Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.002
Filtrar
1.
BMC Plant Biol ; 24(1): 766, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123119

RESUMEN

BACKGROUND: Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood. RESULTS: We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root. CONCLUSIONS: DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.


Asunto(s)
Medicago truncatula , Micorrizas , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Simbiosis , Medicago truncatula/genética , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Micorrizas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Simbiosis/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Genes de Plantas , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Homeostasis , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo
2.
Nat Microbiol ; 9(8): 1929-1939, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39095495

RESUMEN

Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.


Asunto(s)
Fabaceae , Fijación del Nitrógeno , Rhizobium , Simbiosis , Fabaceae/microbiología , Rhizobium/fisiología , Rhizobium/metabolismo , Interacciones Microbiota-Huesped , Nódulos de las Raíces de las Plantas/microbiología , Nodulación de la Raíz de la Planta
4.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39126082

RESUMEN

Phaseolus vulgaris is a globally important legume cash crop, which can carry out symbiotic nitrogen fixation with rhizobia. The presence of suitable rhizobia in cultivating soils is crucial for legume cropping, especially in areas beyond the plant-host native range, where soils may lack efficient symbiotic partners. We analyzed the distribution patterns and traits of native rhizobia associated with P. vulgaris in soils of Yunnan, where the common bean experienced a recent expansion. A total of 608 rhizobial isolates were tracked from soils of fifteen sampling sites using two local varieties of P. vulgaris. The isolates were discriminated into 43 genotypes as defined by IGS PCR-RFLP. Multiple locus sequence analysis based on recA, atpD and rpoB of representative strains placed them into 11 rhizobial species of Rhizobium involving Rhizobium sophorae, Rhizobium acidisoli, Rhizobium ecuadorense, Rhizobium hidalgonense, Rhizobium vallis, Rhizobium sophoriradicis, Rhizobium croatiense, Rhizobium anhuiense, Rhizobium phaseoli, Rhizobium chutanense and Rhizobium etli, and five unknown Rhizobium species; Rhizobium genosp. I~V. R. phaseoli and R. anhuiense were the dominant species (28.0% and 28.8%) most widely distributed, followed by R. croatiense (14.8%). The other rhizobial species were less numerous or site-specific. Phylogenies of nodC and nifH markers, were divided into two specific symbiovars, sv. phaseoli regardless of the species affiliation and sv. viciae associated with R. vallis. Through symbiotic effect assessment, all the tested strains nodulated both P. vulgaris varieties, often resulting with a significant greenness index (91-98%). However, about half of them exhibited better plant biomass performance, at least on one common bean variety, and two isolates (CYAH-6 and BLYH-15) showed a better symbiotic efficiency score. Representative strains revealed diverse abiotic stress tolerance to NaCl, acidity, alkalinity, temperature, drought and glyphosate. One strain efficient on both varieties and exhibiting stress abiotic tolerance (BLYH-15) belonged to R. genosp. IV sv. phaseoli, a species first found as a legume symbiont.


Asunto(s)
Phaseolus , Filogenia , Rhizobium , Microbiología del Suelo , Simbiosis , Phaseolus/microbiología , Phaseolus/crecimiento & desarrollo , Rhizobium/genética , Rhizobium/fisiología , China , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/microbiología
5.
BMC Plant Biol ; 24(1): 780, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148012

RESUMEN

BACKGROUND: The symbiosis among plants, rhizobia, and arbuscular mycorrhizal fungi (AMF) is one of the most well-known symbiotic relationships in nature. However, it is still unclear how bilateral/tripartite symbiosis works under resource-limited conditions and the diverse genetic backgrounds of the host. RESULTS: Using a full factorial design, we manipulated mungbean accessions/subspecies, rhizobia, and AMF to test their effects on each other. Rhizobia functions as a typical facilitator by increasing plant nitrogen content, plant weight, chlorophyll content, and AMF colonization. In contrast, AMF resulted in a tradeoff in plants (reducing biomass for phosphorus acquisition) and behaved as a competitor in reducing rhizobia fitness (nodule weight). Plant genotype did not have a significant effect on AMF fitness, but different mungbean accessions had distinct rhizobia affinities. In contrast to previous studies, the positive relationship between plant and rhizobia fitness was attenuated in the presence of AMF, with wild mungbean being more responsive to the beneficial effect of rhizobia and attenuation by AMF. CONCLUSIONS: We showed that this complex tripartite relationship does not unconditionally benefit all parties. Moreover, rhizobia species and host genetic background affect the symbiotic relationship significantly. This study provides a new opportunity to re-evaluate the relationships between legume plants and their symbiotic partners.


Asunto(s)
Micorrizas , Rhizobium , Simbiosis , Vigna , Micorrizas/fisiología , Vigna/microbiología , Vigna/genética , Vigna/fisiología , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-39037439

RESUMEN

The species Rhizobium indigoferae and Sinorhizobium kummerowiae were isolated from legume nodules and the 16S rRNA sequences of their respective type strains, CCBAU 71042T and CCBAU 71714T, were highly divergent from those of the other species of the genera Rhizobium and Sinorhizobium, respectively. However, the 16S rRNA gene sequences obtained for strains CCBAU 71042T and CCBAU 71714T several years after description, were different from the original ones, showing 100 % similarity to the type strains of Rhizobium leguminosarum and Sinorhizobium meliloti, respectively. Phylogenetic analyses of two housekeeping genes, recA and atpD, confirmed the high phylogenetic closeness of strains CCBAU 71042T and CCBAU 71714T to the respective type strains of R. leguminosarum and S. meliloti. In the present work, we compared the genomes of the type strains of R. indigoferae and S. kummerowiae available in several culture collections with those of the respective type strains of R. leguminosarum and S. meliloti, some of them obtained in this study. The calculated average nucleotide identity-blast and digital DNA-DNA hybridization values in both cases were higher than those recommended for species differentiation, supporting the proposal for the reclassification of the type strains of R. indigoferae and S. kummerowiae into the species R. leguminosarum and S. meliloti, respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Filogenia , ARN Ribosómico 16S , Rhizobium leguminosarum , Análisis de Secuencia de ADN , Sinorhizobium meliloti , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/clasificación , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/clasificación , Genoma Bacteriano , Rhizobium/clasificación , Rhizobium/genética , Rhizobium/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Genes Esenciales , Genes Bacterianos , Hibridación de Ácido Nucleico
7.
Artículo en Inglés | MEDLINE | ID: mdl-39078400

RESUMEN

A comprehensive polyphasic taxonomic investigation integrating taxongenomic criteria was conducted on strain IRAMC:0171T isolated from the root nodules of Retama raetam in Tunisia. This Gram-stain-negative and aerobic bacterium thrived within a temperature range of 5-45 °C, optimal at 28 °C, and tolerated salt concentrations from 0-6 % NaCl, with an optimal range of 0-3 %. It displayed pH tolerance from pH 4 to 10, thriving best at pH 6.8-7.5. Chemotaxonomically, strain IRAMC:0171T was characterized by diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine as polar lipids. Its predominant fatty acid composition was C18 : 1 ω7c (61.2 %), and the primary ubiquinone was Q10 (97 %). Analysis of the 16S rRNA gene of strain IRAMC:0171T showed 99.08 % similarity to Mesorhizobium waimense ICMP 19557T, Mesorhizobium amorphae ACCC 19665T, and Mesorhizobium huakuii IAM 14158. However, digital DNA-DNA hybridization and average nucleotide identity analyses revealed values ranging from 21.1 to 25.2 % and 77.05 to 82.24 %, respectively, signifying significant deviation from established species demarcation thresholds. Phylogenetic studies, encompassing 16S rRNA, whole-genome-based tree reconstruction, and core protein analysis, positioned strain IRAMC:0171T closest to Mesorhizobium terrae KCTC 72278T and 'Mesorhizobium hungaricum' UASWS1009T, forming together a distinct branch within the genus Mesorhizobium. In consideration of this comprehensive data, we propose strain IRAMC:0171T (=DSM 112841T=CECT 30767T) as the type strain of a new species named Mesorhizobium retamae sp. nov.


Asunto(s)
Ácidos Grasos , Mesorhizobium , Filogenia , Nódulos de las Raíces de las Plantas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Ácidos Grasos/química , Mesorhizobium/genética , Mesorhizobium/aislamiento & purificación , Mesorhizobium/clasificación , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Túnez , Ubiquinona
8.
Nat Commun ; 15(1): 6387, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39080318

RESUMEN

Legumes acquire nitrogen-fixing ability by forming root nodules. Transferring this capability to more crops could reduce our reliance on nitrogen fertilizers, thereby decreasing environmental pollution and agricultural production costs. Nodule organogenesis is complex, and a comprehensive transcriptomic atlas is crucial for understanding the underlying molecular events. Here, we utilized spatial transcriptomics to investigate the development of nodules in the model legume, Lotus japonicus. Our investigation has identified the developmental trajectories of two critical regions within the nodule: the infection zone and peripheral tissues. We reveal the underlying biological processes and provide gene sets to achieve symbiosis and material exchange, two essential aspects of nodulation. Among the candidate regulatory genes, we illustrate that LjNLP3, a transcription factor belonging to the NIN-LIKE PROTEIN family, orchestrates the transition of nodules from the differentiation to maturation. In summary, our research advances our understanding of nodule organogenesis and provides valuable data for developing symbiotic nitrogen-fixing crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lotus , Fijación del Nitrógeno , Proteínas de Plantas , Nódulos de las Raíces de las Plantas , Transcriptoma , Lotus/genética , Lotus/metabolismo , Lotus/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fijación del Nitrógeno/genética , Simbiosis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Nodulación de la Raíz de la Planta/genética , Perfilación de la Expresión Génica , Análisis Espacio-Temporal , Organogénesis de las Plantas/genética , Organogénesis/genética
9.
Sci Adv ; 10(31): eadp6436, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39083610

RESUMEN

Host range specificity is a prominent feature of the legume-rhizobial symbiosis. Sinorhizobium meliloti and Sinorhizobium medicae are two closely related species that engage in root nodule symbiosis with legume plants of the Medicago genus, but certain Medicago species exhibit selectivity in their interactions with the two rhizobial species. We have identified a Medicago receptor-like kinase, which can discriminate between the two bacterial species, acting as a genetic barrier against infection by most S. medicae strains. Activation of this receptor-mediated nodulation restriction requires a bacterial gene that encodes a glycine-rich octapeptide repeat protein with distinct variants capable of distinguishing S. medicae from S. meliloti. This study sheds light on the coevolution of host plants and rhizobia, shaping symbiotic selectivity in their respective ecological niches.


Asunto(s)
Simbiosis , Especificidad de la Especie , Medicago/microbiología , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética
10.
Dev Cell ; 59(16): 2254-2269.e6, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39053471

RESUMEN

Symbiotic nodules comprise two classes, indeterminate and determinate, defined by the presence/absence of apical meristem and developmental zonation. Why meristem and zonation are absent from determinate nodules remains unclear. Here, we define cell types in developing soybean nodules, highlighting the undifferentiated infection zones and differentiated nitrogen-fixation zones. Auxin governs infection zone maintenance. GRETCHEN HAGEN 3 (GH3) enzymes deactivate auxin by conjugation and promote cell differentiation. gh3 mutants increased undifferentiated cells and enlarged infection zones. The central symbiosis-transcription factor NIN2a activates GH3.1 to reduce auxin levels and facilitates cell differentiation. High auxin promotes NIN2a protein accumulation and enhances signaling, further deactivating auxin and depleting infection zones. Our findings shed light on the NIN2a-GH3-auxin module that drives soybean nodule cell differentiation. This study challenges our understanding of determinate nodule development and proposes that the regulation of nodule zonation offers valuable insights into broader mechanisms of cell differentiation across plant species.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Glycine max , Homeostasis , Ácidos Indolacéticos , Proteínas de Plantas , Nódulos de las Raíces de las Plantas , Transducción de Señal , Simbiosis , Glycine max/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Fijación del Nitrógeno
11.
Plant Physiol Biochem ; 214: 108936, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39018775

RESUMEN

Vicia villosa (VV) and Vicia sativa (VS) are legume forages highly valued for their excellent nitrogen fixation. However, no research has addressed the mechanisms underlying their differences in nitrogen fixation. This study employed physiological, cytological, and comparative transcriptomic approaches to elucidate the disparities in nitrogen fixation between them. Our results showed that the total amount of nitrogen fixed was 60.45% greater in VV than in VS, and the comprehensive nitrogen response performance was 94.19% greater, while the nitrogen fixation efficiency was the same. The infection zone and differentiated bacteroid proportion in mature VV root nodules were 33.76% and 19.35% greater, respectively, than those in VS. The size of the VV genome was 15.16% larger than that of the VS genome, consistent with its greater biomass. A significant enrichment of the flavonoid biosynthetic pathway was found only for VV-specific genes, among which chalcone-flavonone isomerase, caffeoyl-CoA-O-methyltransferase and stilbene synthase were extremely highly expressed. The VV-specific genes also exhibited significant enrichment in symbiotic nodulation; genes related to nodule-specific cysteine-rich peptides (NCRs) comprised 61.11% of the highly expressed genes. qRT‒PCR demonstrated that greater enrichment and expression of the dominant NCR (Unigene0004451) were associated with greater nodule bacteroid differentiation and greater nitrogen fixation in VV. Our findings suggest that the greater total nitrogen fixation of VV was attributed to its larger biomass, leading to a greater nitrogen demand and enhanced fixation physiology. This process is likely achieved by the synergistic effects of high bacteroid differentiation along with high expression of flavonoid and NCR genes.


Asunto(s)
Flavonoides , Fijación del Nitrógeno , Transcriptoma , Fijación del Nitrógeno/genética , Flavonoides/metabolismo , Transcriptoma/genética , Vicia sativa/genética , Vicia sativa/metabolismo , Vicia/genética , Vicia/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cisteína/metabolismo , Péptidos/metabolismo , Péptidos/genética
12.
Science ; 385(6706): 288-294, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39024445

RESUMEN

Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots. Here, live-imaging and transcriptome analyses revealed oscillating host gene expression with approximately 6-hour intervals upon bacterial inoculation. Cytokinin response also exhibited a similar oscillation pattern. Cytokinin signaling is crucial to maintaining the periodicity, as observed in cytokinin receptor mutants displaying altered infection foci distribution. This periodic regulation influences the size of the root region responsive to bacteria, as well as the nodulation process progression.


Asunto(s)
Citocininas , Regulación de la Expresión Génica de las Plantas , Interacciones Microbiota-Huesped , Lotus , Mesorhizobium , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas , Simbiosis , Citocininas/metabolismo , Perfilación de la Expresión Génica , Lotus/genética , Lotus/crecimiento & desarrollo , Lotus/metabolismo , Mutación , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Mesorhizobium/genética , Mesorhizobium/fisiología
13.
Microbiology (Reading) ; 170(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073398

RESUMEN

Rhizobium leguminosarum aspartate aminotransferase (AatA) mutants show drastically reduced symbiotic nitrogen fixation in legume nodules. Whilst AatA reversibly transaminates the two major amino-donor compounds aspartate and glutamate, the reason for the lack of N2 fixation in the mutant has remained unclear. During our investigations into the role of AatA, we found that it catalyses an additional transamination reaction between aspartate and pyruvate, forming alanine. This secondary reaction runs at around 60 % of the canonical aspartate transaminase reaction rate and connects alanine biosynthesis to glutamate via aspartate. This may explain the lack of any glutamate-pyruvate transaminase activity in R. leguminosarum, which is common in eukaryotic and many prokaryotic genomes. However, the aspartate-to-pyruvate transaminase reaction is not needed for N2 fixation in legume nodules. Consequently, we show that aspartate degradation is required for N2 fixation, rather than biosynthetic transamination to form an amino acid. Hence, the enzyme aspartase, which catalyses the breakdown of aspartate to fumarate and ammonia, suppressed an AatA mutant and restored N2 fixation in pea nodules.


Asunto(s)
Aspartato Aminotransferasas , Ácido Aspártico , Fijación del Nitrógeno , Pisum sativum , Rhizobium leguminosarum , Nódulos de las Raíces de las Plantas , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Rhizobium leguminosarum/enzimología , Ácido Aspártico/metabolismo , Pisum sativum/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Aspartato Aminotransferasas/metabolismo , Aspartato Aminotransferasas/genética , Especificidad por Sustrato , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Simbiosis , Mutación
14.
Plant Commun ; 5(8): 100984, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38845198

RESUMEN

The soybean root system is complex. In addition to being composed of various cell types, the soybean root system includes the primary root, the lateral roots, and the nodule, an organ in which mutualistic symbiosis with N-fixing rhizobia occurs. A mature soybean root nodule is characterized by a central infection zone where atmospheric nitrogen is fixed and assimilated by the symbiont, resulting from the close cooperation between the plant cell and the bacteria. To date, the transcriptome of individual cells isolated from developing soybean nodules has been established, but the transcriptomic signatures of cells from the mature soybean nodule have not yet been characterized. Using single-nucleus RNA-seq and Molecular Cartography technologies, we precisely characterized the transcriptomic signature of soybean root and mature nodule cell types and revealed the co-existence of different sub-populations of B. diazoefficiens-infected cells in the mature soybean nodule, including those actively involved in nitrogen fixation and those engaged in senescence. Mining of the single-cell-resolution nodule transcriptome atlas and the associated gene co-expression network confirmed the role of known nodulation-related genes and identified new genes that control the nodulation process. For instance, we functionally characterized the role of GmFWL3, a plasma membrane microdomain-associated protein that controls rhizobial infection. Our study reveals the unique cellular complexity of the mature soybean nodule and helps redefine the concept of cell types when considering the infection zone of the soybean nodule.


Asunto(s)
Glycine max , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas , Transcriptoma , Glycine max/genética , Glycine max/microbiología , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Análisis de la Célula Individual , Regulación de la Expresión Génica de las Plantas , Simbiosis/genética , Fijación del Nitrógeno/genética , Bradyrhizobium/genética , Bradyrhizobium/fisiología
15.
Mol Plant ; 17(8): 1183-1203, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38859588

RESUMEN

Root nodule symbiosis (RNS) between legumes and rhizobia is a major source of nitrogen in agricultural systems. Effective symbiosis requires precise regulation of plant defense responses. The role of the defense hormone jasmonic acid (JA) in the immune response has been extensively studied. Current research shows that JA can play either a positive or negative regulatory role in RNS depending on its concentration, but the molecular mechanisms remain to be elucidated. In this study, we found that inoculation with the rhizobia Sm1021 induces the JA pathway in Medicago truncatula, and blocking the JA pathway significantly reduces the number of infection threads. Mutations in the MtMYC2 gene, which encodes a JA signaling master transcription factor, significantly inhibited rhizobia infection, terminal differentiation, and symbiotic cell formation. Combining RNA sequencing and chromatin immunoprecipitation sequencing, we discovered that MtMYC2 regulates the expression of nodule-specific MtDNF2, MtNAD1, and MtSymCRK to suppress host defense, while it activates MtDNF1 expression to regulate the maturation of MtNCRs, which in turn promotes bacteroid formation. More importantly, MtMYC2 participates in symbiotic signal transduction by promoting the expression of MtIPD3. Notably, the MtMYC2-MtIPD3 transcriptional regulatory module is specifically present in legumes, and the Mtmyc2 mutants are susceptible to the infection by the pathogen Rhizoctonia solani. Collectively, these findings reveal the molecular mechanisms of how the JA pathway regulates RNS, broadening our understanding of the roles of JA in plant-microbe interactions.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Medicago truncatula , Oxilipinas , Nódulos de las Raíces de las Plantas , Simbiosis , Medicago truncatula/microbiología , Medicago truncatula/genética , Medicago truncatula/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transducción de Señal , Rhizobium/fisiología
16.
Nature ; 631(8019): 164-169, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38926580

RESUMEN

Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.


Asunto(s)
Lotus , Fijación del Nitrógeno , Proteínas de Plantas , Sistemas de Mensajero Secundario , Factores de Transcripción , Zinc , Regulación de la Expresión Génica de las Plantas , Lotus/genética , Lotus/metabolismo , Lotus/microbiología , Nitratos/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Zinc/metabolismo
17.
Int J Biol Macromol ; 274(Pt 2): 133436, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936572

RESUMEN

Legume-rhizobia symbiosis offers a unique approach to increase leguminous crop yields. Previous studies have indicated that the number of soybean nodules are increased under elevated CO2 concentration. However, the underlying mechanism behind this phenomenon remains elusive. In this study, transcriptome analysis was applied to identify candidate genes involved in regulating soybean nodulation mediated by elevated CO2 concentration. Among the different expression genes (DEGs), we identified a gene encoding small heat shock protein (sHSP) called GmHSP23.9, which mainly expressed in soybean roots and nodules, and its expression was significantly induced by rhizobium USDA110 infection at 14 days after inoculation (DAI) under elevated CO2 conditions. We further investigated the role of GmHSP23.9 by generating transgenic composite plants carrying GmHSP23.9 overexpression (GmHSP23.9-OE), RNA interference (GmHSP23.9-RNAi), and CRISPR-Cas9 (GmHSP23.9-KO), and these modifications resulted in notable changes in nodule number and the root hairs deformation and suggesting that GmHSP23.9 function as an important positive regulator in soybean. Moreover, we found that altering the expression of GmHSP23.9 influenced the expression of genes involved in the Nod factor signaling pathway and AON signaling pathway to modulate soybean nodulation. Interestingly, we found that knocking down of GmHSP23.9 prevented the increase in the nodule number of soybean in response to elevated CO2 concentration. This research has successfully identified a crucial regulator that influences soybean nodulation under elevated CO2 level and shedding new light on the role of sHSPs in legume nodulation.


Asunto(s)
Dióxido de Carbono , Regulación de la Expresión Génica de las Plantas , Glycine max , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Plantas Modificadas Genéticamente , Glycine max/genética , Glycine max/microbiología , Glycine max/metabolismo , Dióxido de Carbono/metabolismo , Nodulación de la Raíz de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Perfilación de la Expresión Génica
18.
Plant Physiol Biochem ; 213: 108764, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879983

RESUMEN

The phosphoenolpyruvate carboxylase kinase of Medicago sativa L. (MsPPCK1) modulates the phosphorylation status and activity of the C4 pathway phosphoenolpyruvate carboxylase enzyme, which is pivotal for photosynthetic carbon assimilation in plants. This study investigated the role of MsPPCK1 in alfalfa by creating transgenic plants overexpressing MsPPCK1 under the control of the CaMV35S promoter. The enhanced alkali tolerance of transgenic plants indicated an important role of MsPPCK1 gene in regulating plant alkali tolerance. Transgenic plants exhibited heightened antioxidant activity (SOD, POD, and CAT), reduced MDA, H2O2, OFR and REC% content, increased activity of key photosynthetic enzymes (PEPC, PPDK, NADP-ME, and NADP-MDH), and enhanced photosynthetic parameters (Pn, E, Gs, and Ci). Moreover, MsPPCK1 overexpression increased the content of organic acids (oxaloacetic, malic, citric, and succinic acids) in the plants. The upregulation of MsPPCK1 under rhizobial inoculation showcased its other role in nodule development. In transgenic plants, MsDMI2, MsEnod12, and MsNODL4 expression increased, facilitating root nodule development and augmenting plant nodulation. Accelerated root nodule growth positively influences plant growth and yield and enhances alfalfa resistance to alkali stress. This study highlights the pivotal role of MsPPCK1 in fortifying plant alkali stress tolerance and improving yield, underscoring its potential as a key genetic target for developing alkali-tolerant and high-yielding alfalfa varieties.


Asunto(s)
Medicago sativa , Fotosíntesis , Proteínas de Plantas , Plantas Modificadas Genéticamente , Medicago sativa/genética , Medicago sativa/enzimología , Medicago sativa/crecimiento & desarrollo , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Álcalis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas
19.
Plant J ; 119(3): 1508-1525, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923649

RESUMEN

Legumes have evolved a nitrogen-fixing symbiotic interaction with rhizobia, and this association helps them to cope with the limited nitrogen conditions in soil. The compatible interaction between the host plant and rhizobia leads to the formation of root nodules, wherein internalization and transition of rhizobia into their symbiotic form, termed bacteroids, occur. Rhizobia in the nodules of the Inverted Repeat-Lacking Clade legumes, including Medicago truncatula, undergo terminal differentiation, resulting in elongated and endoreduplicated bacteroids. This transition of endocytosed rhizobia is mediated by a large gene family of host-produced nodule-specific cysteine-rich (NCR) peptides in M. truncatula. Few NCRs have been recently found to be essential for complete differentiation and persistence of bacteroids. Here, we show that a M. truncatula symbiotic mutant FN9285, defective in the complete transition of rhizobia, is deficient in a cluster of NCR genes. More specifically, we show that the loss of the duplicated genes NCR086 and NCR314 in the A17 genotype, found in a single copy in Medicago littoralis R108, is responsible for the ineffective symbiotic phenotype of FN9285. The NCR086 and NCR314 gene pair encodes the same mature peptide but their transcriptional activity varies considerably. Nevertheless, both genes can restore the effective symbiosis in FN9285 indicating that their complementation ability does not depend on the strength of their expression activity. The identification of the NCR086/NCR314 peptide, essential for complete bacteroid differentiation, has extended the list of peptides, from a gene family of several hundred members, that are essential for effective nitrogen-fixing symbiosis in M. truncatula.


Asunto(s)
Medicago truncatula , Familia de Multigenes , Proteínas de Plantas , Nódulos de las Raíces de las Plantas , Simbiosis , Medicago truncatula/microbiología , Medicago truncatula/genética , Medicago truncatula/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética , Simbiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Rhizobium/fisiología , Rhizobium/genética , Fijación del Nitrógeno/genética , Péptidos/metabolismo , Péptidos/genética , Sinorhizobium meliloti/fisiología , Sinorhizobium meliloti/genética , Cisteína/metabolismo
20.
Mol Plant ; 17(7): 1090-1109, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822523

RESUMEN

The precise control of receptor levels is crucial for initiating cellular signaling transduction in response to specific ligands; however, such mechanisms regulating nodulation factor (NF) receptor (NFR)-mediated perception of NFs to establish symbiosis remain unclear. In this study, we unveil the pivotal role of the NFR-interacting RING-type E3 ligase 1 (NIRE1) in regulating NFR1/NFR5 homeostasis to optimize rhizobial infection and nodule development in Lotus japonicus. We demonstrated that NIRE1 has a dual function in this regulatory process. It associates with both NFR1 and NFR5, facilitating their degradation through K48-linked polyubiquitination before rhizobial inoculation. However, following rhizobial inoculation, NFR1 phosphorylates NIRE1 at a conserved residue, Tyr-109, inducing a functional switch in NIRE1, which enables NIRE1 to mediate K63-linked polyubiquitination, thereby stabilizing NFR1/NFR5 in infected root cells. The introduction of phospho-dead NIRE1Y109F leads to delayed nodule development, underscoring the significance of phosphorylation at Tyr-109 in orchestrating symbiotic processes. Conversely, expression of the phospho-mimic NIRE1Y109E results in the formation of spontaneous nodules in L. japonicus, further emphasizing the critical role of the phosphorylation-dependent functional switch in NIRE1. In summary, these findings uncover a fine-tuned symbiotic mechanism that a single E3 ligase could undergo a phosphorylation-dependent functional switch to dynamically and precisely regulate NF receptor protein levels.


Asunto(s)
Lotus , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Ubiquitina-Proteína Ligasas , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lotus/metabolismo , Lotus/microbiología , Lotus/genética , Ubiquitinación , Simbiosis/fisiología , Regulación de la Expresión Génica de las Plantas , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...