RESUMEN
Aedes aegypti is an important vector of arboviruses, including dengue, chikungunya and Zika. The application of synthetic insecticides is a frequently used strategy to control this insect. Malathion is an organophosphate insecticide that was widely used in Brazil in the 1980s and 1990s to control the adult form of A. aegypti. In situations where resistance to currently used insecticides is detected, the use of malathion may be resumed as a control measure. Many studies have confirmed resistance to malathion, however, comparative studies of differential gene expression of the entire transcriptome of resistant and susceptible insects are scarce. Therefore, understanding the molecular basis of resistance to this insecticide in this species is extremely important. In this paper, we present the first transcriptomic description of susceptible and resistant strains of A. aegypti challenged with malathion. Guided transcriptome assembly resulted in 39,904 transcripts, where 2133 differentially expressed transcripts were detected, and three were validated by RT-qPCR. Enrichment analysis for these identified transcripts resulted in 13 significant pathways (padj < 0.05), 8 associated with down-regulated and 5 with up-regulated transcripts in treated resistant insects. It was possible to divide the transcripts according to the mechanism of action into three main groups: (i) genes involved in detoxification metabolic pathways; (ii) genes of proteins located in the membrane/extracellular region; and (iii) genes related to DNA integration/function. These results are important in advancing knowledge of genes related to resistance mechanisms in this insect, enabling the development of effective technologies and strategies for managing insecticide resistance.
Asunto(s)
Aedes , Resistencia a los Insecticidas , Insecticidas , Malatión , Transcriptoma , Malatión/farmacología , Animales , Aedes/genética , Aedes/efectos de los fármacos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismoRESUMEN
Dengue is an arbovirus infection whose etiologic agent is transmitted by the Aedes aegypti mosquito. Since the early 1980s, when the circulation of the dengue virus (DENV) was confirmed in Brazil, the disease has become a growing multifactorial public health problem. This article presented the main factors that have contributed to the frequent dengue epidemics in recent years, such as the behavior of the vector, climate change, and social, political, and economic aspects. The intersection between these different factors in the dynamics of the disease is highlighted, including the increase in the mosquito population due to higher temperatures and rainy periods, as well as the influence of socioeconomic conditions on the incidence of dengue. Some mosquito control strategies are also addressed, including the use of innovative technologies such as drones and the Wolbachia bacterium, as well as the hope represented by the dengue vaccine. Nevertheless, the need for integrated and effective public policies to reduce social inequalities and the impacts of climate change on the spread of dengue is emphasized.
Asunto(s)
Aedes , Cambio Climático , Dengue , Mosquitos Vectores , Dengue/transmisión , Dengue/epidemiología , Dengue/prevención & control , Aedes/virología , Animales , Humanos , Brasil/epidemiología , Control de Mosquitos/métodos , Ambiente , Factores SocioeconómicosRESUMEN
BACKGROUND: Ae. aegypti mosquitoes are considered a global threat to public health due to its ability to transmit arboviruses such as yellow fever, dengue, Zika and Chikungunya to humans. The lack of effective arboviral vaccines and etiological treatments make vector control strategies fundamental in interrupting the transmission cycle of these pathogens. This study evaluated Ae. aegypti mosquito populations pre- and post-intervention period with disseminating stations of the larvicide pyriproxyfen to understand its potential influence on the genetic structure and population diversity of these vectors. METHODOLOGY/PRINCIPAL FINDINGS: This study was conducted in Manacapuru city, Amazonas, Brazil, where 1,000 pyriproxyfen dissemination stations were deployed and monitored from FEB/2014 to FEB/2015 (pre-intervention) and AUG/2015 to JAN/2016 (post-intervention). Low-coverage whole genome sequencing of 36 individuals was performed, revealing significant stratification between pre- and post-intervention groups (pairwise FST estimate of 0.1126; p-value < 0.033). Tajima's D estimates were -3.25 and -3.07 (both p-value < 0.01) for pre- and post-intervention groups, respectively. Molecular diversity estimates (Theta(S) and Theta(Pi)) also showed divergences between pre- and post-intervention groups. PCA and K-means analysis showed clustering for SNP frequency matrix and SNP genotype matrix, respectively, being both mainly represented by the first principal component. PCA and K-means clustering also showed significant results that corroborate the impact of pyriproxyfen intervention on genetic structure populations of Ae. aegypti mosquitoes. CONCLUSIONS/SIGNIFICANCE: The results revealed a bottleneck effect and reduced mosquito populations during intervention, followed by reintroduction from adjacent and unaffected populations by this vector. We highlighted that low-coverage whole genome sequencing can contribute to genetic and structure population data, and also generate important information to aid in genomic and epidemiological surveillance.
Asunto(s)
Aedes , Insecticidas , Control de Mosquitos , Mosquitos Vectores , Piridinas , Animales , Aedes/efectos de los fármacos , Aedes/genética , Piridinas/farmacología , Brasil , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Insecticidas/farmacología , Femenino , Humanos , Variación GenéticaRESUMEN
The Atlantic Forest Biome (AFB) creates an ideal environment for the proliferation of vector mosquitoes, such as Haemagogus and Sabethes species, which transmit the Yellow Fever virus (YFV) to both human and non-human primates (NHP) (particularly Alouatta sp. and Callithrix sp.). From 2016 to 2020, 748 fatal cases of YF in humans and 1,763 in NHPs were reported in this biome, following several years free from the disease. This underscores the imminent risk posed by the YFV. In this study, we examined the spatiotemporal distribution patterns of YF cases in both NHPs and humans across the entire AFB during the outbreak period, using a generalized linear mixed regression model (GLMM) at the municipal level. Our analysis examined factors associated with the spread of YFV, including environmental characteristics, climate conditions, human vaccination coverage, and the presence of two additional YFV-affected NHP species. The occurrence of epizootics has been directly associated with natural forest formations and the presence of species within the Callithrix genus. Additionally, epizootics have been shown to be directly associated with human prevalence. Furthermore, human prevalence showed an inverse correlation with urban areas, temporary croplands, and savannah and grassland areas. Further analyses using Moran's Index to incorporate the neighborhoods of municipalities with cases in each studied host revealed additional variables, such as altitude, which showed a positive correlation. Additionally, the occurrence of the disease in both hosts exhibited a spatio-temporal distribution pattern. To effectively mitigate the spread of the virus, it is necessary to proactively expand vaccination coverage, refine NHP surveillance strategies, and enhance entomological surveillance in both natural and modified environments.
Asunto(s)
Bosques , Mosquitos Vectores , Fiebre Amarilla , Virus de la Fiebre Amarilla , Fiebre Amarilla/epidemiología , Fiebre Amarilla/transmisión , Animales , Humanos , Brasil/epidemiología , Mosquitos Vectores/virología , Clima , Brotes de Enfermedades , EcosistemaRESUMEN
BACKGROUND: Anopheles darlingi is the most efficient vector of malaria parasites in the Neotropics. Nevertheless, the specificities of its larval habitats are still poorly known. OBJECTIVES: Characterize permanent larval habitats, and population dynamics of An. darlingi and other potential vectors in relation to climate, physicochemical variables, insect fauna and malaria cases. METHODS: A 14-month longitudinal study was conducted in Porto Velho, Rondônia, western Brazilian Amazon. Monthly, 21 permanent water bodies were sampled. Immature anophelines and associated fauna were collected, physicochemical characteristics, and climate variables were recorded and analyzed. FINDINGS: Five types of habitats were identified: lagoon, stream, stream combined with lagoon, stream combined with dam, and fishpond. A total of 60,927 anophelines were collected. The most abundant species in all habitats were Anopheles braziliensis and An. darlingi. The highest density was found in the lagoon, while streams had the highest species richness. Abundance was higher during the transition period wet-dry season. There was a lag of respectively four and five months between the peak of rainfall and the Madeira River level and the highest abundance of An. darlingi larvae, which were positively correlated with habitats partially shaded, pH close to neutrality, increase dissolved oxygen and sulphates. MAIN CONCLUSIONS: The present study provides data on key factors defining permanent larval habitats for the surveillance of An. darlingi and other potential vectors as well as a log-linear Negative Binomial model based on immature mosquito abundance and climate variables to predict the increase in the number of malaria cases.
Asunto(s)
Anopheles , Ecosistema , Larva , Malaria , Mosquitos Vectores , Densidad de Población , Estaciones del Año , Animales , Anopheles/clasificación , Anopheles/crecimiento & desarrollo , Anopheles/fisiología , Brasil , Mosquitos Vectores/fisiología , Mosquitos Vectores/clasificación , Mosquitos Vectores/crecimiento & desarrollo , Malaria/transmisión , Estudios Longitudinales , Dinámica PoblacionalRESUMEN
The increasing spread of mosquito vectors has made mosquito-borne arboviral diseases a global threat to public health, leading to the urgent need for effective population control methods. Strategies based in the intracellular bacterium Wolbachia Hertig, 1936 are considered environmentally friendly, safe for humans, and potentially cost-effective for controlling arboviral diseases. To minimize undesirable side effects, it is relevant to assess whether Wolbachia is present in the area and understand the diversity associated with native infections before implementing these strategies. With this purpose, we investigated Wolbachia infection status, diversity, and prevalence in populations of Aedes albifasciatus (Macquart, 1838), Aedes fluviatilis (Lutz, 1904), and hybrids of the Culex pipiens (Linnaeus, 1758) complex from Argentina. Aedes albifasciatus and C. pipiens complex samples were collected in the province of Buenos Aires, and A. fluviatilis in the province of Misiones. Aedes albifasciatus was found to be uninfected, while infections with strains wFlu and wPip were detected in A. fluviatilis and hybrids of the C. pipiens complex, respectively. All strains were fixed or close to fixation and clustered within supergroup B. These finding provides valuable information on Wolbachia strains found in natural mosquito populations in Argentina that might be used in heterologous infections in the future or be considered when designing control strategies based on Wolbachia infection.
Asunto(s)
Aedes , Wolbachia , Wolbachia/aislamiento & purificación , Wolbachia/genética , Animales , Argentina , Aedes/microbiología , Aedes/virología , Culex/microbiología , Mosquitos Vectores/microbiología , FemeninoRESUMEN
The Capivari-Monos Environmental Protection Area (EPA) is located in the southern part of the São Paulo city Green Belt. Since the 1950s, this region has been affected by uncontrolled urban sprawl, resulting in a change in the ecological habits of some vector mosquitoes. Over the last two decades, cases of autochthonous bromeliad malaria associated with the presence of anopheline mosquitoes in the EPA have been recorded. Anopheles cruzii, the primary vector of plasmodia in the region, is abundant and found naturally infected with both Plasmodium vivax and Plasmodium malariae. In light of this, the present study sought to update the catalog of mosquito fauna in this EPA, analyze mosquito diversity among sites with different degrees of conservation and compare species using different collection techniques. Field collections were carried out from March, 2015 to April, 2017. A total of 20,755 specimens were collected, distributed in 106 different taxa representing 16 genera. Analysis of the diversity among the sites based on the Shannon and Simpson indices showed that the most preserved of them had the lowest indices because of the dominance of An. cruzii. The results highlight the increase in the number of different taxa collected as different mosquito collection techniques were included, confirming the importance of using several strategies to ensure adequate sampling of a local mosquito fauna when exploring a greater number of ecotopes. Furthermore, the survey produced the most recent and complete list of mosquito species in the Capivari-Monos EPA, a refuge and shelter for native and introduced mosquito species where new biocenoses, including pathogens, vertebrate hosts, and vectors can form, allowing zoonotic outbreaks in the local human population to occur.
Asunto(s)
Biodiversidad , Culicidae , Mosquitos Vectores , Animales , Brasil , Culicidae/clasificación , Mosquitos Vectores/parasitología , Mosquitos Vectores/clasificación , Anopheles/clasificación , Anopheles/fisiología , Anopheles/parasitologíaRESUMEN
Introduction: Dengue is a public health challenge worldwide. Brazil registered about 70% of cases in Latin America in 2023; in 2024, the country is experiencing an unprecedented increase in the number of infected individuals. By May 2024, more than 4 million people were infected. Our goal was to: (1) determine the epidemiology of dengue cases and their spatiotemporal distribution and (2) carry out a survey of the storm drains and through a geospatial analysis to determine their possible correlation with cases of dengue in Presidente Prudente, São Paulo, Brazil. Methods: Cases and information on the habitat of mosquito in the storm drain underground drainage system from 2020 to 2021 were obtained from public agencies. Larvae, pupae, and Ae. aegypti were identified according to species and described in taxonomic keys. Kernel density maps were constructed. Results: From 1996 to 2023, the prevalence of cases peaked in 2016 and 2019, and in 2023 reached alarming levels, and the city was considered hyperendemic. In 2021, 2,609 cases were registered with 2 clusters of high density. Of 5,492 storm drains analyzed, 18.0% were found to have water, 9.0% had larvae or pupae of Aedes aegypti and 91.0% were classified as dirty or damaged. A direct correlation between the kernel layer of cases in 2021 with the kernel layer of storm drains containing water (r = 0.651) and larvae and pupae (r = 0.576) was found, suggesting that storm drains are risk factors and have an impact on the maintenance of dengue endemicity. The high number of damaged units found demonstrated the lack of storm drain management, compromising the urban drainage system and possibly contributing to dengue outbreaks. Conclusion: Policymakers may use these findings to improve existing dengue control strategies focusing on the control of storm drains and increase local and global perspectives on reducing dengue outbreaks.
Asunto(s)
Aedes , Dengue , Dengue/epidemiología , Dengue/prevención & control , Brasil/epidemiología , Humanos , Animales , Aedes/virología , Drenaje de Agua , Mosquitos Vectores , Enfermedades Endémicas/estadística & datos numéricos , Enfermedades Endémicas/prevención & control , PrevalenciaRESUMEN
BACKGROUND: Seasonal fluctuations in weather are recognized as factors that affect both Aedes (Ae.) aegypti mosquitoes and the diseases they carry, such as dengue fever. The El Niño-Southern Oscillation (ENSO) is widely regarded as one of the most impactful atmospheric phenomena on Earth, characterized by the interplay of shifting ocean temperatures, trade wind intensity, and atmospheric pressure, resulting in extensive alterations in climate conditions. In this study, we investigate the influence of ENSO and local weather conditions on the spatio-temporal variability of Ae. aegypti infestation index. METHODS: We collected seasonal entomological survey data of immature forms of Ae. aegypti mosquitoes (Breteau index), as well as data on temperature, rainfall and the Oceanic Niño Index (ONI) for the period 2008-2018 over the 645 municipalities of the subtropical State of São Paulo (Brazil). We grounded our analytical approach on a Bayesian framework and we used a hierarchical spatio-temporal model to study the relationship between ENSO tracked by ONI, seasonal weather fluctuations and the larval index, while adjusting for population density and wealth inequalities. RESULTS: Our results showed a relevant positive effect for El Niño on the Ae. aegypti larval index. In particular, we found that the number of positive containers would be expected to increase by 1.30-unit (95% Credible Intervals (CI): 1.23 to 1.37) with El Niño events (i.e., ≥ 1°C, moderate to strong) respect to neutral (and weak) events. We also found that seasonal rainfall exceeding 153.12 mm appears to have a notable impact on vector index, leading potentially to the accumulation of ample water in outdoor discarded receptacles, supporting the aquatic phase of mosquito development. Additionally, seasonal temperature above 23.30°C was found positively associated to the larval index. Although the State of São Paulo as a whole has characteristics favourable to proliferation of the vector, there were specific areas with a greater tendency for mosquito infestation, since the most vulnerable areas are predominantly situated in the central and northern regions of the state, with hot spots of abundance in the south, especially during El Niño events. Our findings also indicate that social disparities present in the municipalities contributes to Ae. aegypti proliferation. CONCLUSIONS: Considering the anticipated rise in both the frequency and intensity of El Niño events in the forthcoming decades as a consequence of climate change, the urgency to enhance our ability to track and diminish arbovirus outbreaks is crucial.
Asunto(s)
Aedes , Teorema de Bayes , Dengue , El Niño Oscilación del Sur , Mosquitos Vectores , Estaciones del Año , Tiempo (Meteorología) , Animales , Aedes/fisiología , Aedes/crecimiento & desarrollo , Brasil/epidemiología , Dengue/epidemiología , Dengue/transmisión , Mosquitos Vectores/fisiología , Larva/fisiología , Larva/crecimiento & desarrollo , Análisis Espacio-Temporal , TemperaturaRESUMEN
BACKGROUND: Microbial larvicides containing both LysiniBacillus sphaericus and Bacillus thuringiensis svar. israelensis (Bti) insecticidal crystals can display advantages for mosquito control. This includes a broader action against larvae that are refractory to the Binary (Bin) toxin from L. sphaericus, as Bin-resistant Culex quinquefasciatus and Aedes aegypti naturally refractory larvae, which often co-habit urban areas of endemic countries for arboviruses. Our principal goal was to assess the toxicity of a combined L. sphaericus/Bti larvicide (Vectomax FG™) to Cx. quinquefasciatus (susceptible CqS and Bin-resistant CqR) and Ae. aegypti (Rocke) and to determine its persistence in the breeding sites with those larvae. METHODS: The toxicity of a combined L. sphaericus/Bti product (VectoMax FG™) to larvae was performed using bioassays, and persistence was evaluated in simulate field trials carried out under the shade, testing two label concentrations during 12 weeks. A laboratory strain SREC, established with CqS and CqR larvae, was kept during four generations to evaluate the ability of the L. sphaericus/Bti to eliminate resistant larvae. RESULTS: The L. sphaericus/Bti showed toxicity (mg/L) to larvae from all strains with a decreasing pattern for CqS (LC50 = 0.006, LC90 = 0.030), CqR (LC50 = 0.009, LC90 = 0.069), and Rocke (LC50 = 0.042, LC90 = 0.086). In a simulated field trial, the larvicide showed a persistence of 6 weeks and 8 weeks, controlling larvae from all strains in containers with 100 L of water, using 2 g or 4 g per container (100 L), respectively. The treatment of SREC larvae with L. sphaericus/Bti showed its capacity to eliminate the Bin-resistant individuals using suitable concentrations to target those larvae. CONCLUSIONS: Our results showed the high efficacy and persistence of the L. sphaericus/Bti larvicide to control Cx. quinquefasciatus and Ae. aegypti that might cohabit breeding sites. These findings demonstrated that such larvicides can be an effective tool for controlling those species in urban areas with a low potential for selecting resistance.
Asunto(s)
Aedes , Bacillaceae , Bacillus thuringiensis , Culex , Insecticidas , Larva , Control de Mosquitos , Control Biológico de Vectores , Animales , Culex/efectos de los fármacos , Aedes/efectos de los fármacos , Larva/efectos de los fármacos , Control de Mosquitos/métodos , Insecticidas/farmacología , Bacillaceae/química , Control Biológico de Vectores/métodos , Resistencia a los Insecticidas , Mosquitos Vectores/efectos de los fármacosRESUMEN
Aedes mosquito-borne viruses (ABVs) place a substantial strain on public health resources in the Americas. Vector control of Aedes mosquitoes is an important public health strategy to decrease or prevent spread of ABVs. The ongoing Targeted Indoor Residual Spraying (TIRS) trial is an NIH-sponsored clinical trial to study the efficacy of a novel, proactive vector control technique to prevent dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) infections in the endemic city of Merida, Yucatan, Mexico. The primary outcome of the trial is laboratory-confirmed ABV infections in neighborhood clusters. Despite the difficulties caused by the COVID-19 pandemic, by early 2021 the TIRS trial completed enrollment of 4,792 children aged 2-15 years in 50 neighborhood clusters which were allocated to control or intervention arms via a covariate-constrained randomization algorithm. Here, we describe the makeup and ABV seroprevalence of participants and mosquito population characteristics in both arms before TIRS administration. Baseline surveys showed similar distribution of age, sex, and socio-economic factors between the arms. Serum samples from 1,399 children were tested by commercially available ELISAs for presence of anti-ABV antibodies. We found that 45.1% of children were seropositive for one or more flaviviruses and 24.0% were seropositive for CHIKV. Of the flavivirus-positive participants, most were positive for ZIKV-neutralizing antibodies by focus reduction neutralization testing which indicated a higher proportion of participants with previous ZIKV than DENV infections within the cohort. Both study arms had statistically similar seroprevalence for all viruses tested, similar socio-demographic compositions, similar levels of Ae. aegypti infestation, and similar observed mosquito susceptibility to insecticides. These findings describe a population with a high rate of previous exposure to ZIKV and lower titers of neutralizing antibodies against DENV serotypes, suggesting susceptibility to future outbreaks of flaviviruses is possible, but proactive vector control may mitigate these risks.
Asunto(s)
Aedes , Dengue , Insecticidas , Control de Mosquitos , Mosquitos Vectores , Humanos , Niño , Aedes/virología , Animales , México/epidemiología , Adolescente , Preescolar , Femenino , Control de Mosquitos/métodos , Masculino , Mosquitos Vectores/virología , Dengue/epidemiología , Dengue/prevención & control , Dengue/virología , Estudios Seroepidemiológicos , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Virus Zika/aislamiento & purificación , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/prevención & control , Virus del Dengue/inmunología , Virus del Dengue/aislamiento & purificación , Virus Chikungunya/inmunologíaRESUMEN
BACKGROUND: The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time. METHODS: We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained using European populations of Aedes albopictus and Culex pipiens. RESULTS: The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%). CONCLUSIONS: The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species.
Asunto(s)
Aedes , Culex , Mosquitos Vectores , Animales , Aedes/clasificación , Aedes/fisiología , Culex/clasificación , Mosquitos Vectores/clasificación , Brasil , Femenino , Masculino , Control de Mosquitos/métodos , Control de Mosquitos/instrumentaciónRESUMEN
Advances in diagnostic techniques coupled with ongoing environmental changes have resulted in intensified surveillance and monitoring of arbovirus circulation in the Amazon. This increased effort has resulted in increased detection of insect-specific viruses among hematophagous arthropods collected in the field. This study aimed to document the first isolation of Agua Salud alphavirus in mosquitoes collected within the Brazilian Amazon. Arthropods belonging to the family Culicidae were collected within a forest fragment located in the Environmental Protection Area of the metropolitan region of Belem. Subsequently, these specimens were meticulously identified to the species level. Afterward, the collected batches were macerated, and the resulting supernatant was then inoculated into C6/36 and Vero cell cultures to facilitate viral isolation. The presence of arboviruses within the inoculated cell cultures was determined through indirect immunofluorescence analysis. Furthermore, positive supernatant samples underwent nucleotide sequencing to precisely identify the viral strains present. Notably, a batch containing Culex (Melanoconion) mosquitoes was identified to be positive for the genus Alphavirus via indirect immunofluorescence. This study is the first report on insect-specific alphavirus isolation in Brazil and the first-ever description of Agua Salud alphavirus isolation within Amazon Forest remnants.
Asunto(s)
Alphavirus , Culex , Animales , Alphavirus/aislamiento & purificación , Alphavirus/genética , Alphavirus/clasificación , Brasil , Células Vero , Chlorocebus aethiops , Culex/virología , Mosquitos Vectores/virología , Filogenia , Arbovirus/aislamiento & purificación , Arbovirus/genética , Arbovirus/clasificaciónRESUMEN
BACKGROUND: Dengue is a vector-borne viral infection caused by the dengue virus transmitted to humans primarily by Aedes aegypti. The year 2024 has been a historic year for dengue in Brazil, with the highest number of probable cases ever registered. Herein, we analyze the temporal trend and spatio-temporal dynamics of dengue cases in Brazil during the first nine epidemiological weeks (EW) of 2024. METHODS: This is an ecological study, including all probable cases of dengue in Brazil during the period, carried out in two steps: time series analysis to assess the temporal trend and spatial analysis to identify high-risk clusters. RESULTS: 1,345,801 probable cases of dengue were reported. The regions with the highest increasing trend were the Northeast with an average epidemiologic week percent change (AEPC) of 52.4 (95% CI: 45.5-59.7; p < 0.001) and the South with 35.9 (95% CI: 27.7-44.5; p < 0.001). There was a statistically significant increasing trend in all states, except Acre (AEPC = -4.1; 95% CI: -16.3-10; p = 0.55), Amapá (AEPC = 1.3; 95% CI: -16.2-22.3; p = 0.9) and Espírito Santo (AEPC = 8.9; 95% CI: -15.7-40.6; p = 0.5). The retrospective space-time analysis showed a cluster within the Northeast, Central-West and Southeast regions, with a radius of 515.3 km, in which 1,267 municipalities and 525,324 of the cases were concentrated (RR = 6.3; p < 0.001). Regarding the spatial variation of the temporal trend, 21 risk areas were found, all of them located in Southeast or Central-West states. The area with the highest relative risk was Minas Gerais state, where 5,748 cases were concentrated (RR = 8.1; p < 0.001). Finally, a purely spatial analysis revealed 25 clusters, the one with the highest relative risk being composed of two municipalities in Acre (RR = 6.9; p < 0.001). CONCLUSIONS: We described a detailed temporal-spatial analysis of dengue cases in the first EWs of 2024 in Brazil, which were mainly concentrated in the Southeast and Central-West regions. Overall, it is recommended that governments adopt public policies to control the the vector population in high-risk areas, as well as to prevent the spread of dengue fever to other areas of Brazil.
Asunto(s)
Aedes , Dengue , Epidemias , Análisis Espacio-Temporal , Brasil/epidemiología , Dengue/epidemiología , Dengue/transmisión , Humanos , Epidemias/estadística & datos numéricos , Aedes/virología , Animales , Toma de Decisiones , Mosquitos Vectores/virología , Virus del DengueRESUMEN
BACKGROUND: The effectiveness of dengue control interventions depends on an effective integrated surveillance system that involves analysis of multiple variables associated with the natural history and transmission dynamics of this arbovirus. Entomological indicators associated with other biotic and abiotic parameters can assertively characterize the spatiotemporal trends related to dengue transmission risk. However, the unpredictability of the non-linear nature of the data, as well as the uncertainty and subjectivity inherent in biological data are often neglected in conventional models. METHODS: As an alternative for analyzing dengue-related data, we devised a fuzzy-logic approach to test ensembles of these indicators across categories, which align with the concept of degrees of truth to characterize the success of dengue transmission by Aedes aegypti mosquitoes in an endemic city in Brazil. We used locally gathered entomological, demographic, environmental and epidemiological data as input sources using freely available data on digital platforms. The outcome variable, risk of transmission, was aggregated into three categories: low, medium, and high. Spatial data was georeferenced and the defuzzified values were interpolated to create a map, translating our findings to local public health managers and decision-makers to direct further vector control interventions. RESULTS: The classification of low, medium, and high transmission risk areas followed a seasonal trend expected for dengue occurrence in the region. The fuzzy approach captured the 2020 outbreak, when only 14.06% of the areas were classified as low risk. The classification of transmission risk based on the fuzzy system revealed effective in predicting an increase in dengue transmission, since more than 75% of high-risk areas had an increase in dengue incidence within the following 15 days. CONCLUSIONS: Our study demonstrated the ability of fuzzy logic to characterize the city's spatiotemporal heterogeneity in relation to areas at high risk of dengue transmission, suggesting it can be considered as part of an integrated surveillance system to support timely decision-making.
Asunto(s)
Aedes , Dengue , Lógica Difusa , Mosquitos Vectores , Dengue/epidemiología , Dengue/transmisión , Humanos , Animales , Aedes/virología , Brasil/epidemiología , Medición de Riesgo , Ciudades/epidemiología , Enfermedades Endémicas/estadística & datos numéricos , Brotes de EnfermedadesRESUMEN
The genus Flavivirus (Family: Flaviviridae) comprises arboviruses with the capacity to infect humans and animals. It also integrates insect-specific viruses. This study aimed to identify Flavivirus in mosquitoes captured in 17 municipalities in Yucatan State, Mexico. The mosquitoes were caught in households from November 2021 to May 2022. A total of 4,321 adult mosquitoes from five species were caught. The most abundant were Culex quinquefasciatus (n = 3,563) and Aedes aegypti (n = 734). For molecular investigations, 600 female mosquitoes were split into groups of 10, mostly for species and site location. Reverse transcriptase polymerase chain reaction (RT-PCR) amplified a region of the NS5 gene to find the Flavivirus ribonucleic acids (RNA). A total of 24 pools that were positive for Flavivirus were detected in Ae. aegypti specimens and subsequently subjected to sequencing using the Sanger method. A total of 12 sequences matched the established quality criteria and were subsequently employed for sequence homology analysis. We found that one sequence corresponded to the Zika virus (ZIKV), and 11 sequences had sequence similarity with Phlebotomus-associated flavivirus (PAFV), an insect-specific virus (ISF). In conclusion, we found ZIKV in the Merida municipality, Yucatan State, which suggests that the virus is silently circulating. Phlebotomus-associated flavivirus is distributed in five municipalities in Yucatan State, Mexico. Future studies could focus on isolating this virus and studying its biological role within Ae. aegypti.
Asunto(s)
Culicidae , Flavivirus , Mosquitos Vectores , Animales , México , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/clasificación , Mosquitos Vectores/virología , Femenino , Culicidae/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ARN Viral/genética , ARN Viral/análisis , Culex/virologíaRESUMEN
In this review, we discuss dengue surveillance, prevention, and control measures in Brazil. Data on dengue epidemics between 2000 and 2024 indicates an increase in the number of dengue cases and deaths. Global climate change is a key driver of this growth. Over the past 25 years, nearly 18 million Brazilians have been infected with the dengue virus, and the highest number of dengue cases in Brazil's history is projected to reach 2024. Dengue mortality in Brazil increased geographically over time. As of June, there were approximately 6 million probable cases and 4,000 confirmed deaths in Brazil, which represents the greatest dengue epidemic to date. Several technologies have been developed to control Aedes aegypti, including the deployment of Wolbachia-infected mosquitoes, indoor residual spraying, sterile insect techniques, and mosquito-disseminated insecticides. The Ministry of Health recommends integrating these technologies into health services. Brazil is the first country to incorporate the Takeda vaccine into its public health system, and the Butantan vaccine is currently undergoing Phase 3 clinical trials. Increasing the vaccination coverage and implementing novel Ae. aegypti control technologies could reduce the number of dengue cases in Brazil in the coming years. Community activities such as home cleaning and elimination of potential mosquito breeding sites, facilitated by social media and health education initiatives, must continue to achieve this reduction. Ultimately, a multisectoral approach encompassing sanitary improvements, mosquito control, vaccination, and community mobilization is crucial in the fight against dengue epidemics.
Asunto(s)
Aedes , Dengue , Epidemias , Control de Mosquitos , Mosquitos Vectores , Dengue/prevención & control , Dengue/epidemiología , Humanos , Brasil/epidemiología , Control de Mosquitos/métodos , Animales , Aedes/virología , Epidemias/prevención & control , Vacunas contra el Dengue/administración & dosificación , Vigilancia de la PoblaciónRESUMEN
Identification of Aedes aegypti breeding hotspots is essential for the implementation of targeted vector control strategies and thus the prevention of several mosquito-borne diseases worldwide. Training computer vision models on satellite and street view imagery in the municipality of Rio de Janeiro, we analyzed the correlation between the density of common breeding grounds and Aedes aegypti infestation measured by ovitraps on a monthly basis between 2019 and 2022. Our findings emphasized the significance (p ≤ 0.05) of micro-habitat proxies generated through object detection, allowing to explain high spatial variance in urban abundance of Aedes aegypti immatures. Water tanks, non-mounted car tires, plastic bags, potted plants, and storm drains positively correlated with Aedes aegypti egg and larva counts considering a 1000 m mosquito flight range buffer around 2700 ovitrap locations, while dumpsters, small trash bins, and large trash bins exhibited a negative association. This complementary application of satellite and street view imagery opens the pathway for high-resolution interpolation of entomological surveillance data and has the potential to optimize vector control strategies. Consequently it supports the mitigation of emerging infectious diseases transmitted by Aedes aegypti, such as dengue, chikungunya, and Zika, which cause thousands of deaths each year.
Asunto(s)
Aedes , Mosquitos Vectores , Animales , Aedes/fisiología , Mosquitos Vectores/fisiología , Brasil , Imágenes Satelitales/métodos , Ciudades , Control de Mosquitos/métodos , Cruzamiento , Ecosistema , Larva/fisiologíaRESUMEN
BACKGROUND: Wolbachia symbiosis in Aedes aegypti is an emerging biocontrol measure against dengue. However, assessing its real-world efficacy is challenging due to the non-randomised, field-based nature of most intervention studies. This research re-evaluates the spatial-temporal impact of Wolbachia interventions on dengue incidence using a large battery of quasi-experimental methods and assesses each method's validity. METHODS: A systematic search for Wolbachia intervention data was conducted via PUBMED. Efficacy was reassessed using commonly-used quasi-experimental approaches with extensive robustness checks, including geospatial placebo tests and a simulation study. Intervention efficacies across multiple study sites were computed using high-resolution aggregations to examine heterogeneities across sites and study periods. We further designed a stochastic simulation framework to assess the methods' ability to estimate intervention efficacies (IE). RESULTS: Wolbachia interventions in Singapore, Malaysia, and Brazil significantly decreased dengue incidence, with reductions ranging from 48.17% to 69.19%. IEs varied with location and duration. Malaysia showed increasing efficacy over time, while Brazil exhibited initial success with subsequent decline, hinting at operational challenges. Singapore's strategy was highly effective despite partial saturation. Simulations identified Synthetic Control Methods (SCM) and its variant, count Synthetic Control Method (cSCM), as superior in precision, with the smallest percentage errors in efficacy estimation. These methods also demonstrated robustness in placebo tests. CONCLUSIONS: Wolbachia interventions exhibit consistent protective effects against dengue. SCM and cSCM provided the most precise and robust estimates of IEs, validated across simulated and real-world settings.
Asunto(s)
Aedes , Dengue , Wolbachia , Wolbachia/fisiología , Dengue/prevención & control , Dengue/epidemiología , Animales , Aedes/microbiología , Aedes/virología , Humanos , Brasil/epidemiología , Singapur/epidemiología , Malasia/epidemiología , Incidencia , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Simbiosis , Control Biológico de Vectores/métodos , Control Biológico de Vectores/estadística & datos numéricosRESUMEN
We report the 1st records of Aedes tormentor and Culex panocossa throughout vector surveillance events carried out in putative foci of eastern equine encephalitis in Tamaulipas, Mexico. Formerly, Ae. tormentor had been reported in, at least, 2 Central American countries and Mexico. In Mexico, reports were from the states of Campeche, Chiapas, Quintana Roo, and Veracruz. Records of Ae. tormentor in these 4 Neotropical states were recently reviewed and eliminated; thus, the southernmost geographic distribution for this species is considered to be the state of Tamaulipas Mexico in its neotropical zone. Further, Cx. panocossa had been collected in Guerrero, Tabasco, and Veracruz. In Tamaulipas, there are 82 species of mosquitoes, being the 4th state accounting for the highest mosquito species diversity of 11 states in which comprehensive studies have been conducted on the subject of mosquito distribution.