It presents evidence that the dysregulation of calcium (Ca2+) homeostasis, along with mitochondrial dysfunction and aberrant autophagic processes, may drive the disease's progression during its asymptomatic, preclinical stage. Understanding the intricate molecular interplay that unfolds during this critical period offers a window into identifying novel therapeutic targets, thereby advancing the treatment of neurodegenerative disorders. The review delves into both established and emerging insights into the molecular alterations precipitated by the disruption of Ca2+ balance, setting the stage for cognitive decline and neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Calcio , Mitocondrias , Mitofagia , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Calcio/metabolismo , Animales , Hemostasis , Homeostasis
2.
J Clin Invest ; 134(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949024

RESUMEN

Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.


Asunto(s)
Cilios , Enfermedades Renales Quísticas , Enfermedad de Leigh , Mitocondrias , Pez Cebra , Humanos , Pez Cebra/metabolismo , Pez Cebra/genética , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Cilios/metabolismo , Cilios/patología , Cilios/genética , Animales , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Retina/metabolismo , Retina/patología , Retina/anomalías , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Anomalías del Ojo/metabolismo , Ratones , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Cerebelo/metabolismo , Cerebelo/patología , Cerebelo/anomalías , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Masculino
3.
World J Gastroenterol ; 30(23): 2934-2946, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38946875

RESUMEN

In this editorial, we comment on an article titled "Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases", which was published in a recent issue of the World Journal of Gastroenterology. We focused on the statement that "autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal cells". With advancing research, autophagy, and particularly the pivotal role of the macroautophagy in maintaining cellular equilibrium and stress response in the gastrointestinal system, has garnered extensive study. However, the significance of mitophagy, a unique selective autophagy pathway with ubiquitin-dependent and independent variants, should not be overlooked. In recent decades, mitophagy has been shown to be closely related to the occurrence and development of gastrointestinal diseases, especially inflammatory bowel disease, gastric cancer, and colorectal cancer. The interplay between mitophagy and mitochondrial quality control is crucial for elucidating disease mechanisms, as well as for the development of novel treatment strategies. Exploring the pathogenesis behind gastrointestinal diseases and providing individualized and efficient treatment for patients are subjects we have been exploring. This article reviews the potential mechanism of mitophagy in gastrointestinal diseases with the hope of providing new ideas for diagnosis and treatment.


Asunto(s)
Autofagia , Enfermedades Gastrointestinales , Mitocondrias , Mitofagia , Humanos , Autofagia/fisiología , Enfermedades Gastrointestinales/patología , Enfermedades Gastrointestinales/metabolismo , Enfermedades Gastrointestinales/fisiopatología , Mitocondrias/metabolismo , Mitocondrias/patología , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/metabolismo , Animales
4.
Clin Exp Rheumatol ; 42(6): 1215-1223, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38966946

RESUMEN

OBJECTIVES: The pathogenesis of fibromyalgia (FM), characterised by chronic widespread pain and fatigue, remains notoriously elusive, hampering attempts to develop disease modifying treatments. Mitochondria are the headquarters of cellular energy metabolism, and their malfunction has been proposed to contribute to both FM and chronic fatigue. Thus, the aim of the current pilot study, was to detect structural changes in mitochondria of peripheral blood mononuclear cells (PBMCs) of FM patients, using transmission electron microscopy (TEM). METHODS: To detect structural mitochondrial alterations in FM, we analysed PBMCs from seven patients and seven healthy controls, using TEM. Patients were recruited from a specialised Fibromyalgia Clinic at a tertiary medical centre. After providing informed consent, participants completed questionnaires including the widespread pain index (WPI), symptoms severity score (SSS), fibromyalgia impact questionnaire (FIQ), beck depression inventory (BDI), and visual analogue scale (VAS), to verify a diagnosis of FM according to ACR criteria. Subsequently, blood samples were drawn and PBMCs were collected for EM analysis. RESULTS: TEM analysis of PBMCs showed several distinct mitochondrial cristae patterns, including total loss of cristae in FM patients. The number of mitochondria with intact cristae morphology was reduced in FM patients and the percentage of mitochondria that completely lacked cristae was increased. These results correlated with the WPI severity. Moreover, in the FM patient samples we observed a high percentage of cells containing electron dense aggregates, which are possibly ribosome aggregates. Cristae loss and possible ribosome aggregation were intercorrelated, and thus may represent reactions to a shared cellular stress condition. The changes in mitochondrial morphology suggest that mitochondrial dysfunction, resulting in inefficient oxidative phosphorylation and ATP production, metabolic and redox disorders, and increased reactive oxygen species (ROS) levels, may play a pathogenetic role in FM. CONCLUSIONS: We describe novel morphological changes in mitochondria of FM patients, including loss of mitochondrial cristae. While these observations cannot determine whether the changes are pathogenetic or represent an epiphenomenon, they highlight the possibility that mitochondrial malfunction may play a causative role in the cascade of events leading to chronic pain and fatigue in FM. Moreover, the results offer the possibility of utilising changes in mitochondrial morphology as an objective biomarker in FM. Further understanding the connection between FM and dysfunction of mitochondria physiology, may assist in developing both novel diagnostic tools as well as specific treatments for FM, such as approaches to improve/strengthen mitochondria function.


Asunto(s)
Fibromialgia , Mitocondrias , Humanos , Fibromialgia/patología , Fibromialgia/fisiopatología , Proyectos Piloto , Mitocondrias/ultraestructura , Mitocondrias/patología , Femenino , Persona de Mediana Edad , Adulto , Estudios de Casos y Controles , Masculino , Microscopía Electrónica de Transmisión , Leucocitos Mononucleares/ultraestructura , Leucocitos Mononucleares/patología , Índice de Severidad de la Enfermedad , Dimensión del Dolor
5.
Cancer Res ; 84(14): 2297-2312, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005053

RESUMEN

Metabolic reprogramming is a hallmark of cancer and is crucial for cancer progression, making it an attractive therapeutic target. Understanding the role of metabolic reprogramming in cancer initiation could help identify prevention strategies. To address this, we investigated metabolism during acinar-to-ductal metaplasia (ADM), the first step of pancreatic carcinogenesis. Glycolytic markers were elevated in ADM lesions compared with normal tissue from human samples. Comprehensive metabolic assessment in three mouse models with pancreas-specific activation of KRAS, PI3K, or MEK1 using Seahorse measurements, nuclear magnetic resonance metabolome analysis, mass spectrometry, isotope tracing, and RNA sequencing analysis revealed a switch from oxidative phosphorylation to glycolysis in ADM. Blocking the metabolic switch attenuated ADM formation. Furthermore, mitochondrial metabolism was required for de novo synthesis of serine and glutathione (GSH) but not for ATP production. MYC mediated the increase in GSH intermediates in ADM, and inhibition of GSH synthesis suppressed ADM development. This study thus identifies metabolic changes and vulnerabilities in the early stages of pancreatic carcinogenesis. Significance: Metabolic reprogramming from oxidative phosphorylation to glycolysis mediated by MYC plays a crucial role in the development of pancreatic cancer, revealing a mechanism driving tumorigenesis and potential therapeutic targets. See related commentary by Storz, p. 2225.


Asunto(s)
Metaplasia , Neoplasias Pancreáticas , Animales , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Ratones , Metaplasia/metabolismo , Metaplasia/patología , Glucólisis , Carcinogénesis/metabolismo , Células Acinares/metabolismo , Células Acinares/patología , Fosforilación Oxidativa , Glutatión/metabolismo , Reprogramación Celular , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Reprogramación Metabólica
6.
Toxicology ; 506: 153877, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969275

RESUMEN

Cetylpyridinium chloride (CPC) is a quaternary ammonium compound used widely in health and personal care products. Meanwhile, due to its increasing use, its potential adverse health effects are emerging as a topic of public concern. In this study, we first administered CPC by pharyngeal aspiration to determine the survival level (the maximum concentration at which no death is observed) and then administered CPC to mice repeatedly for 28 days using the survival level as the highest concentration. CPC increased the total number of pulmonary cells secreting pro- and anti-inflammatory cytokines and chemokines. Infiltration of inflammatory cells, production of foamy alveolar macrophages, and chronic inflammatory lesions were found in the lung tissue of male and female mice exposed to the highest dose of CPC. We also investigated the toxicity mechanism using BEAS-2B cells isolated from normal human bronchial epithelium. At 6 h after exposure to CPC, the cells underwent non-apoptotic cell death, especially at concentrations greater than 2 µg/mL. The expression of the transferrin receptor was remarkably enhanced, and the expression of proteins that contribute to intracellular iron storage was inhibited. The expression of both mitochondrial SOD and catalase increased with CPC concentration, and PARP protein was cleaved, suggesting possible DNA damage. In addition, the internal structure of mitochondria was disrupted, and fusion between damaged organelles was observed in the cytoplasm. Most importantly, lamellar body-like structures and autophagosome-like vacuoles were found in CPC-treated cells, with enhanced expression of ABCA3 protein, a marker for lamellar body, and a docking score between ABCA3 protein and CPC was considered to be approximately -6.8969 kcal/mol. From these results, we propose that mitochondrial damage and iron depletion may contribute to CPC-induced non-apoptotic cell death and that pulmonary accumulation of cell debris may be closely associated with the inflammatory response. Furthermore, we hypothesize that the formation of lamellar body-like structures may be a trigger for CPC-induced cell death.


Asunto(s)
Muerte Celular , Cetilpiridinio , Cetilpiridinio/toxicidad , Animales , Humanos , Femenino , Masculino , Muerte Celular/efectos de los fármacos , Ratones , Línea Celular , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Mitocondrias/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Inflamación/metabolismo , Relación Dosis-Respuesta a Droga , Citocinas/metabolismo
7.
Biochem Biophys Res Commun ; 727: 150317, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959733

RESUMEN

Abnormalities in osteoclastic generation or activity disrupt bone homeostasis and are highly involved in many pathologic bone-related diseases, including rheumatoid arthritis, osteopetrosis, and osteoporosis. Control of osteoclast-mediated bone resorption is crucial for treating these bone diseases. However, the mechanisms of control of osteoclastogenesis are incompletely understood. In this study, we identified that inosine 5'-monophosphate dehydrogenase type II (Impdh2) positively regulates bone resorption. By histomorphometric analysis, Impdh2 deletion in mouse myeloid lineage cells (Impdh2LysM-/- mice) showed a high bone mass due to the reduced osteoclast number. qPCR and western blotting results demonstrated that the expression of osteoclast marker genes, including Nfatc1, Ctsk, Calcr, Acp5, Dcstamp, and Atp6v0d2, was significantly decreased in the Impdh2LysM-/- mice. Furthermore, the Impdh inhibitor MPA treatment inhibited osteoclast differentiation and induced Impdh2-cytoophidia formation. The ability of osteoclast differentiation was recovered after MPA deprivation. Interestingly, genome-wide analysis revealed that the osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation, were impaired in the Impdh2LysM-/- mice. Moreover, the deletion of Impdh2 alleviated ovariectomy-induced bone loss. In conclusion, our findings revealed a previously unrecognized function of Impdh2, suggesting that Impdh2-mediated mechanisms represent therapeutic targets for osteolytic diseases.


Asunto(s)
IMP Deshidrogenasa , Mitocondrias , Osteoclastos , Osteogénesis , Osteoporosis , Ovariectomía , Fosforilación Oxidativa , Animales , Osteoporosis/metabolismo , Osteoporosis/etiología , Osteoporosis/genética , Osteoporosis/patología , Ratones , Femenino , Osteoclastos/metabolismo , Osteoclastos/patología , Mitocondrias/metabolismo , Mitocondrias/patología , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/deficiencia , Ratones Noqueados , Ratones Endogámicos C57BL , Diferenciación Celular , Resorción Ósea/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Resorción Ósea/etiología
8.
Bone Res ; 12(1): 41, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019845

RESUMEN

Mechanical overloading and aging are two essential factors for osteoarthritis (OA) development. Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte biology, but their roles and the associated mechanisms in mechanical stress-associated chondrocyte senescence and OA have not been elucidated. Herein, we found that PDZ domain containing 1 (PDZK1), one of the PDZ proteins, which belongs to the Na+/H+ Exchanger (NHE) regulatory factor family, is a key factor in biomechanically induced mitochondrial dysfunction and chondrocyte senescence during OA progression. PDZK1 is reduced by mechanical overload, and is diminished in the articular cartilage of OA patients, aged mice and OA mice. Pdzk1 knockout in chondrocytes exacerbates mechanical overload-induced cartilage degeneration, whereas intraarticular injection of adeno-associated virus-expressing PDZK1 had a therapeutic effect. Moreover, PDZK1 loss impaired chondrocyte mitochondrial function with accumulated damaged mitochondria, decreased mitochondrion DNA (mtDNA) content and increased reactive oxygen species (ROS) production. PDZK1 supplementation or mitoubiquinone (MitoQ) application alleviated chondrocyte senescence and cartilage degeneration and significantly protected chondrocyte mitochondrial functions. MRNA sequencing in articular cartilage from Pdzk1 knockout mice and controls showed that PDZK1 deficiency in chondrocytes interfered with mitochondrial function through inhibiting Hmgcs2 by increasing its ubiquitination. Our results suggested that PDZK1 deficiency plays a crucial role in mediating excessive mechanical load-induced chondrocyte senescence and is associated with mitochondrial dysfunction. PDZK1 overexpression or preservation of mitochondrial functions by MitoQ might present a new therapeutic approach for mechanical overload-induced OA.


Asunto(s)
Senescencia Celular , Condrocitos , Ratones Noqueados , Mitocondrias , Osteoartritis , Animales , Condrocitos/metabolismo , Condrocitos/patología , Osteoartritis/patología , Osteoartritis/metabolismo , Osteoartritis/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Senescencia Celular/efectos de los fármacos , Humanos , Ratones , Masculino , Ratones Endogámicos C57BL , Estrés Mecánico , Cartílago Articular/patología , Cartílago Articular/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Sci Rep ; 14(1): 13789, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877095

RESUMEN

Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.


Asunto(s)
ADN Mitocondrial , Heteroplasmia , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Humanos , ADN Mitocondrial/genética , Heteroplasmia/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología
10.
Arch Dermatol Res ; 316(7): 412, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878082

RESUMEN

Keloid scars and folliculitis keloidalis nuchae (FKN) are benign fibroproliferative dermal lesions of unknown aetiology and ill-defined treatment, which typically present in genetically susceptible individuals. Their pathognomonic hallmarks include local aggressive invasive behaviour plus high recurrence post-therapy. In view of this, we investigated proliferative and key parameters of bioenergetic cellular characteristics of site-specific keloid-derived fibroblasts (intra(centre)- and peri(margin)-lesional) and FKN compared to normal skin and normal flat non-hypertrophic scar fibroblasts as negative controls.The results showed statistically significant (P < 0.01) and variable growth dynamics with increased proliferation and migration in keloid fibroblasts, while FKN fibroblasts showed a significant (P < 0.001) increase in proliferation but similar migration profile to controls. A statistically significant metabolic switch towards aerobic glycolysis in the fibroblasts from the disease conditions was noted. Furthermore, an increase in basal glycolysis with a concomitant increase in the cellular maximum glycolytic capacity was also demonstrated in perilesional keloid and FKN fibroblasts (P < 0.05). Mitochondrial function parameters showed increased oxidative phosphorylation in the disease conditions (P < 0.05) indicating functional mitochondria. These findings further suggest that Keloids and FKN demonstrate a switch to a metabolic phenotype of aerobic glycolysis. Increased glycolytic flux inhibition is a potential mechanistic basis for future therapy.


Asunto(s)
Proliferación Celular , Fibroblastos , Foliculitis , Glucólisis , Queloide , Humanos , Queloide/metabolismo , Queloide/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Foliculitis/metabolismo , Foliculitis/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Células Cultivadas , Fosforilación Oxidativa , Movimiento Celular , Adulto , Piel/patología , Piel/metabolismo , Metabolismo Energético , Femenino , Masculino
11.
PeerJ ; 12: e17551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887622

RESUMEN

Background: Keloid is a chronic proliferative fibrotic disease caused by abnormal fibroblasts proliferation and excessive extracellular matrix (ECM) production. Numerous fibrotic disorders are significantly influenced by ferroptosis, and targeting ferroptosis can effectively mitigate fibrosis development. This study aimed to investigate the role and mechanism of ferroptosis in keloid development. Methods: Keloid tissues from keloid patients and normal skin tissues from healthy controls were collected. Iron content, lipid peroxidation (LPO) level, and the mRNA and protein expression of ferroptosis-related genes including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), transferrin receptor (TFRC), and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined. Mitochondrial morphology was observed using transmission electron microscopy (TEM). Keloid fibroblasts (KFs) were isolated from keloid tissues, and treated with ferroptosis inhibitor ferrostatin-1 (fer-1) or ferroptosis activator erastin. Iron content, ferroptosis-related marker levels, LPO level, mitochondrial membrane potential, ATP content, and mitochondrial morphology in KFs were detected. Furthermore, the protein levels of α-smooth muscle actin (α-SMA), collagen I, and collagen III were measured to investigate whether ferroptosis affect fibrosis in KFs. Results: We found that iron content and LPO level were substantially elevated in keloid tissues and KFs. SLC7A11, GPX4, and Nrf2 were downregulated and TFRC was upregulated in keloid tissues and KFs. Mitochondria in keloid tissues and KFs exhibited ferroptosis-related pathology. Fer-1 treatment reduced iron content, restrained ferroptosis and mitochondrial dysfunction in KFs, Moreover, ferrostatin-1 restrained the protein expression of α-SMA, collagen I, and collagen III in KFs. Whereas erastin treatment showed the opposite results. Conclusion: Ferroptosis exists in keloid. Ferrostatin-1 restrained ECM deposition and fibrosis in keloid through inhibiting ferroptosis, and erastin induced ECM deposition and fibrosis through intensifying ferroptosis.


Asunto(s)
Ciclohexilaminas , Ferroptosis , Fibroblastos , Fibrosis , Queloide , Factor 2 Relacionado con NF-E2 , Fenilendiaminas , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Humanos , Ferroptosis/efectos de los fármacos , Queloide/patología , Queloide/metabolismo , Queloide/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Ciclohexilaminas/farmacología , Fibrosis/metabolismo , Fibrosis/patología , Fenilendiaminas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Masculino , Peroxidación de Lípido/efectos de los fármacos , Femenino , Adulto , Hierro/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Piperazinas/farmacología , Actinas/metabolismo , Actinas/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos
12.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892349

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease affecting mostly women of child-bearing age. Immune dysfunction in SLE results from disrupted apoptosis which lead to an unregulated interferon (IFN) stimulation and the production of autoantibodies, leading to immune complex formation, complement activation, and organ damage. Lupus nephritis (LN) is a common and severe complication of SLE, impacting approximately 30% to 40% of SLE patients. Recent studies have demonstrated an alteration in mitochondrial homeostasis in SLE patients. Mitochondrial dysfunction contributes significantly to SLE pathogenesis by enhancing type 1 IFN production through various pathways involving neutrophils, platelets, and T cells. Defective mitophagy, the process of clearing damaged mitochondria, exacerbates this cycle, leading to increased immune dysregulation. In this review, we aim to detail the physiopathological link between mitochondrial dysfunction and disease activity in SLE. Additionally, we will explore the potential role of mitochondria as biomarkers and therapeutic targets in SLE, with a specific focus on LN. In LN, mitochondrial abnormalities are observed in renal cells, correlating with disease progression and renal fibrosis. Studies exploring cell-free mitochondrial DNA as a biomarker in SLE and LN have shown promising but preliminary results, necessitating further validation and standardization. Therapeutically targeting mitochondrial dysfunction in SLE, using drugs like metformin or mTOR inhibitors, shows potential in modulating immune responses and improving clinical outcomes. The interplay between mitochondria, immune dysregulation, and renal involvement in SLE and LN underscores the need for comprehensive research and innovative therapeutic strategies. Understanding mitochondrial dynamics and their impact on immune responses offers promising avenues for developing personalized treatments and non-invasive biomarkers, ultimately improving outcomes for LN patients.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Mitocondrias , Humanos , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Nefritis Lúpica/inmunología , Nefritis Lúpica/etiología , Mitocondrias/metabolismo , Mitocondrias/patología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Lupus Eritematoso Sistémico/inmunología , ADN Mitocondrial/metabolismo , Animales , Biomarcadores , Mitofagia
13.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892357

RESUMEN

Currently, there is an increase in the aging of the population, which represents a risk factor for many diseases, including sarcopenia. Sarcopenia involves progressive loss of mass, strength, and function of the skeletal muscle. Some mechanisms include alterations in muscle structure, reduced regenerative capacity, oxidative stress, mitochondrial dysfunction, and inflammation. The zebrafish has emerged as a new model for studying skeletal muscle aging because of its numerous advantages, including histological and molecular similarity to human skeletal muscle. In this study, we used fish of 2, 10, 30, and 60 months of age. The older fish showed a higher frailty index with a value of 0.250 ± 0.000 because of reduced locomotor activity and alterations in biometric measurements. We observed changes in muscle structure with a decreased number of myocytes (0.031 myocytes/µm2 ± 0.004 at 60 months) and an increase in collagen with aging up to 15% ± 1.639 in the 60-month group, corresponding to alterations in the synthesis, degradation, and differentiation pathways. These changes were accompanied by mitochondrial alterations, such as a nearly 50% reduction in the number of intermyofibrillar mitochondria, 100% mitochondrial damage, and reduced mitochondrial dynamics. Overall, we demonstrated a similarity in the aging processes of muscle aging between zebrafish and mammals.


Asunto(s)
Envejecimiento , Fragilidad , Músculo Esquelético , Sarcopenia , Pez Cebra , Sarcopenia/metabolismo , Sarcopenia/patología , Animales , Humanos , Envejecimiento/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Fragilidad/metabolismo , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Mitocondrias/patología
14.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928291

RESUMEN

The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.


Asunto(s)
Envejecimiento , Senescencia Celular , Epigénesis Genética , Riñón , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/etiología , Envejecimiento/patología , Riñón/patología , Riñón/metabolismo , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Autofagia
15.
Acta Neuropathol Commun ; 12(1): 90, 2024 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851733

RESUMEN

Mitochondrial dysfunctions are key features of Alzheimer's disease (AD). The occurrence of these disturbances in the peripheral cells of AD patients and their potential correlation with disease progression are underinvestigated. We studied mitochondrial structure, function and mitophagy in fibroblasts from healthy volunteers and AD patients at the prodromal (AD-MCI) or demented (AD-D) stages. We carried out correlation studies with clinical cognitive scores, namely, (i) Mini-Mental State Examination (MMSE) and (ii) Dementia Rating-Scale Sum of Boxes (CDR-SOB), and with (iii) amyloid beta (Aß) plaque burden (PiB-PET imaging) and (iv) the accumulation of peripheral amyloid precursor protein C-terminal fragments (APP-CTFs). We revealed alterations in mitochondrial structure as well as specific mitochondrial dysfunction signatures in AD-MCI and AD-D fibroblasts and revealed that defective mitophagy and autophagy are linked to impaired lysosomal activity in AD-D fibroblasts. We reported significant correlations of a subset of these dysfunctions with cognitive decline, AD-related clinical hallmarks and peripheral APP-CTFs accumulation. This study emphasizes the potential use of peripheral cells for investigating AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer , Fibroblastos , Mitocondrias , Mitofagia , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Fibroblastos/patología , Fibroblastos/metabolismo , Anciano , Femenino , Mitocondrias/patología , Mitocondrias/metabolismo , Masculino , Mitofagia/fisiología , Persona de Mediana Edad , Anciano de 80 o más Años , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Autofagia/fisiología
16.
J Pediatr Hematol Oncol ; 46(5): e338-e347, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857202

RESUMEN

Primary mitochondrial disorders (PMDs) are known for their pleiotropic manifestations in humans, affecting almost any organ or system at any time. Hematologic manifestations, such as cytopenias and sideroblastic anemia, occur in 10% to 30% of patients with confirmed PMDs. These can be the initial presenting features or complications that develop over time. Surveillance for these manifestations allows for prompt identification and treatment. This article provides an overview of the pathophysiology underpinning the hematologic effects of mitochondrial dysfunction, discussing the 3 key roles of the mitochondria in hematopoiesis: providing energy for cell differentiation and function, synthesizing heme, and generating iron-sulfur clusters. Subsequently, the diagnosis and management of mitochondrial disorders are discussed, focusing on hematologic manifestations and the specific conditions commonly associated with them. Through this, we aimed to provide a concise point of reference for those considering a mitochondrial cause for a patient's hematologic abnormality, or for those considering a hematologic manifestation in a patient with known or suspected mitochondrial disease.


Asunto(s)
Enfermedades Hematológicas , Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/complicaciones , Enfermedades Hematológicas/sangre , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/patología , Mitocondrias/patología , Hematopoyesis , Anemia Sideroblástica/diagnóstico , Anemia Sideroblástica/terapia
17.
Exp Cell Res ; 440(1): 114137, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897410

RESUMEN

Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.


Asunto(s)
Glaucoma , Mitocondrias , NAD , Malla Trabecular , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Malla Trabecular/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/tratamiento farmacológico , NAD/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Presión Intraocular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa 1/genética , Línea Celular , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Dexametasona/farmacología , Células Cultivadas
18.
Nature ; 630(8017): 720-727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839949

RESUMEN

Spermatozoa harbour a complex and environment-sensitive pool of small non-coding RNAs (sncRNAs)1, which influences offspring development and adult phenotypes1-7. Whether spermatozoa in the epididymis are directly susceptible to environmental cues is not fully understood8. Here we used two distinct paradigms of preconception acute high-fat diet to dissect epididymal versus testicular contributions to the sperm sncRNA pool and offspring health. We show that epididymal spermatozoa, but not developing germ cells, are sensitive to the environment and identify mitochondrial tRNAs (mt-tRNAs) and their fragments (mt-tsRNAs) as sperm-borne factors. In humans, mt-tsRNAs in spermatozoa correlate with body mass index, and paternal overweight at conception doubles offspring obesity risk and compromises metabolic health. Sperm sncRNA sequencing of mice mutant for genes involved in mitochondrial function, and metabolic phenotyping of their wild-type offspring, suggest that the upregulation of mt-tsRNAs is downstream of mitochondrial dysfunction. Single-embryo transcriptomics of genetically hybrid two-cell embryos demonstrated sperm-to-oocyte transfer of mt-tRNAs at fertilization and suggested their involvement in the control of early-embryo transcription. Our study supports the importance of paternal health at conception for offspring metabolism, shows that mt-tRNAs are diet-induced and sperm-borne and demonstrates, in a physiological setting, father-to-offspring transfer of sperm mitochondrial RNAs at fertilization.


Asunto(s)
Dieta Alta en Grasa , Epigénesis Genética , Mitocondrias , ARN Mitocondrial , Espermatozoides , Animales , Femenino , Humanos , Masculino , Ratones , Índice de Masa Corporal , Dieta Alta en Grasa/efectos adversos , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Epidídimo/citología , Epigénesis Genética/genética , Fertilización/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Obesidad/genética , Obesidad/metabolismo , Obesidad/etiología , Oocitos/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Herencia Paterna/genética , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Espermatozoides/metabolismo , Testículo/citología , Transcripción Genética
19.
Mol Biomed ; 5(1): 24, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937317

RESUMEN

Chronic kidney disease (CKD) poses a significant global health dilemma, emerging from complex causes. Although our prior research has indicated that a deficiency in Reticulon-3 (RTN3) accelerates renal disease progression, a thorough examination of RTN3 on kidney function and pathology remains underexplored. To address this critical need, we generated Rtn3-null mice to study the consequences of RTN3 protein deficiency on CKD. Single-cell transcriptomic analyses were performed on 47,885 cells from the renal cortex of both healthy and Rtn3-null mice, enabling us to compare spatial architectures and expression profiles across 14 distinct cell types. Our analysis revealed that RTN3 deficiency leads to significant alterations in the spatial organization and gene expression profiles of renal cells, reflecting CKD pathology. Specifically, RTN3 deficiency was associated with Lars2 overexpression, which in turn caused mitochondrial dysfunction and increased reactive oxygen species levels. This shift induced a transition in renal epithelial cells from a functional state to a fibrogenic state, thus promoting renal fibrosis. Additionally, RTN3 deficiency was found to drive the endothelial-to-mesenchymal transition process and disrupt cell-cell communication, further exacerbating renal fibrosis. Immunohistochemistry and Western-Blot techniques were used to validate these observations, reinforcing the critical role of RTN3 in CKD pathogenesis. The deficiency of RTN3 protein in CKD leads to profound changes in cellular architecture and molecular profiles. Our work seeks to elevate the understanding of RTN3's role in CKD's narrative and position it as a promising therapeutic contender.


Asunto(s)
Progresión de la Enfermedad , Fibrosis , Perfilación de la Expresión Génica , Insuficiencia Renal Crónica , Análisis de la Célula Individual , Animales , Ratones , Fibrosis/patología , Fibrosis/metabolismo , Fibrosis/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Riñón/patología , Riñón/metabolismo , Transcriptoma , Especies Reactivas de Oxígeno/metabolismo , Transición Epitelial-Mesenquimal/genética , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética
20.
Pharmacol Res ; 206: 107258, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909638

RESUMEN

Several cardiovascular illnesses are associated with aberrant activation of cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis, and macrophage polarisation as hallmarks contributing to vascular damage and abnormal cardiac function. Meanwhile, these three novel forms of cellular dysfunction are closely related to mitochondrial homeostasis. Mitochondria are the main organelles that supply energy and maintain cellular homeostasis. Mitochondrial stability is maintained through a series of regulatory pathways, such as mitochondrial fission, mitochondrial fusion and mitophagy. Studies have shown that mitochondrial dysfunction (e.g., impaired mitochondrial dynamics and mitophagy) promotes ROS production, leading to oxidative stress, which induces cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis and macrophage M1 phenotypic polarisation. Therefore, an in-depth knowledge of the dynamic regulation of mitochondria during cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis and macrophage polarisation is necessary to understand cardiovascular disease development. This paper systematically summarises the impact of changes in mitochondrial dynamics and mitophagy on regulating novel cellular dysfunctions and macrophage polarisation to promote an in-depth understanding of the pathogenesis of cardiovascular diseases and provide corresponding theoretical references for treating cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Macrófagos , Dinámicas Mitocondriales , Mitofagia , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/inmunología , Macrófagos/metabolismo , Animales , Apoptosis , Mitocondrias/metabolismo , Mitocondrias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...