RESUMEN
PREMISE OF THE STUDY: Factors related to pollen and resource limitation were evaluated to predict female fruit production in a tropical dioecious tree. Pollen limitation via variation in the male density at local scales is expected to limit female reproduction success in dioecious plants. METHODOLOGY: We modeled the roles of local male density, female crown size, crown illumination, and female flower production on female fruit initiation and mature fruit production in a continuous population (62 ha plot) of a tropical dioecious tree (Virola surinamensis). In addition, we used microsatellites to describe the scale of effective pollen flow, the male effective population size, and the spatial genetic structure within/between progenies and males. KEY RESULTS: The local male density was not related to female fruit initiation or mature fruit production. Female floral production had a positive effect on fruit initiation. The female crown size was positively related to fruit maturation. Seeds from the same female and seeds from different but spatially proximal females were generally half-siblings; however, proximal females showed greater variation. Proximal male-female adult pairs were not significantly more genetically related than distant pairs. The probability of paternity was negatively affected by the distance between seeds and males; most effective pollen dispersal events (â¼85%) occurred from males located less than 150 m from females. The number of males siring progenies was greater than the number of males found at local scales. CONCLUSIONS: Female fecundity in this continuous population of Virola surinamensis is not limited by the availability of pollen from proximal males. Rather, resource allocation to floral production may ultimately determine female reproductive success.
Asunto(s)
Flores/fisiología , Myristicaceae/fisiología , Demografía , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Geografía , Myristicaceae/genética , Myristicaceae/crecimiento & desarrollo , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Polinización , Densidad de Población , Reproducción , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiologíaRESUMEN
Enrichment planting in naturally recovering secondary forests or in tree plantations is increasingly being used as strategy to restore later-successional, large-seeded tropical forest trees. We seeded two tree species (Otoba novogranatensis and Ruagea glabra) in three agricultural sites in Southern Costa Rica: abandoned pastures, eight to ten year old secondary forests and three year old tree plantations (containing two N-fixing of four total tree species). We measured micrometeorological conditions, soil water content, plant water potential, leaf area, foliar C and N, and photosynthesis to better understand mechanistic responses of seedlings to conditions in the different successional habitats. Micrometeorological conditions, soil water content, and plant water potential were generally similar across habitats. Certain aspects of leaves (such as Specific Leaf Area and foliar N content), and photosynthesis (e.g. quantum yield and electron transport rate) were highest in the plantations, intermediate in the secondary forests, and lowest in abandoned pastures. Enhanced rates of photosynthetic biochemistry (such as Vxmax and Jmax) and Photosystem II efficiency (e.g. thermal energy dissipation) occurred in leaves from the plantations compared to the abandoned pastures, which may be related to higher leaf %N content. Results suggest that foliar N may be of greater importance than soil water content and micrometeorological factors in driving differences in photosynthetic processes across planting habitats. Planting seeds of these two species in plantations containing three year old trees (including two N-fixing species) enhances certain aspects of their photosynthesis and growth, compared to seedlings in abandoned pastures with non-native grasses, and thus can help increase forest recovery on abandoned agricultural lands.
Asunto(s)
Ecosistema , Meliaceae/crecimiento & desarrollo , Myristicaceae/crecimiento & desarrollo , Fotosíntesis/fisiología , Plantones/crecimiento & desarrollo , Suelo/química , Agricultura , Costa Rica , ÁrbolesRESUMEN
Enrichment planting in naturally recovering secondary forests or in tree plantations is increasingly being used as strategy to restore later-successional, large-seeded tropical forest trees. We seeded two tree species (Otoba novogranatensis and Ruagea glabra) in three agricultural sites in Southern Costa Rica: abandoned pastures, eight to ten year old secondary forests and three year old tree plantations (containing two N-fixing of four total tree species). We measured micrometeorological conditions, soil water content, plant water potential, leaf area, foliar C and N, and photosynthesis to better understand mechanistic responses of seedlings to conditions in the different successional habitats. Micrometeorological conditions, soil water content, and plant water potential were generally similar across habitats. Certain aspects of leaves (such as Specific Leaf Area and foliar N content), and photosynthesis (e.g. quantum yield and electron transport rate) were highest in the plantations, intermediate in the secondary forests, and lowest in abandoned pastures. Enhanced rates of photosynthetic biochemistry (such as Vcmax and Jmax) and Photosystem II efficiency (e.g. thermal energy dissipation) occurred in leaves from the plantations compared to the abandoned pastures, which may be related to higher leaf %N content. Results suggest that foliar N may be of greater importance than soil water content and micrometeorological factors in driving differences in photosynthetic processes across planting habitats. Planting seeds of these two species in plantations containing three year old trees (including two N-fixing species) enhances certain aspects of their photosynthesis and growth, compared to seedlings in abandoned pastures with non-native grasses, and thus can help increase forest recovery on abandoned agricultural lands.
El enriquecimiento de bosques secundarios o plantaciones forestales en proceso de regeneración natural por medio de la siembra de plántulas es una práctica cada vez más utilizada para restaurar bosques tropicales en estado de sucesión tardía. Sembramos dos especies de árboles (Otoba novogranatensis y Ruagea glabra) en pastizales abandonados, bosques secundarios de ocho a diez años de edad y plantaciones forestales de tres años de edad (con dos especies fijadoras de Nitrógeno de un total de cuatro especies) en tres sitios agrícolas en el Sur de Costa Rica. Medimos condiciones micrometeorológicas, contenido de agua del suelo, potencial hídrico de las plantas, área foliar, C y N foliar, y fotosíntesis para entender de una mejor manera las respuestas funcionales de las plántulas ante condiciones de distintos estadíos sucesionales. Las condiciones micrometeorológicas, contenido hídrico del suelo y el potencial hídrico de las plantas fueron mayoritariamente similares entre hábitats. Algunos aspectos de las hojas (como Área Foliar Específica y contenido de N foliar) y fotosíntesis (ej.: rendimiento cuántico y tasa de transporte de electrones) presentaron valores mayores en las plantaciones, intermedios en los bosques secundarios y menores en los pastizales abandonados. Se obtuvo un aumento en las tasas fotosintéticas bioquímicas (como Vcmax, Jmax) y la eficiencia del Fotosistema II (ej.: disipación de energía térmica) en hojas provenientes de las plantaciones comparado a las de los pastizales, posiblemente relacionado a un mayor %N foliar. Los resultados sugieren que el N foliar puede ser más importante que el contenido de agua del suelo y que los factores micrometeorológicos para marcar diferencias en los procesos fotosintéticos entre hábitats. Las plántulas de estas dos especies en las plantaciones con árboles de tres años de edad (incluyendo dos fijadoras de N) incrementaron ciertos aspectos de su fotosíntesis y crecimiento comparado a las plántulas en los pastizales abandonados de especies exóticas, por lo tanto, esta práctica puede ayudar a incrementar la recuperación de los bosques en áreas agrícolas abandonadas.
Asunto(s)
Ecosistema , Meliaceae/crecimiento & desarrollo , Myristicaceae/crecimiento & desarrollo , Fotosíntesis/fisiología , Plantones/crecimiento & desarrollo , Suelo/química , Agricultura , Costa Rica , ÁrbolesRESUMEN
In order to differentiate between mechanisms of species coexistence, we examined the relative importance of local biotic neighbourhood, abiotic habitat factors and species differences as factors influencing the survival of 2330 spatially mapped tropical tree seedlings of 15 species of Myristicaceae in two separate analyses in which individuals were identified first to species and then to genus. Using likelihood methods, we selected the most parsimonious candidate models as predictors of 3 year seedling survival in both sets of analyses. We found evidence for differential effects of abiotic niche and neighbourhood processes on individual survival between analyses at the genus and species levels. Niche partitioning (defined as an interaction of taxonomic identity and abiotic neighbourhood) was significant in analyses at the genus level, but did not differentiate among species in models of individual seedling survival. By contrast, conspecific and congeneric seedling and adult density were retained in the minimum adequate models of seedling survival at species and genus levels, respectively. We conclude that abiotic niche effects express differences in seedling survival among genera but not among species, and that, within genera, community and/or local variation in adult and seedling abundance drives variation in seedling survival. These data suggest that different mechanisms of coexistence among tropical tree taxa may function at different taxonomic or phylogenetic scales. This perspective helps to reconcile perceived differences of importance in the various non-mutually exclusive mechanisms of species coexistence in hyper-diverse tropical forests.
Asunto(s)
Ecosistema , Modelos Biológicos , Myristicaceae/clasificación , Myristicaceae/crecimiento & desarrollo , Ecuador , Funciones de Verosimilitud , Modelos Logísticos , Plantones/crecimiento & desarrollo , Suelo/análisis , Especificidad de la Especie , Análisis de Supervivencia , Clima TropicalRESUMEN
Factors affecting survival and recruitment of 3531 individually mapped seedlings of Myristicaceae were examined over three years in a highly diverse neotropical rain forest, at spatial scales of 1-9 m and 25 ha. We found convincing evidence of a community compensatory trend (CCT) in seedling survival (i.e., more abundant species had higher seedling mortality at the 25-ha scale), which suggests that density-dependent mortality may contribute to the spatial dynamics of seedling recruitment. Unlike previous studies, we demonstrate that the CCT was not caused by differences in microhabitat preferences or life history strategy among the study species. In local neighborhood analyses, the spatial autocorrelation of seedling survival was important at small spatial scales (1-5 m) but decayed rapidly with increasing distance. Relative seedling height had the greatest effect on seedling survival. Conspecific seedling density had a more negative effect on survival than heterospecific seedling density and was stronger and extended farther in rare species than in common species. Taken together, the CCT and neighborhood analyses suggest that seedling mortality is coupled more strongly to the landscape-scale abundance of conspecific large trees in common species and the local density of conspecific seedlings in rare species. We conclude that negative density dependence could promote species coexistence in this rain forest community but that the scale dependence of interactions differs between rare and common species.
Asunto(s)
Biodiversidad , Ecosistema , Myristicaceae/fisiología , Plantones/crecimiento & desarrollo , Clima Tropical , Ecuador , Ambiente , Geografía , Myristicaceae/crecimiento & desarrollo , Densidad de Población , Dinámica Poblacional , ÁrbolesRESUMEN
Studies of tree seedling physiology and growth under field conditions provide information on the mechanisms underlying inter- and intraspecific differences in growth and survival at a critical period during forest regeneration. I compared photosynthetic physiology, growth and biomass allocation in seedlings of three shade-tolerant tree species, Virola koschynii Warb., Dipteryx panamensis (Pittier) Record & Mell and Brosimum alicastrum Swartz., growing across a light gradient created by a forest-pasture edge (0.5 to 67% diffuse transmittance (%T)). Most growth and physiological traits showed nonlinear responses to light availability, with the greatest changes occurring between 0.5 and 20 %T. Specific leaf area (SLA) and nitrogen per unit leaf mass (N mass) decreased, maximum assimilation per unit leaf area (A area) and area-based leaf N concentration (N area) increased, and maximum assimilation per unit leaf mass (A mass) did not change with increasing irradiance. Plastic responses in SLA were important determinants of leaf N and A area across the gradient. Species differed in magnitude and plasticity of growth; B. alicastrum had the lowest relative growth rates (RGR) and low plasticity. Its final biomass varied only 10-fold across the light gradient. In contrast, the final biomass of D. panamensis and V. koschynii varied by 100- and 50-fold, respectively, and both had higher RGR than B. alicastrum. As light availability increased, all species decreased biomass allocation to leaf tissue (mass and area) and showed a trade-off between allocation to leaf area at a given plant mass (LAR) and net gain in mass per unit leaf area (net assimilation rate, NAR). This trade-off largely reflected declines in SLA with increasing light. Finally, A area was correlated with NAR and both were major determinants of intraspecific variation in RGR. These data indicate the importance of plasticity in photosynthetic physiology and allocation for variation in tree seedling growth among habitats that vary in light availability.