Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.812
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 488-493, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38952087

RESUMEN

Objective To identify immune-related transcription factors (TFs) in renal glomeruli and tubules from diabetic kidney disease (DKD) patients by bioinformatics analysis. Methods Gene expression datasets from GEO (GSE30528, GSE30529) and RNA sequencing (RNA-seq) data from the Karolinska Kidney Research Center were used. Gene set enrichment analysis (GSEA) was conducted to examine differences in immune-related gene expression in the glomeruli and tubules (DKD) patients. To identify immune-related genes (IRGs) and TFs, differential expression analysis was carried out using the Limma and DESeq2 software packages. Key immune-related TFs were pinpointed through co-expression analysis. The interaction network between TFs and IRGs was constructed using the STRING database and Cytoscape software. Furthermore, the Nephroseq database was employed to investigate the correlation between the identified TFs and clinical-pathological features. Results When compared to normal control tissues, significant differences in the expression of immune genes were observed in both the glomeruli and tubules of individuals with Diabetic Kidney Disease (DKD). Through differential and co-expression analysis, 50 immune genes and 9 immune-related transcription factors (TFs) were identified in the glomeruli. In contrast, 131 immune response genes (IRGs) and 41 immune-related TFs were discovered in the renal tubules. The protein-protein interaction (PPI) network highlighted four key immune-related TFs for the glomeruli: Interferon regulatory factor 8 (IRF8), lactotransferrin (LTF), CCAAT/enhancer binding protein alpha (CEBPA), and Runt-related transcription factor 3 (RUNX3). For the renal tubules, the key immune-related TFs were FBJ murine osteosarcoma viral oncogene homolog B (FOSB), nuclear receptor subfamily 4 group A member 1 (NR4A1), IRF8, and signal transducer and activator of transcription 1 (STAT1). These identified TFs demonstrated a significant correlation with the glomerular filtration rate (GFR), highlighting their potential importance in the pathology of DKD. Conclusion Bioinformatics analysis identifies potential genes associated with DKD pathogenesis and immune dysregulation. Further validation of the expression and function of these genes may contribute to immune-based therapeutic research for DKD.


Asunto(s)
Biología Computacional , Nefropatías Diabéticas , Factores de Transcripción , Humanos , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/inmunología , Nefropatías Diabéticas/metabolismo , Factores de Transcripción/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Glomérulos Renales/inmunología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Redes Reguladoras de Genes , Túbulos Renales/inmunología , Túbulos Renales/metabolismo
2.
Front Public Health ; 12: 1367061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947355

RESUMEN

Background and objective: Heavy metals, ubiquitous in the environment, pose a global public health concern. The correlation between these and diabetic kidney disease (DKD) remains unclear. Our objective was to explore the correlation between heavy metal exposures and the incidence of DKD. Methods: We analyzed data from the NHANES (2005-2020), using machine learning, and cross-sectional survey. Our study also involved a bidirectional two-sample Mendelian randomization (MR) analysis. Results: Machine learning reveals correlation coefficients of -0.5059 and - 0.6510 for urinary Ba and urinary Tl with DKD, respectively. Multifactorial logistic regression implicates urinary Ba, urinary Pb, blood Cd, and blood Pb as potential associates of DKD. When adjusted for all covariates, the odds ratios and 95% confidence intervals are 0.87 (0.78, 0.98) (p = 0.023), 0.70 (0.53, 0.92) (p = 0.012), 0.53 (0.34, 0.82) (p = 0.005), and 0.76 (0.64, 0.90) (p = 0.002) in order. Furthermore, multiplicative interactions between urinary Ba and urinary Sb, urinary Cd and urinary Co, urinary Cd and urinary Pb, and blood Cd and blood Hg might be present. Among the diabetic population, the OR of urinary Tl with DKD is a mere 0.10, with a 95%CI of (0.01, 0.74), urinary Co 0.73 (0.54, 0.98) in Model 3, and urinary Pb 0.72 (0.55, 0.95) in Model 2. Restricted Cubic Splines (RCS) indicate a linear linkage between blood Cd in the general population and urinary Co, urinary Pb, and urinary Tl with DKD among diabetics. An observable trend effect is present between urinary Pb and urinary Tl with DKD. MR analysis reveals odds ratios and 95% confidence intervals of 1.16 (1.03, 1.32) (p = 0.018) and 1.17 (1.00, 1.36) (p = 0.044) for blood Cd and blood Mn, respectively. Conclusion: In the general population, urinary Ba demonstrates a nonlinear inverse association with DKD, whereas in the diabetic population, urinary Tl displays a linear inverse relationship with DKD.


Asunto(s)
Nefropatías Diabéticas , Aprendizaje Automático , Análisis de la Aleatorización Mendeliana , Metales Pesados , Humanos , Estudios Transversales , Metales Pesados/orina , Metales Pesados/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Encuestas Nutricionales , Anciano
3.
Sci Rep ; 14(1): 15362, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965304

RESUMEN

Studies have indicated that low high-density lipoprotein cholesterol (HDL-C) level is an important risk factor for diabetic kidney disease (DKD) in patients with type 2 diabetes (T2D). However, whether higher HDL-C levels decrease the risk of developing DKD remains unclear. This study aimed to clarify the relationship between HDL-C levels and DKD risk in individuals with T2D in China. In total, 936 patients with T2D were divided into DKD and non-DKD groups. The association between HDL-C levels and DKD risk was evaluated using logistic regression analysis and restricted cubic spline curves adjusted for potential confounders. Threshold effect analysis of HDL-C for DKD risk was also performed. Higher HDL-C levels did not consistently decrease the DKD risk. Furthermore, a nonlinear association with threshold interval effects between HDL-C levels and the incidence of DKD was observed. Patients with HDL-C ≤ 0.94 mmol/L or HDL-C > 1.54 mmol/L had significantly higher DKD risk after adjusting for confounding factors. Interestingly, the association between high HDL-C levels and increased DKD risk was more significant in women. A U-shaped association between HDL-C levels and DKD risk was observed; therefore, low and high HDL-C levels may increase the DKD risk in patients with T2D.


Asunto(s)
HDL-Colesterol , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Masculino , HDL-Colesterol/sangre , Persona de Mediana Edad , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/epidemiología , Factores de Riesgo , Anciano , China/epidemiología
4.
Cardiovasc Diabetol ; 23(1): 235, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965604

RESUMEN

BACKGROUND: Despite improved glycemic treatment, the impact of glycation on pathological consequences may persist and contribute to adverse clinical outcomes in diabetes. In the present study we investigated the association between serum protein glycation products and progression of kidney disease as well as incident major adverse cardiovascular events (MACE) in type 1 diabetes. METHODS: Fructosamine, advanced glycation end products (AGEs), and methylglyoxal-modified hydro-imidazolone (MG-H1) were measured from baseline serum samples in the FinnDiane study (n = 575). Kidney disease progression was defined as steep eGFR decline (> 3 mL/min/1.73 m2/year) or progression of albuminuria (from lower to higher stage of albuminuria). MACE was defined as acute myocardial infarction, coronary revascularization, cerebrovascular event (stroke), and cardiovascular death. RESULTS: Fructosamine was independently associated with steep eGFR decline (OR 2.15 [95% CI 1.16-4.01], p = 0.016) in the fully adjusted model (age, sex, baseline eGFR). AGEs were associated with steep eGFR decline (OR 1.58 per 1 unit of SD [95% CI 1.07-2.32], p = 0.02), progression to end-stage kidney disease (ESKD) (HR 2.09 per 1 unit of SD [95% CI 1.43-3.05], p < 0.001), and pooled progression (to any stage of albuminuria) (HR 2.72 per 1 unit of SD [95% CI 2.04-3.62], p < 0.001). AGEs (HR 1.57 per 1 unit of SD [95% CI 1.23-2.00], p < 0.001) and MG-H1 (HR 4.99 [95% CI 0.98-25.55], p = 0.054) were associated with incident MACE. MG-H1 was also associated with pooled progression (HR 4.19 [95% CI 1.11-15.89], p = 0.035). Most AGEs and MG-H1 associations were no more significant after adjusting for baseline eGFR. CONCLUSIONS: Overall, these findings suggest that protein glycation products are an important risk factor for target organ damage in type 1 diabetes. The data provide further support to investigate a potential causal role of serum protein glycation in the progression of diabetes complications.


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Progresión de la Enfermedad , Fructosamina , Tasa de Filtración Glomerular , Productos Finales de Glicación Avanzada , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Femenino , Masculino , Productos Finales de Glicación Avanzada/sangre , Persona de Mediana Edad , Factores de Riesgo , Adulto , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/epidemiología , Biomarcadores/sangre , Incidencia , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/sangre , Medición de Riesgo , Fructosamina/sangre , Riñón/fisiopatología , Factores de Tiempo , Albuminuria/diagnóstico , Albuminuria/epidemiología , Albuminuria/sangre , Pronóstico , Estudios Prospectivos , Imidazoles , Ornitina/análogos & derivados
5.
Ren Fail ; 46(2): 2371988, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38952291

RESUMEN

AIMS: Abnormal renal lipid metabolism causes renal lipid deposition, which leads to the development of renal fibrosis in diabetic kidney disease (DKD). The aim of this study was to investigate the effect and mechanism of chlorogenic acid (CA) on reducing renal lipid accumulation and improving DKD renal fibrosis. METHODS: This study evaluated the effects of CA on renal fibrosis, lipid deposition and lipid metabolism by constructing in vitro and in vivo models of DKD, and detected the improvement of Notch1 and Stat3 signaling pathways. Molecular docking was used to predict the binding between CA and the extracellular domain NRR1 of Notch1 protein. RESULTS: In vitro studies have shown that CA decreased the expression of Fibronectin, α-smooth muscle actin (α-SMA), p-smad3/smad3, alleviated lipid deposition, promoted the expression of carnitine palmitoyl transferase 1 A (CPT1A), and inhibited the expression of cholesterol regulatory element binding protein 1c (SREBP1c). The expression of Notch1, Cleaved Notch1, Hes1, and p-stat3/stat3 were inhibited. These results suggested that CA might reduce intercellular lipid deposition in human kidney cells (HK2) by inhibiting Notch1 and stat3 signaling pathways, thereby improving fibrosis. Further, in vivo studies demonstrated that CA improved renal fibrosis and renal lipid deposition in DKD mice by inhibiting Notch1 and stat3 signaling pathways. Finally, molecular docking experiments showed that the binding energy of CA and NRR1 was -6.6 kcal/mol, which preliminarily predicted the possible action of CA on Notch1 extracellular domain NRR1. CONCLUSION: CA reduces renal lipid accumulation and improves DKD renal fibrosis by inhibiting Notch1 and stat3 signaling pathways.


Asunto(s)
Ácido Clorogénico , Nefropatías Diabéticas , Fibrosis , Riñón , Metabolismo de los Lípidos , Receptor Notch1 , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Receptor Notch1/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Animales , Transducción de Señal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Humanos , Ratones , Masculino , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Línea Celular
6.
Cell Commun Signal ; 22(1): 351, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970061

RESUMEN

BACKGROUND: Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS: Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS: Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION: Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.


Asunto(s)
Nefropatías Diabéticas , Inflamasomas , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Inflamasomas/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Adenosina Trifosfato/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología
7.
BMC Nephrol ; 25(1): 216, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971750

RESUMEN

The contribution of chronic kidney disease (CKD) towards the risk of developing cardiovascular disease (CVD) is magnified with co-existing type 1 or type 2 diabetes. Lipids are a modifiable risk factor and good lipid management offers improved outcomes for people with diabetic kidney disease (DKD).The primary purpose of this guideline, written by the Association of British Clinical Diabetologists (ABCD) and UK Kidney Association (UKKA) working group, is to provide practical recommendations on lipid management for members of the multidisciplinary team involved in the care of adults with DKD.


Asunto(s)
Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/terapia , Adulto , Reino Unido/epidemiología , Enfermedades Cardiovasculares/terapia , Lípidos/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico
10.
FASEB J ; 38(14): e23798, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38989582

RESUMEN

The role of mesenchymal-stem-cell-derived exosomes (MSCs-Exo) in the regulation of macrophage polarization has been recognized in several diseases. There is emerging evidence that MSCs-Exo partially prevent the progression of diabetic nephropathy (DN). This study aimed to investigate whether exosomes secreted by MSCs pre-treated with a diabetic environment (Exo-pre) have a more pronounced protective effect against DN by regulating the balance of macrophages. Exo-pre and Exo-Con were isolated from the culture medium of UC-MSCs pre-treated with a diabetic mimic environment and natural UC-MSCs, respectively. Exo-pre and Exo-Con were injected into the tail veins of db/db mice three times a week for 6 weeks. Serum creatinine and serum urea nitrogen levels, the urinary protein/creatinine ratio, and histological staining were used to determine renal function and morphology. Macrophage phenotypes were analyzed by immunofluorescence, western blotting, and quantitative reverse transcription polymerase chain reaction. In vitro, lipopolysaccharide-induced M1 macrophages were incubated separately with Exo-Con and Exo-pre. We performed microRNA (miRNA) sequencing to identify candidate miRNAs and predict their target genes. An miRNA inhibitor was used to confirm the role of miRNAs in macrophage modulation. Exo-pre were more potent than Exo-Con at alleviating DN. Exo-pre administration significantly reduced the number of M1 macrophages and increased the number of M2 macrophages in the kidney compared to Exo-Con administration. Parallel outcomes were observed in the co-culture experiments. Moreover, miR-486-5p was distinctly expressed in Exo-Con and Exo-pre groups, and it played an important role in macrophage polarization by targeting PIK3R1 through the PI3K/Akt pathway. Reducing miR-486-5p levels in Exo-pre abolished macrophage polarization modulation. Exo-pre administration exhibited a superior effect on DN by remodeling the macrophage balance by shuttling miR-486-5p, which targets PIK3R1.


Asunto(s)
Nefropatías Diabéticas , Exosomas , Macrófagos , Células Madre Mesenquimatosas , MicroARNs , Cordón Umbilical , Exosomas/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Nefropatías Diabéticas/metabolismo , Ratones , Macrófagos/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Masculino , Ratones Endogámicos C57BL , Activación de Macrófagos
11.
Egypt J Immunol ; 31(3): 150-160, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38996049

RESUMEN

Diabetic nephropathy represents a microvascular complication related to type 2 diabetes mellitus (T2DM) that ultimately causes end-stage renal disease. Our study aimed to evaluate the association of plasma type IV collagen with albuminuria status and to assess the clinical significance of plasma type IV collagen as a potential biomarker in the early stage of diabetic nephropathy. The study comprised 75 participants diagnosed with T2DM allocated equally (n=25) into three groups: (A) normal albuminuria levels, (B) microalbuminuria, and (C) macroalbuminuria, depending on their urine albumin-to-creatinine ratio. A comparative analysis was conducted between these groups and a control group (D, n=15). The enzyme-linked immunosorbent assay (ELISA) method was employed for measuring plasma type IV collagen levels. The results revealed that plasma type IV collagen levels were significantly higher in T2DM groups than in the control group. Moreover, diabetic patients without albuminuria had significantly higher plasma type IV collagen levels than the control group (p < 0.001). Furthermore, albuminuria levels among diabetic patient groups were significantly increased as albuminuria categories increased (p < 0.001). A significant positive correlation existed between plasma type IV collagen and glycated hemoglobin (HbA1c) levels in the macroalbuminuric diabetic group. Our study employed the receiver operating characteristic (ROC) curve analysis to determine plasma type IV collagen diagnostic utility in macroalbuminuria prediction. The ROC curve analysis revealed that type IV collagen can significantly determine macroalbuminuric patients at a cutoff value of 2.25 with sensitivity, specificity, positive predictive value, and negative predictive value of 68%, 100%, 100%, and 75.8%, respectively (p < 0.001). In conclusion, plasma type IV collagen levels might serve as a valuable predictor of albuminuria onset in patients with T2DM.


Asunto(s)
Albuminuria , Biomarcadores , Colágeno Tipo IV , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Diagnóstico Precoz , Humanos , Colágeno Tipo IV/sangre , Colágeno Tipo IV/orina , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/orina , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Biomarcadores/sangre , Biomarcadores/orina , Masculino , Femenino , Persona de Mediana Edad , Albuminuria/sangre , Albuminuria/orina , Albuminuria/diagnóstico , Curva ROC , Hemoglobina Glucada/análisis , Adulto , Ensayo de Inmunoadsorción Enzimática , Anciano
12.
Vitam Horm ; 125: 117-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997162

RESUMEN

Insulin resistance is a central hallmark that connects the metabolic syndrome and diabetes to the resultant formation of advanced glycation end products (AGEs), which further results in the complications of diabetes, including diabetic nephropathy. Several factors play an important role as an inducer to diabetic nephropathy, and AGEs elicit their harmful effects via interacting with the receptor for AGEs Receptor for AGEs, by induction of pro-inflammatory cytokines, oxidative stress, endoplasmic reticulum stress and fibrosis in the kidney tissues leading to the loss of renal function. Insulin resistance results in the activation of other alternate pathways governed by insulin, which results in the hypertrophy of the renal cells and tissue remodeling. Apart from the glucose uptake and disposal, insulin dependent PI3K and Akt also upregulate the expression of endothelial nitric oxide synthase, that results in increasing the bioavailability of nitric oxide in the vascular endothelium, which further results in tissue fibrosis. Considering the global prevalence of diabetic nephropathy, and the impact of protein glycation, various inhibitors and treatment avenues are being developed, to prevent the progression of diabetic complications. In this chapter, we discuss the role of glycation in insulin resistance and further its impact on the kidney.


Asunto(s)
Nefropatías Diabéticas , Productos Finales de Glicación Avanzada , Resistencia a la Insulina , Nefropatías Diabéticas/metabolismo , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Resistencia a la Insulina/fisiología , Animales , Riñón/metabolismo , Riñón/patología , Transducción de Señal , Estrés Oxidativo/fisiología
13.
Vitam Horm ; 125: 251-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997166

RESUMEN

Chronic diabetes leads to various complications including diabetic kidney disease (DKD). DKD is a major microvascular complication and the leading cause of morbidity and mortality in diabetic patients. Varying degrees of proteinuria and reduced glomerular filtration rate are the cardinal clinical manifestations of DKD that eventually progress into end-stage renal disease. Histopathologically, DKD is characterized by renal hypertrophy, mesangial expansion, podocyte injury, glomerulosclerosis, and tubulointerstitial fibrosis, ultimately leading to renal replacement therapy. Amongst the many mechanisms, hyperglycemia contributes to the pathogenesis of DKD via a mechanism known as non-enzymatic glycation (NEG). NEG is the irreversible conjugation of reducing sugars onto a free amino group of proteins by a series of events, resulting in the formation of initial Schiff's base and an Amadori product and to a variety of advanced glycation end products (AGEs). AGEs interact with cognate receptors and evoke aberrant signaling cascades that execute adverse events such as oxidative stress, inflammation, phenotypic switch, complement activation, and cell death in different kidney cells. Elevated levels of AGEs and their receptors were associated with clinical and morphological manifestations of DKD. In this chapter, we discussed the mechanism of AGEs accumulation, AGEs-induced cellular and molecular events in the kidney and their impact on the pathogenesis of DKD. We have also reflected upon the possible options to curtail the AGEs accumulation and approaches to prevent AGEs mediated adverse renal outcomes.


Asunto(s)
Nefropatías Diabéticas , Productos Finales de Glicación Avanzada , Humanos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Animales , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Estrés Oxidativo/fisiología
14.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000309

RESUMEN

Autoreactivity of the complement system may escalate the development of diabetic nephropathy. We used the BTBR OB mouse model of type 2 diabetes to investigate the role of the complement factor mannan-binding lectin (MBL) in diabetic nephropathy. Female BTBR OB mice (n = 30) and BTBR non-diabetic WT mice (n = 30) were included. Plasma samples (weeks 12 and 21) and urine samples (week 19) were analyzed for MBL, C3, C3-fragments, SAA3, and markers for renal function. Renal tissue sections were analyzed for fibrosis, inflammation, and complement deposition. The renal cortex was analyzed for gene expression (complement, inflammation, and fibrosis), and isolated glomerular cells were investigated for MBL protein. Human vascular endothelial cells cultured under normo- and hyperglycemic conditions were analyzed by flow cytometry. We found that the OB mice had elevated plasma and urine concentrations of MBL-C (p < 0.0001 and p < 0.001, respectively) and higher plasma C3 levels (p < 0.001) compared to WT mice. Renal cryosections from OB mice showed increased MBL-C and C4 deposition in the glomeruli and increased macrophage infiltration (p = 0.002). Isolated glomeruli revealed significantly higher MBL protein levels (p < 0.001) compared to the OB and WT mice, and no renal MBL expression was detected. We report that chronic inflammation plays an important role in the development of DN through the binding of MBL to hyperglycemia-exposed renal cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Modelos Animales de Enfermedad , Inflamación , Lectina de Unión a Manosa , Animales , Lectina de Unión a Manosa/metabolismo , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/sangre , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Inflamación/metabolismo , Inflamación/patología , Femenino , Humanos , Riñón/metabolismo , Riñón/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología
15.
Medicine (Baltimore) ; 103(28): e38865, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996107

RESUMEN

Type 2 diabetes mellitus (T2DM) is a risk factor for patients with impaired renal function. The onset of T2DM-induced diabetic kidney disease (DKD) is frequently sub-clinical, potentially culminating in end-stage renal disease. In the current study the factors influencing DKD in elderly patients diagnosed with T2DM were determined. A retrospective cohort study was conducted involving patients ≥60 years of age with T2DM from June 2019 to December 2022. The Cockcroft-Gault formula was used to estimate the glomerular filtration rate. The clinical information and biochemical indicators of patients with an estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73m2 were collected. Patients were grouped based on a 3-year eGFR decline < 15% and ≥ 15%. The differences between the two groups were compared and the factors influencing the 3-year eGFR decline ≥ 15% were analyzed. A total of 242 patients were included, including 154 in the group with a 3-year eGFR decline < 15% and 88 in the group with a three-year eGFR decline ≥ 15%. Univariate logistic regression analysis showed that smoking cigarettes, and triglycerides (TG) and high-density lipoprotein levels were related to a 3-year eGFR decline ≥ 15% (P = .039, P < .001, and P = .011, respectively). Multivariate logistic regression analysis showed that the TG level was independently related to a 3-year eGFR decline ≥ 15% (P = .004; OR = 2.316). There was a significant linear relationship between the eGFR decline and TG level (P = .002). Patients with a TG concentration > 1.7 mmol/L had a more apparent decrease in the eGFR (P < .05). For elderly patients with T2DM and an eGFR < 90 mL/min/1.73m2, the TG level may be an important risk factor for deteriorating renal function that warrants actively intervention.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Tasa de Filtración Glomerular , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/epidemiología , Masculino , Femenino , Estudios Retrospectivos , Anciano , Nefropatías Diabéticas/fisiopatología , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/etiología , Persona de Mediana Edad , Factores de Riesgo , Estudios de Seguimiento , Anciano de 80 o más Años
16.
Medicine (Baltimore) ; 103(28): e38864, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996161

RESUMEN

The main causative factors of diabetic nephropathy (DN), a common complication of diabetes mellitus, are metabolic abnormalities and hemodynamic changes. However, studies have shown that the immune-inflammatory response also plays an important role in DN pathogenesis. Therefore, in this study, we analyzed the causal relationship and immune infiltration between inflammatory factors and DN using Mendelian randomization (MR) and bioinformatics techniques. We analyzed the causal relationship between 91 inflammatory factors and DN using two-sample MR dominated by the results of inverse variance-weighted analysis. Based on the MR analysis, the immune mechanism of inflammatory factors in DN was further explored using immune cell infiltration analysis. MR analysis indicated a positive causal relationship between DN and IL1A, caspase 8 (CASP8), macrophage colony-stimulating factor 1, IL10, STAM-binding protein, and tumor necrosis factor ligand superfamily member 12 (TNFSF12) and a negative causal relationship between DN and cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. The pathogenic mechanism of CASP8 may involve the recruitment of CD4+ T cells and macrophages for DN infiltration. In this study, we found a causal relationship between DN and IL1A, CASP8, macrophage colony-stimulating factor 1, IL10, STAM-binding protein, TNFSF12, cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. Bioinformatic immune infiltration analysis further revealed that CASP8 regulates DN by influencing the infiltration of immune cells, such as T cells and macrophages.


Asunto(s)
Biología Computacional , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Análisis de la Aleatorización Mendeliana , Humanos , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/inmunología , Biología Computacional/métodos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Factores de Riesgo , Inflamación/genética , Inflamación/sangre , Caspasa 8/genética
17.
Mol Med Rep ; 30(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38963028

RESUMEN

Diabetic nephropathy (DN) also known as diabetic kidney disease, is a major microvascular complication of diabetes and a leading cause of end­stage renal disease (ESRD), which affects the morbidity and mortality of patients with diabetes. Despite advancements in diabetes care, current diagnostic methods, such as the determination of albuminuria and the estimated glomerular filtration rate, are limited in sensitivity and specificity, often only identifying kidney damage after considerable morphological changes. The present review discusses the potential of metabolomics as an approach for the early detection and management of DN. Metabolomics is the study of metabolites, the small molecules produced by cellular processes, and may provide a more sensitive and specific diagnostic tool compared with traditional methods. For the purposes of this review, a systematic search was conducted on PubMed and Google Scholar for recent human studies published between 2011 and 2023 that used metabolomics in the diagnosis of DN. Metabolomics has demonstrated potential in identifying metabolic biomarkers specific to DN. The ability to detect a broad spectrum of metabolites with high sensitivity and specificity may allow for earlier diagnosis and better management of patients with DN, potentially reducing the progression to ESRD. Furthermore, metabolomics pathway analysis assesses the pathophysiological mechanisms underlying DN. On the whole, metabolomics is a potential tool in the diagnosis and management of DN. By providing a more in­depth understanding of metabolic alterations associated with DN, metabolomics could significantly improve early detection, enable timely interventions and reduce the healthcare burdens associated with this condition.


Asunto(s)
Biomarcadores , Nefropatías Diabéticas , Metabolómica , Humanos , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/metabolismo , Metabolómica/métodos , Animales
18.
Ren Fail ; 46(2): 2378999, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39011603

RESUMEN

Objectives: Astaxanthin (ATX) is a strong antioxidant drug. This study aimed to investigate the effects of ATX on podocytes in diabetic nephropathy and the underlying renal protective mechanism of ATX, which leads to pathological crosstalk with mesangial cells.Methods: In this study, diabetic rats treated with ATX exhibited reduced 24-h urinary protein excretion and decreased blood glucose and lipid levels compared to vehicle-treated rats. Glomerular mesangial matrix expansion and renal tubular epithelial cell injury were also attenuated in ATX-treated diabetic rats compared to control rats.Results: ATX treatment markedly reduced the α-SMA and collagen IV levels in the kidneys of diabetic rats. Additionally, ATX downregulated autophagy levels. In vitro, compared with normal glucose, high glucose inhibited LC3-II expression and increased p62 expression, whereas ATX treatment reversed these changes. ATX treatment also inhibited α-SMA and collagen IV expression in cultured podocytes. Secreted factors (vascular endothelial growth factor B and transforming growth factor-ß) generated by high glucose-induced podocytes downregulated autophagy in human mesangial cells (HMCs); however, this downregulation was upregulated when podocytes were treated with ATX.Conclusions: The current study revealed that ATX attenuates diabetes-induced kidney injury likely through the upregulation of autophagic activity in podocytes and its antifibrotic effects. Crosstalk between podocytes and HMCs can cause renal injury in diabetes, but ATX treatment reversed this phenomenon.


Asunto(s)
Autofagia , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Células Mesangiales , Podocitos , Regulación hacia Arriba , Xantófilas , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Autofagia/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Animales , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Células Mesangiales/patología , Xantófilas/farmacología , Xantófilas/uso terapéutico , Ratas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Humanos , Regulación hacia Arriba/efectos de los fármacos , Ratas Sprague-Dawley , Actinas/metabolismo , Colágeno Tipo IV/metabolismo , Células Cultivadas , Antioxidantes/farmacología
19.
Front Endocrinol (Lausanne) ; 15: 1406442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040677

RESUMEN

Background: Diabetes ranks among the most widespread diseases globally, with the kidneys being particularly susceptible to its vascular complications. The identification of proteins for pathogenesis and novel drug targets remains imperative. This study aims to investigate roles of circulating inflammatory proteins in diabetic renal complications. Methods: Data on the proteins were derived from a genome-wide protein quantitative trait locus (pQTL) study, while data on diabetic renal complications came from the FinnGen study. In this study, proteome-wide Mendelian randomization (MR) and colocalization analyses were used to assess the relationship between circulating inflammatory proteins and diabetic renal complications. Results: MR approach indicated that elevated levels of interleukin 12B (IL-12B) (OR 1.691, 95%CI 1.179-2.427, P=4.34×10-3) and LIF interleukin 6 family cytokine (LIF) (OR 1.349, 95%CI 1.010-1.801, P=4.23×10-2) increased the risk of type 1 diabetes (T1D) with renal complications, while higher levels of fibroblast growth factor 19 (FGF19) (OR 1.202, 95%CI 1.009-1.432, P=3.93×10-2), fibroblast growth factor 23 (FGF23) (OR 1.379, 95%CI 1.035-1.837, P=2.82×10-2), C-C motif chemokine ligand 7 (CCL7) (OR 1.385, 95%CI 1.111-1.725, P=3.76×10-3), and TNF superfamily member 14 (TNFSF14) (OR 1.244, 95%CI 1.066-1.451, P=5.63×10-3) indicated potential risk factors for type 2 diabetes (T2D) with renal complications. Colocalization analysis supported these findings, revealing that most identified proteins, except for DNER, likely share causal variants with diabetic renal complications. Conclusion: Our study established associations between specific circulating inflammatory proteins and the risk of diabetic renal complications, suggesting these proteins as targets for further investigation into the pathogenesis and potential therapeutic interventions for T1D and T2D with renal complications.


Asunto(s)
Nefropatías Diabéticas , Análisis de la Aleatorización Mendeliana , Proteoma , Humanos , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/etiología , Proteoma/metabolismo , Proteoma/análisis , Masculino , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Sitios de Carácter Cuantitativo , Estudio de Asociación del Genoma Completo , Inflamación/sangre , Inflamación/metabolismo , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Biomarcadores/sangre , Persona de Mediana Edad
20.
J Diabetes Res ; 2024: 8772009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040854

RESUMEN

Background: One of the most common microvascular complications of diabetes is diabetic kidney disease (DKD). The Huajuxiaoji formula (HJXJ) has shown clinical efficacy for DKD; however, its regulatory mechanisms against DKD remain elusive. We investigated NLRP3 inflammasome and the mechanisms of HJXJ by which HJXJ alleviates DKD. Methods: Phenyl sulfate (PS) was used to establish DKD models. HJXJ was administered to mice through intragastric or made into a pharmaceutical serum for the cell cultures. Biological indicator levels in mouse blood and urine were analyzed, and kidney tissues were used for HE, Masson, and PAS staining. ELISA and western blotting were used to detect inflammatory cytokines and protein levels, respectively. Reactive oxygen species (ROS) production and pyroptosis were evaluated using flow cytometry. Lentiviral vector-mediated overexpression of NLRP3 was performed to determine whether NLRP3 participates in the antipyroptotic effect of HJXJ. Results: HJXJ significantly reduced the severity of the injury and, in a dose-dependent manner, decreased the levels of biological markers including creatinine, blood urea nitrogen, urine protein, and endotoxin, as well as inflammatory cytokines such as interleukin (IL)-1ß, IL-18, tumor necrosis factor-α, and IL-6 in DKD mice. Treatment with HJXJ reversed the downregulation of podocin, nephrin, ZO-1, and occludin and upregulated ROS, NLRP3, Caspase-1 P20, and GSDMD-N induced by PS. Moreover, the upregulation of NLRP3 expression increased the number of cells positive for pyroptosis. HJXJ suppressed pyroptosis and inflammasome activation by inhibiting NLRP3 expression. Conclusions: Generally, HJXJ has the potential to reduce DKD injury and exerts anti-DKD effects by inhibiting the NLRP3-mediated NLRP3 inflammasome activation and pyroptosis in vitro and in vivo.


Asunto(s)
Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nefropatías Diabéticas/metabolismo , Piroptosis/efectos de los fármacos , Ratones , Medicamentos Herbarios Chinos/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Riñón/metabolismo , Riñón/patología , Riñón/efectos de los fármacos , Modelos Animales de Enfermedad , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...