Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.514
Filtrar
1.
Microbiome ; 12(1): 154, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160636

RESUMEN

BACKGROUND: Carbon monoxide (CO), hypothetically linked to prebiotic biosynthesis and possibly the origin of the life, emerges as a substantive growth substrate for numerous microorganisms. In anoxic environments, the coupling of CO oxidation with hydrogen (H2) production is an essential source of electrons, which can subsequently be utilized by hydrogenotrophic bacteria (e.g., organohalide-respring bacteria). While Dehalococcoides strains assume pivotal roles in the natural turnover of halogenated organics and the bioremediation of chlorinated ethenes, relying on external H2 as their electron donor and acetate as their carbon source, the synergistic dynamics within the anaerobic microbiome have received comparatively less scrutiny. This study delves into the intriguing prospect of CO serving as both the exclusive carbon source and electron donor, thereby supporting the reductive dechlorination of trichloroethene (TCE). RESULTS: The metabolic pathway involved anaerobic CO oxidation, specifically the Wood-Ljungdahl pathway, which produced H2 and acetate as primary metabolic products. In an intricate microbial interplay, these H2 and acetate were subsequently utilized by Dehalococcoides, facilitating the dechlorination of TCE. Notably, Acetobacterium emerged as one of the pivotal collaborators for Dehalococcoides, furnishing not only a crucial carbon source essential for its growth and proliferation but also providing a defense against CO inhibition. CONCLUSIONS: This research expands our understanding of CO's versatility as a microbial energy and carbon source and unveils the intricate syntrophic dynamics underlying reductive dechlorination.


Asunto(s)
Acetatos , Biodegradación Ambiental , Monóxido de Carbono , Carbono , Chloroflexi , Electrones , Halogenación , Hidrógeno , Oxidación-Reducción , Tricloroetileno , Tricloroetileno/metabolismo , Chloroflexi/metabolismo , Hidrógeno/metabolismo , Monóxido de Carbono/metabolismo , Acetatos/metabolismo , Carbono/metabolismo , Microbiota , Redes y Vías Metabólicas , Anaerobiosis , Bacterias/metabolismo , Bacterias/clasificación
2.
FEMS Microbiol Ecol ; 100(9)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39118367

RESUMEN

Thermophilic acetogenic bacteria have attracted attention as promising candidates for biotechnological applications such as syngas fermentation, microbial electrosynthesis, and methanol conversion. Here, we aimed to isolate and characterize novel thermophilic acetogens from diverse environments. Enrichment of heterotrophic and autotrophic acetogens was monitored by 16S rRNA gene-based bacterial community analysis. Seven novel Moorella strains were isolated and characterized by genomic and physiological analyses. Two Moorella humiferrea isolates showed considerable differences during autotrophic growth. The M. humiferrea LNE isolate (DSM 117358) fermented carbon monoxide (CO) to acetate, while the M. humiferrea OCP isolate (DSM 117359) transformed CO to hydrogen and carbon dioxide (H2 + CO2), employing the water-gas shift reaction. Another carboxydotrophic hydrogenogenic Moorella strain was isolated from the covering soil of an active charcoal burning pile and proposed as the type strain (ACPsT) of the novel species Moorella carbonis (DSM 116161T and CCOS 2103T). The remaining four novel strains were affiliated with Moorella thermoacetica and showed, together with the type strain DSM 2955T, the production of small amounts of ethanol from H2 + CO2 in addition to acetate. The physiological analyses of the novel Moorella strains revealed isolate-specific differences that considerably increase the knowledge base on thermophilic acetogens for future applications.


Asunto(s)
Moorella , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Moorella/metabolismo , Moorella/genética , Moorella/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Hidrógeno/metabolismo , Fermentación , Monóxido de Carbono/metabolismo , Microbiología del Suelo , Acetatos/metabolismo , Biocatálisis , ADN Bacteriano/genética
3.
Microb Genom ; 10(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39166974

RESUMEN

Although the production of carbon monoxide (CO) within the human body has been detected, only two CO-utilizing prokaryotes (CO utilizers) have been reported in the human gut. Therefore, the phylogenetic diversity of the human gut CO-utilizing prokaryotes remains unclear. Here, we unveiled more than a thousand representative genomes containing genes for putative nickel-containing CO dehydrogenase (pCODH), an essential enzyme for CO utilization. The taxonomy of genomes encoding pCODH was expanded to include 8 phyla, comprising 82 genera and 248 species. In contrast, putative molybdenum-containing CODH genes were not detected in the human gut microbial genomes. pCODH transcripts were detected in 97.3 % (n=110) of public metatranscriptome datasets derived from healthy human faeces, suggesting the ubiquitous presence of prokaryotes bearing transcriptionally active pCODH genes in the human gut. More than half of the pCODH-encoding genomes contain a set of genes for the autotrophic Wood-Ljungdahl pathway (WLP). However, 79 % of these genomes commonly lack a key gene for the WLP, which encodes the enzyme that synthesizes formate from CO2, suggesting that potential human gut CO-utilizing prokaryotes share a degenerated gene set for WLP. In the other half of the pCODH-encoding genomes, seven genes, including putative genes for flavin adenine dinucleotide-dependent NAD(P) oxidoreductase (FNOR), ABC transporter and Fe-hydrogenase, were found adjacent to the pCODH gene. None of the putative genes associated with CO-oxidizing respiratory machinery, such as energy-converting hydrogenase genes, were found in pCODH-encoding genomes. This suggests that the human gut CO utilization is not for CO removal, but potentially for fixation and/or biosynthesis, consistent with the harmless yet continuous production of CO in the human gut. Our findings reveal the diversity and distribution of prokaryotes with pCODH in the human gut microbiome, suggesting their potential contribution to microbial ecosystems in human gut environments.


Asunto(s)
Aldehído Oxidorreductasas , Bacterias , Monóxido de Carbono , Microbioma Gastrointestinal , Complejos Multienzimáticos , Níquel , Filogenia , Humanos , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Microbioma Gastrointestinal/genética , Níquel/metabolismo , Monóxido de Carbono/metabolismo , Complejos Multienzimáticos/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
4.
J Nanobiotechnology ; 22(1): 416, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014402

RESUMEN

Reactive oxygen species (ROS)-associated anticancer approaches usually suffer from two limitations, i.e., insufficient ROS level and short ROS half-life. Nevertheless, no report has synchronously addressed both concerns yet. Herein, a multichannel actions-enabled nanotherapeutic platform using hollow manganese dioxide (H-MnO2) carriers to load chlorin e6 (Ce6) sonosensitizer and CO donor (e.g., Mn2(CO)10) has been constructed to maximumly elevate ROS level and trigger cascade catalysis to produce CO. Therein, intratumoral H2O2 and ultrasound as endogenous and exogeneous triggers stimulate H-MnO2 and Ce6 to produce •OH and 1O2, respectively. The further cascade reaction between ROS and Mn2(CO)10 proceeds to release CO, converting short-lived ROS into long-lived CO. Contributed by them, such a maximumly-elevated ROS accumulation and long-lived CO release successfully suppresses the progression, recurrence and metastasis of lung cancer with a prolonged survival rate. More significantly, proteomic and genomic investigations uncover that the CO-induced activation of AKT signaling pathway, NRF-2 phosphorylation and HMOX-1 overexpression induce mitochondrial dysfunction to boost anti-tumor consequences. Thus, this cascade catalysis strategy can behave as a general means to enrich ROS and trigger CO release against refractory cancers.


Asunto(s)
Monóxido de Carbono , Neoplasias Pulmonares , Compuestos de Manganeso , Óxidos , Porfirinas , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Humanos , Monóxido de Carbono/farmacología , Monóxido de Carbono/metabolismo , Monóxido de Carbono/química , Animales , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Óxidos/química , Óxidos/farmacología , Ratones , Porfirinas/química , Porfirinas/farmacología , Clorofilidas , Línea Celular Tumoral , Ratones Endogámicos BALB C , Peróxido de Hidrógeno/metabolismo , Ratones Desnudos , Células A549
5.
Nucleic Acids Res ; 52(15): 8849-8860, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38966994

RESUMEN

The MHYT domain, identified over two decades ago for its potential to detect diatomic gases like CO, O2 or NO, has awaited experimental validation as a protein sensory domain. Here, we characterize the MHYT domain-containing transcriptional regulator CoxC, which governs the expression of the cox genes responsible for aerobic CO oxidation in the carboxidotrophic bacterium Afipia carboxidovorans OM5. The C-terminal LytTR-type DNA-binding domain of CoxC binds to an operator region consisting of three direct repeats sequences overlapping the -35 box at the target PcoxB promoter, which is consistent with the role of CoxC as a specific transcriptional repressor of the cox genes. Notably, the N-terminal transmembrane MHYT domain endows CoxC with the ability to sense CO as an effector molecule, as demonstrated by the relief of CoxC-mediated repression and binding to the PcoxB promoter upon CO exposure. Furthermore, copper serves as the essential divalent cation for the interaction of CO with CoxC, thereby confirming previous hypothesis regarding the role of copper in the gas-sensing mechanism of MHYT domains. CoxC represents the prototype of a novel subfamily of single-component LytTR transcriptional regulators, characterized by the fusion of a DNA-binding domain with a membrane-bound MHYT sensor domain.


Asunto(s)
Proteínas Bacterianas , Monóxido de Carbono , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Monóxido de Carbono/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Dominios Proteicos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cobre/metabolismo , Unión Proteica , Sitios de Unión , Transcripción Genética , Regiones Operadoras Genéticas
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167446, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079605

RESUMEN

Carbon monoxide (CO) is a ubiquitously produced endogenous gas in mammalian cells and is involved in stress response being considered as a cytoprotective and homeostatic factor. In the present review, the underlying mechanisms of CO are discussed, in particular CO's impact on cellular metabolism affecting cell fate and function. One of the principal signaling molecules of CO is reactive oxygen species (ROS), particularly hydrogen peroxide, which is mainly generated at the mitochondrial level. Likewise, CO acts on mitochondria modulating oxidative phosphorylation and mitochondria quality control, namely mitochondrial biogenesis (mitobiogenesis) and mitophagy. Other metabolic pathways are also involved in CO's mode of action such as glycolysis and pentose phosphate pathway. The review ends with some new perspectives on CO Biology research. Carboxyhemoglobin (COHb) formation can also be implicated in the CO mode of action, as well as its potential biological role. Finally, other organelles such as peroxisomes hold the potential to be targeted and modulated by CO.


Asunto(s)
Monóxido de Carbono , Mitocondrias , Especies Reactivas de Oxígeno , Humanos , Monóxido de Carbono/metabolismo , Mitocondrias/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Mitofagia , Metabolismo Energético , Fosforilación Oxidativa , Carboxihemoglobina/metabolismo , Peroxisomas/metabolismo
7.
J Inorg Biochem ; 259: 112656, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38986290

RESUMEN

The transcription factor CooA is a CRP/FNR (cAMP receptor protein/ fumarate and nitrate reductase) superfamily protein that uses heme to sense carbon monoxide (CO). Allosteric activation of CooA in response to CO binding is currently described as a series of discrete structural changes, without much consideration for the potential role of protein dynamics in the process of DNA binding. This work uses site-directed spin-label electron paramagnetic resonance spectroscopy (SDSL-EPR) to probe slow timescale (µs-ms) conformational dynamics of CooA with a redox-stable nitroxide spin label, and IR spectroscopy to probe the environment at the CO-bound heme. A series of cysteine substitution variants were created to selectively label CooA in key functional regions, the heme-binding domain, the 4/5-loop, the hinge region, and the DNA binding domain. The EPR spectra of labeled CooA variants are compared across three functional states: Fe(III) "locked off", Fe(II)-CO "on", and Fe(II)-CO bound to DNA. We observe changes in the multicomponent EPR spectra at each location; most notably in the hinge region and DNA binding domain, broadening the description of the CooA allosteric mechanism to include the role of protein dynamics in DNA binding. DNA-dependent changes in IR vibrational frequency and band broadening further suggest that there is conformational heterogeneity in the active WT protein and that DNA binding alters the environment of the heme-bound CO.


Asunto(s)
Proteínas Bacterianas , Monóxido de Carbono , Espectroscopía de Resonancia por Spin del Electrón , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN/química , ADN/metabolismo , Hemo/química , Hemo/metabolismo , Unión Proteica , Conformación Proteica , Regulación Alostérica , Hemoproteínas , Transactivadores
8.
J Inorg Biochem ; 259: 112660, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39002177

RESUMEN

Resonance Raman spectroscopy has been performed on a set of cytochrome P450 BM3 heme domains in which mutation of the highly conserved Phe393 induces significant variation in heme iron reduction potential. In previous work [Chen, Z., Ost, T.W.B., and Schelvis, J.P.M. (2004) Biochemistry 43, 1798-1808], a correlation between heme vinyl conformation and the heme iron reduction potential indicated a steric control by the protein over the distribution of electron density in the reduced heme cofactor. The current study aims to monitor changes in electron density on the ferrous heme cofactor following CO binding. In addition, ferric-NO complexes have been studied to investigate potential changes to the proximal Cys400 thiolate. We find that binding of CO to the ferrous heme domains results in a reorientation of the vinyl groups to a largely out-of-plane conformation, the extent of which correlates with the size of the residue at position 393. We conclude that FeII dπ back bonding to the CO ligand largely takes away the need for conjugation of the vinyl groups with the porphyrin ring to accommodate FeII dπ back bonding to the porphyrin ligand. The ferrous-CO and ferric-NO data are consistent with a small decrease in σ-electron donation from the proximal Cys400 thiolate in the F393A mutant and, to a lesser extent, the F393H mutant, potentially due to a small increase in hydrogen bonding to the proximal ligand. Phe393 seems strategically placed to preserve robust σ-electron donation to the heme iron and to fine-tune its electron density by limiting vinyl group rotation.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hemo , Hemo/química , Hemo/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/química , Monóxido de Carbono/metabolismo , Monóxido de Carbono/química , Espectrometría Raman , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , NADPH-Ferrihemoproteína Reductasa/química , Unión Proteica , Mutación , Óxido Nítrico/metabolismo , Óxido Nítrico/química
9.
Harm Reduct J ; 21(1): 142, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075535

RESUMEN

BACKGROUND: Electronic nicotine delivery systems (ENDS) offer a promising approach to tobacco harm reduction, but many people use both ENDS and combustible cigarettes ("dual use"), which undermines potential risk reduction. To explore the role of ENDS nicotine delivery in promoting switching to ENDS, we conducted a study in which people who smoked cigarettes were offered an ENDS that had previously been shown to replicate the rapid nicotine pharmacokinetics of combustible cigarettes (BIDI® Stick). METHODS: Twenty-five cigarette smoking adults, not seeking smoking cessation treatment, but open to using ENDS as a cigarette substitute, were provided with a 12-week supply of BIDI® Stick in tobacco or menthol flavors, during a study that included seven biweekly sessions and a 6-month follow-up. Daily diaries assessed ENDS and cigarette use, and exhaled carbon monoxide (eCO) served as an objective marker of smoke intake. Subjective ratings were collected to assess the rewarding properties of ENDS and combustible cigarettes, and indices of nicotine dependence. RESULTS: Over 12 weeks, ENDS use increased to an average of 15.8 occasions per day (SD = 20.2) and self-reported cigarette consumption decreased by 82% from 16.7 cigarettes/day (SD = 6.0) at baseline to 3.0 cigarettes/day (SD = 4.1) at week 12. The eCO level decreased by 27% from an average of 20.0 ppm (SD = 9.8) at baseline to 14.5 ppm (SD = 9.9) at week 12. Four of 25 participants completely switched to ENDS and were smoking abstinent during weeks 9-12. At 6 months one participant was confirmed to be abstinent. Ratings of subjective reward for the ENDS were very similar to those of participants' usual brands of cigarettes. Dependence level was lower for the ENDS than for combustible cigarettes. CONCLUSIONS: In this study, the ENDS effectively replicated the subjective rewarding effects of participants' usual brands of cigarettes and led to a substantial reduction in reported cigarettes/day. Exhaled CO showed less of a decrease, possibly due to compensatory smoking behavior and/or the timing of eCO measurements that might not have reflected smoke intake throughout the day. The relatively low rate of sustained smoking abstinence at 6 months suggests that additional approaches continue to be needed for achieving higher rates of complete switching. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT05855343.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Reducción del Consumo de Tabaco , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Nicotina/administración & dosificación , Reducción del Consumo de Tabaco/métodos , Monóxido de Carbono/análisis , Monóxido de Carbono/metabolismo , Productos de Tabaco , Adulto Joven , Cese del Hábito de Fumar/métodos , Reducción del Daño , Pruebas Respiratorias , Vapeo
11.
Anal Chem ; 96(29): 12030-12039, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39001809

RESUMEN

Marine microbes drive pivotal transformations in planetary-scale elemental cycles and have crucial impacts on global biogeochemical processes. Metaproteomics is a powerful tool for assessing the metabolic diversity and function of marine microbes. However, hundreds of liters of seawater are required for normal metaproteomic analysis due to the sparsity of microbial populations in seawater, which poses a substantial challenge to the widespread application of marine metaproteomics, particularly for deep seawater. Herein, a sensitive marine metaproteomics workflow, named sensitive marine metaproteome analysis (SMMP), was developed by integrating polycarbonate filter-assisted microbial enrichment, solid-phase alkylation-based anti-interference sample preparation, and narrow-bore nanoLC column for trace peptide separation and characterization. The method provided more than 8500 proteins from 1 L of bathypelagic seawater samples, which covered diverse microorganisms and crucial functions, e.g., the detection of key enzymes associated with the Wood-Ljungdahl pathway. Then, we applied SMMP to investigate vertical variations in the metabolic expression patterns of marine microorganisms from the euphotic zone to the bathypelagic zone. Methane oxidation and carbon monoxide (CO) oxidation were active processes, especially in the bathypelagic zone, which provided a remarkable energy supply for the growth and proliferation of heterotrophic microorganisms. In addition, marker protein profiles detected related to ammonia transport, ammonia oxidation, and carbon fixation highlighted that Thaumarchaeota played a critical role in primary production based on the coupled carbon-nitrogen process, contributing to the storage of carbon and nitrogen in the bathypelagic regions. SMMP has low microbial input requirements and yields in-depth metaproteome analysis, making it a prospective approach for comprehensive marine metaproteomic investigations.


Asunto(s)
Proteómica , Agua de Mar , Agua de Mar/microbiología , Agua de Mar/química , Proteómica/métodos , Microbiota , Proteoma/análisis , Proteoma/metabolismo , Metano/metabolismo , Metano/análisis , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Oxidación-Reducción , Monóxido de Carbono/análisis , Monóxido de Carbono/metabolismo
12.
Eur J Pharmacol ; 980: 176843, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39068977

RESUMEN

PURPOSE: Idiopathic pulmonary fibrosis (IPF) is a fatal progressive condition often requiring lung transplantation. Accelerated senescence of type II alveolar epithelial cells (AECII) plays a crucial role in pulmonary fibrosis progression through the secretion of the senescence-associated secretory phenotype (SASP). Low-dose carbon monoxide (CO) possesses anti-inflammatory, anti-oxidative, and anti-aging properties. This study aims to explore the preventive effects of CO-releasing molecule 2 (CORM2) in a bleomycin-induced pulmonary fibrosis model. METHODS: We established an pulmonary fibrosis model in C57BL/6J mice and evaluated the impact of CORM2 on fibrosis pathology using Masson's trichrome staining, fluorescence staining, and pulmonary function tests. Fibrogenic marker expression and SASP secretion in tissues and AECII cells were analyzed using qRT-PCR, Western blot, and ELISA assays both in vivo and in vitro. Additionally, we investigated DNA damage and cellular senescence through immunofluorescence and SA-ß-gal staining. RESULTS: CORM2 showed a preventive effect on bleomycin-induced lung fibrosis by improving pulmonary function and reducing the expression of fibrosis-related genes, such as TGF-ß, α-SMA, Collagen I/III. CORM2 decreased the DNA damage response by inhibiting γ-H2AX, p53, and p21. We identified PAI-1 as a new target gene that was downregulated by CORM2, and which was associated with cellular senescence and fibrosis. CORM2 effectively inhibited cellular senescence and delayed EMT occurrence in AECII cells. CONCLUSION: Our study highlights the potential of CORM2 in preventing DNA damage-induced cellular senescence in bleomycin-induced pulmonary fibrosis through modulation of the p53/PAI-1 signaling pathway. These findings underscore the promising prospects of CORM2 in targeting cellular senescence and the p53/PAI-1 pathway as a potential preventive strategy for IPF.


Asunto(s)
Bleomicina , Monóxido de Carbono , Senescencia Celular , Ratones Endogámicos C57BL , Inhibidor 1 de Activador Plasminogénico , Transducción de Señal , Proteína p53 Supresora de Tumor , Animales , Senescencia Celular/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Monóxido de Carbono/farmacología , Monóxido de Carbono/metabolismo , Ratones , Bleomicina/toxicidad , Transducción de Señal/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Masculino , Compuestos Organometálicos/farmacología , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad
13.
PLoS One ; 19(7): e0306222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046963

RESUMEN

The purple nonsulfur bacteria, Rhodospirillum rubrum, is recognized as a potential strain for PHAs bioindustrial processes since they can assimilate a broad range of carbon sources, such as syngas, to allow reduction of the production costs. In this study, we comparatively analyzed the biomass and PHA formation behaviors of R. rubrum under 100% CO and 50% CO gas atmosphere and found that pure CO promoted the PHA synthesis (PHA content up to 23.3% of the CDW). Hydrogen addition facilitated the uptake and utilization rates of CO and elevated 3-HV monomers content (molar proportion of 3-HV up to 9.2% in the presence of 50% H2). To elucidate the genetic events culminating in the CO assimilation process, we performed whole transcriptome analysis of R. rubrum grown under 100% CO or 50% CO using RNA sequencing. Transcriptomic analysis indicated different CO2 assimilation strategy was triggered by the presence of H2, where the CBB played a minor role. An increase in BCAA biosynthesis related gene abundance was observed under 50% CO condition. Furthermore, we detected the α-ketoglutarate (αKG) synthase, converting fumarate to αKG linked to the αKG-derived amino acids synthesis, and series of threonine-dependent isoleucine synthesis enzymes were significantly induced. Collectively, our results suggested that those amino acid synthesis pathways represented a key way for carbon assimilation and redox potential maintenance by R. rubrum growth under syngas condition, which could partly replace the PHA production and affect its monomer composition in copolymers. Finally, a fed-batch fermentation of the R. rubrum in a 3-l bioreactor was carried out and proved H2 addition indeed increased the PHA accumulation rate, yielding 20% ww-1 PHA production within six days.


Asunto(s)
Carbono , Fermentación , Redes y Vías Metabólicas , Polihidroxialcanoatos , Rhodospirillum rubrum , Rhodospirillum rubrum/metabolismo , Rhodospirillum rubrum/genética , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Carbono/metabolismo , Monóxido de Carbono/metabolismo , Dióxido de Carbono/metabolismo , Hidrógeno/metabolismo , Biomasa , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica
14.
Artif Cells Nanomed Biotechnol ; 52(1): 370-383, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39017642

RESUMEN

OBJECTIVE: The objective of this study was to test the therapeutic effect of carbon monoxide polyhemoglobin (polyCOHb) in haemorrhagic shock/resuscitation and its underlying mechanisms. METHODS: 48 rats were divided into two experimental parts, and 36 rats in the first experiment and 12 rats in the second experiment. In the first experimental part, 36 animals were randomly assigned to the following groups: hydroxyethyl starch group (HES group, n = 12), polyhemoglobin group (polyHb group, n = 12), and carbon monoxide polyhemoglobin group (polyCOHb group, n = 12). In the second experimental part, 12 animals were randomly assigned to the following groups: polyHb group (n = 6), and polyCOHb group (n = 6). Then the anaesthetised rats were haemorrhaged by withdrawing 50% of the animal's blood volume (BV), and resuscitated to the same volume of the animal's withdrawing BV with HES, polyHb, polyCOHb. In the first experimental part, the 72h survival rates of each groups animals were measured. In the second experimental part, the rats' mean arterial pressure (MAP), heart rate (HR), blood gas levels and other indicators were dynamically monitored in baseline, haemorrhagic shock (HS), at 0point resuscitation (RS 0h) and after 1 h resuscitation (RS 1h). The concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were measured by ELISA kits in both groups of rats at RS 1h. Changes in pathological sections were examined by haematoxylin-eosin (HE) staining. Nuclear factor erythroid 2-related factor 2 (Nrf2) and haem oxygenase-1 (HO-1) levels were detected by immunohistochemical analysis, while myeloperoxidase (MPO) levels were detected by immunofluorescence. DHE staining was used to determine reactive oxygen species (ROS) levels. RESULTS: The 72h survival rates of the polyHb and polyCOHb groups were 50.00% (6/12) and 58.33% (7/12) respectively, which were significantly higher than that of the 8.33% (1/12) in the HES group (p < 0.05). At RS 0h and RS 1h, the HbCO content of rats in the polyCOHb group (1.90 ± 0.21, 0.80 ± 0.21) g/L were higher than those in the polyHb group (0.40 ± 0.09, 0.50 ± 0.12)g/L (p < 0.05); At RS 1h, the MDA (41.47 ± 3.89 vs 34.17 ± 3.87 nmol/ml) in the plasma, Nrf2 and HO-1 content in the colon of rats in the polyCOHb group were lower than the polyHb group. And the SOD in the plasma (605.01 ± 24.46 vs 678.64 ± 36.37) U/mg and colon (115.72 ± 21.17 vs 156.70 ± 21.34) U/mg and the MPO content in the colon in the polyCOHb group were higher than the polyHb group (p < 0.05). CONCLUSIONS: In these haemorrhagic shock/resuscitation models, both polyCOHb and polyHb show similar therapeutic effects, and polyCOHb has more effective effects in maintaining MAP, correcting acidosis, reducing inflammatory responses than that in polyHb.


Asunto(s)
Ratas Sprague-Dawley , Resucitación , Choque Hemorrágico , Animales , Choque Hemorrágico/tratamiento farmacológico , Choque Hemorrágico/terapia , Choque Hemorrágico/metabolismo , Ratas , Resucitación/métodos , Masculino , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Inflamación/tratamiento farmacológico , Monóxido de Carbono/farmacología , Monóxido de Carbono/metabolismo , Hemoglobinas , Estrés Oxidativo/efectos de los fármacos
15.
Bioresour Technol ; 407: 131076, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002885

RESUMEN

Syngas and CO-rich off-gases are key chemical platforms to produce biofuels and bioproducts. From the perspective of optimizing and up-scaling CO co-digestion with organic waste streams, this study aims at assessing and quantifying the inhibitory effects of CO on acidogenic glucose fermentation and aceticlastic methanogenesis. Mesophilic cultures were fed in two sets of batch assays, respectively, with glucose and acetate while being exposed to dissolved CO in equilibrium with partial pressures in the range of 0.25-1.00 atm. Cumulative methane production and microbial monitoring revealed that aceticlastic methanogenic archaea were significantly inhibited (2-20 % of the methane production of CO non-exposed cultures). The acidogenic glucose degrading community was also inhibited by CO, although, thanks to its functional redundancy, shifted its metabolism towards propionate production. Future work should assess the sensitivity of hereby estimated CO inhibition parameters, e.g., on the simulation output of a continuous syngas co-digestion process with organic substrates.


Asunto(s)
Monóxido de Carbono , Fermentación , Glucosa , Metano , Metano/metabolismo , Glucosa/metabolismo , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacología , Acetatos/metabolismo , Archaea/metabolismo , Reactores Biológicos
16.
Phys Chem Chem Phys ; 26(23): 16579-16588, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832404

RESUMEN

The transsulfuration pathway plays a key role in mammals for maintaining the balance between cysteine and homocysteine, whose concentrations are critical in several biochemical processes. Human cystathionine ß-synthase is a heme-containing, pyridoxal 5'-phosphate (PLP)-dependent enzyme found in this pathway. The heme group does not participate directly in catalysis, but has a regulatory function, whereby CO or NO binding inhibits the PLP-dependent reactions. In this study, we explore the detailed structural changes responsible for inhibition using quantum chemical calculations to validate the experimentally observed bonding patterns associated with heme CO and NO binding and molecular dynamics simulations to explore the medium-range structural changes triggered by gas binding and propagating to the PLP active site, which is more than 20 Å distant from the heme group. Our results support a previously proposed mechanical signaling model, whereby the cysteine decoordination associated with gas ligand binding leads to breaking of a hydrogen bond with an arginine residue on a neighbouring helix. In turn, this leads to a shift in position of the helix, and hence also of the PLP cofactor, ultimately disrupting a key hydrogen bond that stabilizes the PLP in its catalytically active form.


Asunto(s)
Cistationina betasintasa , Simulación de Dinámica Molecular , Fosfato de Piridoxal , Cistationina betasintasa/metabolismo , Cistationina betasintasa/química , Humanos , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Gases/química , Gases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Enlace de Hidrógeno , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Hemo/química , Hemo/metabolismo , Dominio Catalítico , Teoría Cuántica , Cisteína/química , Cisteína/metabolismo
17.
J Med Chem ; 67(12): 9789-9815, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38864348

RESUMEN

Carbon monoxide (CO) is endogenously produced in mammals, with blood concentrations in the high micromolar range in the hemoglobin-bound form. Further, CO has shown therapeutic effects in various animal models. Despite its reputation as a poisonous gas at high concentrations, we show that CO should have a wide enough safety margin for therapeutic applications. The analysis considers a large number of factors including levels of endogenous CO, its safety margin in comparison to commonly encountered biomolecules or drugs, anticipated enhanced safety profiles when delivered via a noninhalation mode, and the large amount of safety data from human clinical trials. It should be emphasized that having a wide enough safety margin for therapeutic use does not mean that it is benign or safe to the general public, even at low doses. We defer the latter to public health experts. Importantly, this Perspective is written for drug discovery professionals and not the general public.


Asunto(s)
Monóxido de Carbono , Monóxido de Carbono/metabolismo , Humanos , Animales
18.
Nat Commun ; 15(1): 5424, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926344

RESUMEN

Anaerobic, acetogenic bacteria are well known for their ability to convert various one-carbon compounds, promising feedstocks for a future, sustainable biotechnology, to products such as acetate and biofuels. The model acetogen Acetobacterium woodii can grow on CO2, formate or methanol, but not on carbon monoxide, an important industrial waste product. Since hydrogenases are targets of CO inhibition, here, we genetically delete the two [FeFe] hydrogenases HydA2 and HydBA in A. woodii. We show that the ∆hydBA/hydA2 mutant indeed grows on CO and produces acetate, but only after a long adaptation period. SNP analyzes of CO-adapted cells reveal a mutation in the HycB2 subunit of the HydA2/HydB2/HydB3/Fdh-containing hydrogen-dependent CO2 reductase (HDCR). We observe an increase in ferredoxin-dependent CO2 reduction and vice versa by the HDCR in the absence of the HydA2 module and speculate that this is caused by the mutation in HycB2. In addition, the CO-adapted ∆hydBA/hydA2 mutant growing on formate has a final biomass twice of that of the wild type.


Asunto(s)
Acetobacterium , Proteínas Bacterianas , Monóxido de Carbono , Formiatos , Acetobacterium/genética , Acetobacterium/metabolismo , Acetobacterium/crecimiento & desarrollo , Formiatos/metabolismo , Monóxido de Carbono/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hidrogenasas/metabolismo , Hidrogenasas/genética , Mutación , Dióxido de Carbono/metabolismo , Transporte de Electrón , Biomasa , Acetatos/metabolismo , Polimorfismo de Nucleótido Simple
20.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893534

RESUMEN

Electrocatalytic CO2 reduction to CO and formate can be coupled to gas fermentation with anaerobic microorganisms. In combination with a competing hydrogen evolution reaction in the cathode in aqueous medium, the in situ, electrocatalytic produced syngas components can be converted by an acetogenic bacterium, such as Clostridium ragsdalei, into acetate, ethanol, and 2,3-butanediol. In order to study the simultaneous conversion of CO, CO2, and formate together with H2 with C. ragsdalei, fed-batch processes were conducted with continuous gassing using a fully controlled stirred tank bioreactor. Formate was added continuously, and various initial CO partial pressures (pCO0) were applied. C. ragsdalei utilized CO as the favored substrate for growth and product formation, but below a partial pressure of 30 mbar CO in the bioreactor, a simultaneous CO2/H2 conversion was observed. Formate supplementation enabled 20-50% higher growth rates independent of the partial pressure of CO and improved the acetate and 2,3-butanediol production. Finally, the reaction conditions were identified, allowing the parallel CO, CO2, formate, and H2 consumption with C. ragsdalei at a limiting CO partial pressure below 30 mbar, pH 5.5, n = 1200 min-1, and T = 32 °C. Thus, improved carbon and electron conversion is possible to establish efficient and sustainable processes with acetogenic bacteria, as shown in the example of C. ragsdalei.


Asunto(s)
Reactores Biológicos , Butileno Glicoles , Dióxido de Carbono , Monóxido de Carbono , Clostridium , Fermentación , Formiatos , Hidrógeno , Formiatos/metabolismo , Formiatos/química , Clostridium/metabolismo , Clostridium/crecimiento & desarrollo , Monóxido de Carbono/metabolismo , Hidrógeno/metabolismo , Dióxido de Carbono/metabolismo , Butileno Glicoles/metabolismo , Butileno Glicoles/química , Gases/metabolismo , Gases/química , Etanol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...