Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.720
Filtrar
1.
Cells ; 13(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39195284

RESUMEN

The AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours. Despite the frequent occurrence of AurkA/TPX2 co-overexpression in cancer, the investigation of their involvement in tumorigenesis and cancer therapy resistance mostly arises from studies focusing only on one at the time. Here, we review the existing literature and discuss the mitotic phenotypes described under conditions of AurkA, TPX2, or AurkA/TPX2 overexpression, to build a picture that may help clarify their oncogenic potential through the induction of chromosome instability. We highlight the relevance of the AurkA/TPX2 complex as an oncogenic unit, based on which we discuss recent strategies under development that aim at disrupting the complex as a promising therapeutic perspective.


Asunto(s)
Aurora Quinasa A , Proteínas Asociadas a Microtúbulos , Neoplasias , Humanos , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Animales , Mitosis/genética , Aberraciones Cromosómicas , Inestabilidad Cromosómica/genética , Regulación Neoplásica de la Expresión Génica
2.
Front Immunol ; 15: 1409448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015573

RESUMEN

Background and aims: The mitotic catastrophe (MC) pathway plays an important role in hepatocellular carcinoma (HCC) progression and tumor microenvironment (TME) regulation. However, the mechanisms linking MC heterogeneity to immune evasion and treatment response remain unclear. Methods: Based on 94 previously published highly correlated genes for MC, HCC patients' data from the Cancer Genome Atlas (TCGA) and changes in immune signatures and prognostic stratification were studied. Time and spatial-specific differences for MCGs were assessed by single-cell RNA sequencing and spatial transcriptome (ST) analysis. Multiple external databases (GEO, ICGC) were employed to construct an MC-related riskscore model. Results: Identification of two MC-related subtypes in HCC patients from TCGA, with clear differences in immune signatures and prognostic risk stratification. Spatial mapping further associates low MC tumor regions with significant immune escape-related signaling. Nomogram combining MC riskscore and traditional indicators was validated great effect for early prediction of HCC patient outcomes. Conclusion: MC heterogeneity enables immune escape and therapy resistance in HCC. The MC gene signature serves as a reliable prognostic indicator for liver cancer. By revealing clear immune and spatial heterogeneity of HCC, our integrated approach provides contextual therapeutic strategies for optimal clinical decision-making.


Asunto(s)
Carcinoma Hepatocelular , Inmunoterapia , Neoplasias Hepáticas , Mitosis , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/diagnóstico , Pronóstico , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Inmunoterapia/métodos , Mitosis/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Transcriptoma , Perfilación de la Expresión Génica , Nomogramas
3.
Proc Natl Acad Sci U S A ; 121(29): e2404551121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990945

RESUMEN

Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.


Asunto(s)
Movimiento Celular , Amplificación de Genes , Proteínas Proto-Oncogénicas c-myc , Estrés Mecánico , Humanos , Movimiento Celular/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Línea Celular Tumoral , Ratones , Mitosis/genética , Inestabilidad Cromosómica , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
4.
Nucleic Acids Res ; 52(15): 8913-8929, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38953168

RESUMEN

Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the human and pig parasitic nematode Ascaris to characterize the DSBs. Using END-seq, we demonstrate that DSBs are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3'-overhangs before the addition of neotelomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends may be due to the sequestration of the eliminated DNA into micronuclei, preventing neotelomere formation at their ends. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for PDE. Overall, our data indicate that telomere healing of DSBs is specific to the break sites responsible for nematode PDE.


Asunto(s)
Roturas del ADN de Doble Cadena , Telómero , Animales , Telómero/metabolismo , Telómero/genética , Reparación del ADN , Ascaris/genética , Humanos , ADN de Helmintos/genética , Porcinos , Mitosis/genética
5.
Eur J Cell Biol ; 103(3): 151444, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024988

RESUMEN

Piwi proteins and Piwi interacting RNAs, piRNAs, presented in germline cells play a role in transposon silencing during germline development. In contrast, the role of somatic Piwi proteins and piRNAs still remains obscure. Here, we characterize the expression pattern and distribution of piRNAs in human renal cells in terms of their potential role in kidney development. Further, we show that all PIWI genes are expressed at the RNA level, however, only PIWIL1 gene is detected at the protein level by western blotting in healthy and cancerous renal cells. So far, the expression of human Piwil1 protein has only been shown in testes and cancer cells, but not in healthy somatic cell lines. Since we observe only Piwil1 protein, the regulation of other PIWI genes is probably more intricated, and depends on environmental conditions. Next, we demonstrate that downregulation of Piwil1 protein results in a decrease in the rate of cell proliferation, while no change in the level of apoptotic cells is observed. Confocal microscopy analysis reveals that Piwil1 protein is located in both cellular compartments, cytoplasm and nucleus in renal cells. Interestingly, in nucleus region Piwil1 is observed close to the spindle during all phases of mitosis in all tested cell lines. It strongly indicates that Piwil1 protein plays an essential role in proliferation of somatic cells. Moreover, involvement of Piwil1 in cell division could, at least partly, explain invasion and metastasis of many types of cancer cells with upregulation of PIWIL1 gene expression. It also makes Piwil1 protein as a potential target in the anticancer therapy.


Asunto(s)
Proteínas Argonautas , Riñón , Mitosis , ARN de Interacción con Piwi , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proliferación Celular , Riñón/citología , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Mitosis/genética , ARN de Interacción con Piwi/genética , ARN de Interacción con Piwi/metabolismo
6.
Nat Commun ; 15(1): 5611, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965240

RESUMEN

Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.


Asunto(s)
Sistemas CRISPR-Cas , Cromotripsis , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mitosis , Mitosis/genética , Humanos , Reordenamiento Génico , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Micronúcleos con Defecto Cromosómico
7.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39074902

RESUMEN

After whole-genome duplication (WGD), tetraploid cells can undergo multipolar mitosis or pseudo-bipolar mitosis with clustered centrosomes. Kinesins play a crucial role in regulating spindle formation. However, the contribution of kinesin expression levels to the heterogeneity in centrosome clustering observed across different cell lines after WGD remains unclear. We identified two subsets of cell lines: "BP" cells efficiently cluster extra centrosomes for pseudo-bipolar mitosis, and "MP" cells primarily undergo multipolar mitosis after WGD. Diploid MP cells contained higher levels of KIF11 and KIF15 compared with BP cells and showed reduced sensitivity to centrosome clustering induced by KIF11 inhibitors. Moreover, partial inhibition of KIF11 or depletion of KIF15 converted MP cells from multipolar to bipolar mitosis after WGD. Multipolar spindle formation involved microtubules but was independent of kinetochore-microtubule attachment. Silencing KIFC1, but not KIFC3, promoted multipolar mitosis in BP cells, indicating the involvement of specific kinesin-14 family members in counteracting the forces from KIF11/KIF15 after WGD. These findings highlight the collective role of KIF11, KIF15, and KIFC1 in determining the polarity of the mitotic spindle after WGD.


Asunto(s)
Centrosoma , Cinesinas , Mitosis , Huso Acromático , Cinesinas/metabolismo , Cinesinas/genética , Centrosoma/metabolismo , Humanos , Mitosis/genética , Huso Acromático/metabolismo , Duplicación de Gen , Microtúbulos/metabolismo , Línea Celular , Cinetocoros/metabolismo , Genoma Humano
8.
Signal Transduct Target Ther ; 9(1): 181, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992067

RESUMEN

Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.


Asunto(s)
Bortezomib , Proteínas de Ciclo Celular , Mitosis , Complejo de la Endopetidasa Proteasomal , Proteínas Tirosina Quinasas , Piroptosis , Piroptosis/efectos de los fármacos , Humanos , Ratones , Animales , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Mitosis/efectos de los fármacos , Mitosis/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Bortezomib/farmacología , Línea Celular Tumoral , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Inhibidores de Proteasoma/farmacología , Pirimidinas/farmacología , Pirazoles/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Gasderminas , Pirimidinonas
9.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916773

RESUMEN

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Asunto(s)
Forminas , Mitosis , Podocitos , Transcriptoma , Humanos , Mitosis/genética , Podocitos/metabolismo , Podocitos/patología , Transcriptoma/genética , Forminas/genética , Forminas/metabolismo , Muerte Celular/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Mutación , Núcleo Celular/metabolismo , Núcleo Celular/genética , Línea Celular
10.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829899

RESUMEN

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular , Cryptococcus neoformans , Proteínas Mad2 , Huso Acromático , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Huso Acromático/metabolismo , Huso Acromático/genética , Transducción de Señal , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis/genética , Cinetocoros/metabolismo , Segregación Cromosómica/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
11.
Arch Dermatol Res ; 316(5): 195, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775978

RESUMEN

Chronic arsenic exposure is a global health hazard significantly associated with the development of deleterious cutaneous changes and increased keratinocyte cancer risk. Although arsenic exposure is associated with broad-scale cellular and molecular changes, gaps exist in understanding how these changes impact the skin and facilitate malignant transformation. Recently developed epigenetic "clocks" can accurately predict chronological, biological and mitotic age, as well as telomere length, on the basis of tissue DNA methylation state. Deviations of predicted from expected age (epigenetic age dysregulation) have been associated with numerous complex diseases, increased all-cause mortality and higher cancer risk. We investigated the ability of these algorithms to detect molecular changes associated with chronic arsenic exposure in the context of associated skin lesions. To accomplish this, we utilized a multi-algorithmic approach incorporating seven "clocks" (Horvath, Skin&Blood, PhenoAge, PCPhenoAge, GrimAge, DNAmTL and epiTOC2) to analyze peripheral blood of pediatric and adult cohorts of arsenic-exposed (n = 84) and arsenic-naïve (n = 33) individuals, among whom n = 18 were affected by skin lesions. Arsenic-exposed adults with skin lesions exhibited accelerated epigenetic (Skin&Blood: + 7.0 years [95% CI 3.7; 10.2], q = 6.8 × 10-4), biological (PhenoAge: + 5.8 years [95% CI 0.7; 11.0], q = 7.4 × 10-2, p = 2.8 × 10-2) and mitotic age (epiTOC2: + 19.7 annual cell divisions [95% CI 1.8; 37.7], q = 7.4 × 10-2, p = 3.2 × 10-2) compared to healthy arsenic-naïve individuals; and accelerated epigenetic age (Skin&Blood: + 2.8 years [95% CI 0.2; 5.3], q = 2.4 × 10-1, p = 3.4 × 10-2) compared to lesion-free arsenic-exposed individuals. Moreover, lesion-free exposed adults exhibited accelerated Skin&Blood age (+ 4.2 [95% CI 1.3; 7.1], q = 3.8 × 10-2) compared to their arsenic-naïve counterparts. Compared to the pediatric group, arsenic-exposed adults exhibited accelerated epigenetic (+ 3.1 to 4.4 years (95% CI 1.2; 6.4], q = 2.4 × 10-4-3.1 × 10-3), biological (+ 7.4 to 7.8 years [95% CI 3.0; 12.1] q = 1.6 × 10-3-2.8 × 10-3) and mitotic age (+ 50.0 annual cell divisions [95% CI 15.6; 84.5], q = 7.8 × 10-3), as well as shortened telomere length (- 0.23 kilobases [95% CI - 0.13; - 0.33], q = 2.4 × 10-4), across all seven algorithms. We demonstrate that lifetime arsenic exposure and presence of arsenic-associated skin lesions are associated with accelerated epigenetic, biological and mitotic age, and shortened telomere length, reflecting altered immune signaling and genomic regulation. Our findings highlight the usefulness of DNA methylation-based algorithms in identifying deleterious molecular changes associated with chronic exposure to the heavy metal, serving as potential prognosticators of arsenic-induced cutaneous malignancy.


Asunto(s)
Arsénico , Metilación de ADN , Epigénesis Genética , Acortamiento del Telómero , Humanos , Adulto , Arsénico/efectos adversos , Arsénico/toxicidad , Femenino , Metilación de ADN/efectos de los fármacos , Acortamiento del Telómero/efectos de los fármacos , Masculino , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Mitosis/efectos de los fármacos , Mitosis/genética , Piel/patología , Piel/efectos de los fármacos , Enfermedades de la Piel/inducido químicamente , Enfermedades de la Piel/genética , Enfermedades de la Piel/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/patología
12.
Nat Commun ; 15(1): 4211, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760334

RESUMEN

The cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC. We demonstrate that stemTOC's mitotic age proxy increases with the tumor cell-of-origin fraction in each of 15 cancer-types, in precancerous lesions, and in normal tissues exposed to major cancer risk factors. Extensive benchmarking against 6 other mitotic counters shows that stemTOC compares favorably, specially in the preinvasive and normal-tissue contexts. By cross-correlating stemTOC to two clock-like somatic mutational signatures, we confirm the mitotic-like nature of only one of these. Our data points towards DNAm as a promising molecular substrate for detecting mitotic-age increases in normal tissues and precancerous lesions, and hence for developing cancer-risk prediction strategies.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Mitosis , Mutación , Neoplasias , Lesiones Precancerosas , Humanos , Mitosis/genética , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Neoplasias/genética , Neoplasias/patología , Células Madre/metabolismo
13.
Mol Cell Biol ; 44(6): 209-225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779933

RESUMEN

Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.


Asunto(s)
Centrómero , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Proteína Forkhead Box M1 , Cinetocoros , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Cinetocoros/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Centrómero/metabolismo , Segregación Cromosómica/genética , Línea Celular Tumoral , Mitosis/genética , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Transcripción Genética , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Cromatina/metabolismo , Cromatina/genética , Regiones Promotoras Genéticas/genética , Proteínas de Microfilamentos
14.
PLoS Genet ; 20(5): e1011272, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768219

RESUMEN

The position of the nucleus before it divides during mitosis is variable in different budding yeasts. Studies in the pathogenic intron-rich fungus Cryptococcus neoformans reveal that the nucleus moves entirely into the daughter bud before its division. Here, we report functions of a zinc finger motif containing spliceosome protein C. neoformans Slu7 (CnSlu7) in cell cycle progression. The budding yeast and fission yeast homologs of Slu7 have predominant roles for intron 3' splice site definition during pre-mRNA splicing. Using a conditional knockdown strategy, we show CnSlu7 is an essential factor for viability and is required for efficient cell cycle progression with major role during mitosis. Aberrant nuclear migration, including improper positioning of the nucleus as well as the spindle, were frequently observed in cells depleted of CnSlu7. However, cell cycle delays observed due to Slu7 depletion did not activate the Mad2-dependent spindle assembly checkpoint (SAC). Mining of the global transcriptome changes in the Slu7 knockdown strain identified downregulation of transcripts encoding several cell cycle regulators and cytoskeletal factors for nuclear migration, and the splicing of specific introns of these genes was CnSlu7 dependent. To test the importance of splicing activity of CnSlu7 on nuclear migration, we complemented Slu7 knockdown cells with an intron less PAC1 minigene and demonstrated that the nuclear migration defects were significantly rescued. These findings show that CnSlu7 regulates the functions of diverse cell cycle regulators and cytoskeletal components, ensuring timely cell cycle transitions and nuclear division during mitosis.


Asunto(s)
Núcleo Celular , Cryptococcus neoformans , Proteínas Fúngicas , Mitosis , Empalme del ARN , Empalmosomas , Mitosis/genética , Cryptococcus neoformans/genética , Empalme del ARN/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Huso Acromático/metabolismo , Huso Acromático/genética , Regulación Fúngica de la Expresión Génica , Ciclo Celular/genética
15.
Cell Biol Int ; 48(8): 1169-1184, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38818762

RESUMEN

It was imperative to identify latent biomarkers pertinent to malignancies, given the pivotal role targeted molecular therapies play in tumor treatment investigations. This study aimed to assess the validity of HAUS1 as an indicator for survival prognosis and immune responses in prostate adenocarcinoma (PRAD) via single-cell and bulk RNA-sequencing. Related data on HAUS1 expression in PRAD were obtained from online databases, followed by comprehensive analyses to delineate its associations with survival prognosis, implicated pathways, and immune responses. Besides, the expression pattern of HAUS1 in PRAD was also verified in vitro, by using qRT-PCR, Western blot analysis, and immunohistochemistry. We found HAUS1 was downregulated in PRAD compared with normal tissues, as verified in vitro by qRT-PCR, Western blot, and immunohistochemistry (p < 0.05). Single-cell RNA-sequencing analysis indicated that HAUS1 had relatively higher expressions in B cells, Mono/Macro cells, and Endothelial cells compared with other cell types. Cox regression analysis revealed HAUS1 could serve as an independent indicator for the overall survival prognosis of PRAD (p < 0.05). Spearman correlation analyses revealed HAUS1 was closely related to the tumor microenvironment, immune cell infiltration levels, immune checkpoints, and immune cell pathways (p < 0.05). Furthermore, HAUS1 expression was found to be closely related to the immunotherapeutic response of patients receiving clinical intervention (p < 0.05). Collectively, our findings underscored the significant role of HAUS1 in PRAD prognosis and immune response, thereby presenting a novel and promising avenue for investigating the clinical utility of immunotherapy in PRAD.


Asunto(s)
Adenocarcinoma , Mitosis , Neoplasias de la Próstata , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Masculino , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Mitosis/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Análisis de la Célula Individual/métodos , Microambiente Tumoral/inmunología
16.
Nature ; 631(8019): 170-178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768632

RESUMEN

Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.


Asunto(s)
Reprogramación Celular , Epigénesis Genética , Células Germinativas , Técnicas In Vitro , Femenino , Humanos , Masculino , Amnios/citología , Proteínas Morfogenéticas Óseas/metabolismo , Reprogramación Celular/genética , Metilación de ADN/genética , Células Germinativas/metabolismo , Células Germinativas/citología , Sistema de Señalización de MAP Quinasas , Mitosis/genética , Oxigenasas de Función Mixta/deficiencia , Oogénesis/genética , Oogonios/citología , Oogonios/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas/genética , Espermatogénesis/genética , Espermatogonias/citología , Espermatogonias/metabolismo , Regulación del Desarrollo de la Expresión Génica
17.
Trends Genet ; 40(7): 560-563, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789376

RESUMEN

Transcription factor (TF) IIH is a factor involved in transcription, DNA repair, mitosis, and telomere stability. These functions stem from its helicase/ATPase and kinase activities. Recent reports on the structure and function of the transcription machinery, as well as chromosome compaction during mitosis, suggest that TFIIH also influences nucleosome movement, are explored here.


Asunto(s)
Nucleosomas , Factor de Transcripción TFIIH , Nucleosomas/genética , Nucleosomas/metabolismo , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/genética , Humanos , Transcripción Genética , Reparación del ADN/genética , Mitosis/genética , Animales
18.
Nucleic Acids Res ; 52(12): 6830-6849, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38747345

RESUMEN

A-MYB (MYBL1) is a transcription factor with a role in meiosis in spermatocytes. The related B-MYB protein is a key oncogene and a master regulator activating late cell cycle genes. To activate genes, B-MYB forms a complex with MuvB and is recruited indirectly to cell cycle genes homology region (CHR) promoter sites of target genes. Activation through the B-MYB-MuvB (MMB) complex is essential for successful mitosis. Here, we discover that A-MYB has a function in transcriptional regulation of the mitotic cell cycle and can substitute for B-MYB. Knockdown experiments in cells not related to spermatogenesis show that B-MYB loss alone merely delays cell cycle progression. Only dual knockdown of B-MYB and A-MYB causes G2/M cell cycle arrest, endoreduplication, and apoptosis. A-MYB can substitute for B-MYB in binding to MuvB. The resulting A-MYB-MuvB complex activates genes through CHR sites. We find that A-MYB activates the same target genes as B-MYB. Many of the corresponding proteins are central regulators of the cell division cycle. In summary, we demonstrate that A-MYB is an activator of the mitotic cell cycle by activating late cell cycle genes.


Asunto(s)
Proteínas de Ciclo Celular , Proliferación Celular , Transactivadores , Animales , Proliferación Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transactivadores/metabolismo , Transactivadores/genética , Ratones , Humanos , Apoptosis/genética , Regiones Promotoras Genéticas , Mitosis/genética , Masculino , Ciclo Celular/genética , Genes cdc , Activación Transcripcional , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación de la Expresión Génica
19.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731808

RESUMEN

Single-cell RNA sequencing (scRNAseq) is a rapidly advancing field enabling the characterisation of heterogeneous gene expression profiles within a population. The cell cycle phase is a major contributor to gene expression variance between cells and computational analysis tools have been developed to assign cell cycle phases to cells within scRNAseq datasets. Whilst these tools can be extremely useful, all have the drawback that they classify cells as only G1, S or G2/M. Existing discrete cell phase assignment tools are unable to differentiate between G2 and M and continuous-phase-assignment tools are unable to identify a region corresponding specifically to mitosis in a pseudo-timeline for continuous assignment along the cell cycle. In this study, bulk RNA sequencing was used to identify differentially expressed genes between mitotic and interphase cells isolated based on phospho-histone H3 expression using fluorescence-activated cell sorting. These gene lists were used to develop a methodology which can distinguish G2 and M phase cells in scRNAseq datasets. The phase assignment tools present in Seurat were modified to allow for cell cycle phase assignment of all stages of the cell cycle to identify a mitotic-specific cell population.


Asunto(s)
Fase G2 , Mitosis , Mitosis/genética , Humanos , Fase G2/genética , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Histonas/metabolismo , Histonas/genética , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Programas Informáticos
20.
Nat Genet ; 56(6): 1075-1079, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38741016

RESUMEN

Heterosis boosts crop yield; however, harnessing additional progressive heterosis in polyploids is challenging for breeders. We bioengineered a 'mitosis instead of meiosis' (MiMe) system that generates unreduced, clonal gametes in three hybrid tomato genotypes and used it to establish polyploid genome design. Through the hybridization of MiMe hybrids, we generated '4-haplotype' plants that encompassed the complete genetics of their four inbred grandparents, providing a blueprint for exploiting polyploidy in crops.


Asunto(s)
Productos Agrícolas , Genoma de Planta , Vigor Híbrido , Hibridación Genética , Fitomejoramiento , Poliploidía , Solanum lycopersicum , Productos Agrícolas/genética , Solanum lycopersicum/genética , Vigor Híbrido/genética , Fitomejoramiento/métodos , Ingeniería Genética/métodos , Meiosis/genética , Mitosis/genética , Células Germinativas de las Plantas , Células Germinativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...