Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.674
Filtrar
1.
Sci Rep ; 14(1): 15122, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956289

RESUMEN

Natalisin (NTL) is a conserved neuropeptide, only present in insects, that has been reported to regulate their sexual activity. In this study, we investigated the involvement of NTL in the reproductive behaviors of a major invasive pest, Spodoptera frugiperda. We identified NTL precursor-encoded transcripts, and evaluated their transcript levels in different stages and tissues of S. frugiperda. The results showed that the NTL transcript level was expressed in both male and female pupae and both male and female adults in the later stage. It was highly expressed in male pupae, 3-day-old male and female adults, and 5-day-old male adults. In different tissues, the expression level is higher in the male and female adult brain and male testis. Immunohistochemical staining of the brain of S. frugiperda female and male adults revealed that three pairs of brain neurons of S. frugiperda adults of both sexes secreted and expressed NTL. To study the role of NTL in reproductive behaviors, NTL was silenced in S. frugiperda male and female adults by RNA interference (RNAi) technology, the results showed that silencing NTL could significantly affect the sexual activity behavior of the adults, reducing the calling rate of females, the courtship rate of males, and the mating rate. In summary, this study emphasizes the important role of NTL in regulating the mating behavior and sexual activity of S. frugiperda in both male and female adults, potentially laying a foundation to employ NTL as a new insect-specific target to control populations of pest insects.


Asunto(s)
Neuropéptidos , Conducta Sexual Animal , Spodoptera , Animales , Spodoptera/genética , Spodoptera/fisiología , Masculino , Femenino , Neuropéptidos/metabolismo , Neuropéptidos/genética , Conducta Sexual Animal/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Encéfalo/metabolismo , Interferencia de ARN , Reproducción
2.
Cells ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38994950

RESUMEN

The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.


Asunto(s)
Encéfalo , Neuropéptidos , Estrés Psicológico , Humanos , Neuropéptidos/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Estrés Psicológico/metabolismo
3.
Nat Commun ; 15(1): 5793, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987256

RESUMEN

Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Frío , Proteínas de Unión al ADN , Diapausa , Longevidad , Factores de Transcripción , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diapausa/genética , Diapausa/fisiología , Longevidad/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Transducción de Señal , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Codón sin Sentido/genética , Neuropéptidos/metabolismo , Neuropéptidos/genética , Proteínas Portadoras , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
4.
Proc Natl Acad Sci U S A ; 121(28): e2408072121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38950363

RESUMEN

Female mosquitoes produce eggs in gonadotrophic cycles that are divided between a previtellogenic and vitellogenic phase. Previtellogenic females consume water and sugar sources like nectar while also being attracted to hosts for blood feeding. Consumption of a blood meal activates the vitellogenic phase, which produces mature eggs and suppresses host attraction. In this study, we tested the hypothesis that neuropeptide Y-like hormones differentially modulate host attraction behavior in the mosquito Aedes aegypti. A series of experiments collectively indicated that enteroendocrine cells (EECs) in the posterior midgut produce and release neuropeptide F (NPF) into the hemolymph during the previtellogenic phase which stimulates attraction to humans and biting behavior. Consumption of a blood meal, which primarily consists of protein by dry weight, down-regulated NPF in EECs until mature eggs developed, which was associated with a decline in hemolymph titer. NPF depletion depended on protein digestion but was not associated with EEC loss. Other experiments showed that neurons in the terminal ganglion extend axons to the posterior midgut and produce RYamide, which showed evidence of increased secretion into circulation after a blood meal. Injection of RYamide-1 and -2 into previtellogenic females suppressed host attraction, while coinjection of RYamides with or without short NPF-2 also inhibited the host attraction activity of NPF. Overall, our results identify NPF and RYamide as gut-associated hormones in A. aegypti that link host attraction behavior to shifts in diet during sequential gonadotrophic cycles.


Asunto(s)
Aedes , Neuropéptidos , Animales , Aedes/metabolismo , Aedes/fisiología , Neuropéptidos/metabolismo , Femenino , Conducta Alimentaria/fisiología , Hemolinfa/metabolismo , Células Enteroendocrinas/metabolismo , Proteínas de Insectos/metabolismo , Humanos , Vitelogénesis/fisiología
5.
J Comp Neurol ; 532(6): e25629, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031887

RESUMEN

In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S, NPS) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray, then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known already about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts roles in threat response and circadian behavior.


Asunto(s)
Núcleos Parabraquiales , Animales , Núcleos Parabraquiales/fisiología , Núcleos Parabraquiales/citología , Ratones , Vías Eferentes/citología , Vías Eferentes/fisiología , Ratones Transgénicos , Neuronas/metabolismo , Masculino , Neuropéptidos/metabolismo , Vías Nerviosas/citología
6.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000158

RESUMEN

Neuropeptides are biomolecules with crucial physiological functions. Accurate identification of neuropeptides is essential for understanding nervous system regulatory mechanisms. However, traditional analysis methods are expensive and laborious, and the development of effective machine learning models continues to be a subject of current research. Hence, in this research, we constructed an SVM-based machine learning neuropeptide predictor, iNP_ESM, by integrating protein language models Evolutionary Scale Modeling (ESM) and Unified Representation (UniRep) for the first time. Our model utilized feature fusion and feature selection strategies to improve prediction accuracy during optimization. In addition, we validated the effectiveness of the optimization strategy with UMAP (Uniform Manifold Approximation and Projection) visualization. iNP_ESM outperforms existing models on a variety of machine learning evaluation metrics, with an accuracy of up to 0.937 in cross-validation and 0.928 in independent testing, demonstrating optimal neuropeptide recognition capabilities. We anticipate improved neuropeptide data in the future, and we believe that the iNP_ESM model will have broader applications in the research and clinical treatment of neurological diseases.


Asunto(s)
Neuropéptidos , Neuropéptidos/metabolismo , Aprendizaje Automático , Humanos , Máquina de Vectores de Soporte , Biología Computacional/métodos , Evolución Molecular , Algoritmos
7.
Proc Natl Acad Sci U S A ; 121(30): e2319958121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008673

RESUMEN

Neuropeptides (NPs) and their cognate receptors are critical effectors of diverse physiological processes and behaviors. We recently reported of a noncanonical function of the Drosophila Glucose-6-Phosphatase (G6P) gene in a subset of neurosecretory cells in the central nervous system that governs systemic glucose homeostasis in food-deprived flies. Here, we show that G6P-expressing neurons define six groups of NP-secreting cells, four in the brain and two in the thoracic ganglion. Using the glucose homeostasis phenotype as a screening tool, we find that neurons located in the thoracic ganglion expressing FMRFamide NPs (FMRFaG6P neurons) are necessary and sufficient to maintain systemic glucose homeostasis in starved flies. We further show that G6P is essential in FMRFaG6P neurons for attaining a prominent Golgi apparatus and secreting NPs efficiently. Finally, we establish that G6P-dependent FMRFa signaling is essential for the build-up of glycogen stores in the jump muscle which expresses the receptor for FMRFamides. We propose a general model in which the main role of G6P is to counteract glycolysis in peptidergic neurons for the purpose of optimizing the intracellular environment best suited for the expansion of the Golgi apparatus, boosting release of NPs and enhancing signaling to respective target tissues expressing cognate receptors.


Asunto(s)
Drosophila melanogaster , FMRFamida , Glucosa-6-Fosfatasa , Glucógeno , Neuronas , Neuropéptidos , Transducción de Señal , Animales , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , FMRFamida/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucógeno/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Músculos/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética
8.
Elife ; 132024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046788

RESUMEN

One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.


Asunto(s)
Hipocampo , Memoria a Corto Plazo , Proteína de Unión al GTP rac1 , Animales , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Hipocampo/metabolismo , Hipocampo/fisiología , Ratones , Memoria a Corto Plazo/fisiología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Transducción de Señal , Masculino , Fosforilación , Neuropéptidos/metabolismo , Neuropéptidos/genética , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología
9.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941607

RESUMEN

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Asunto(s)
Neuroinmunomodulación , Humanos , Animales , Intestinos/inmunología , Homeostasis , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neuronas/metabolismo , Neuronas/inmunología , Neuropéptidos/metabolismo , Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(26): e2321710121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885377

RESUMEN

Somatostatin receptor 5 (SSTR5) is an important G protein-coupled receptor and drug target for neuroendocrine tumors and pituitary disorders. This study presents two high-resolution cryogenicelectron microscope structures of the SSTR5-Gi complexes bound to the cyclic neuropeptide agonists, cortistatin-17 (CST17) and octreotide, with resolutions of 2.7 Å and 2.9 Å, respectively. The structures reveal that binding of these peptides causes rearrangement of a "hydrophobic lock", consisting of residues from transmembrane helices TM3 and TM6. This rearrangement triggers outward movement of TM6, enabling Gαi protein engagement and receptor activation. In addition to hydrophobic interactions, CST17 forms conserved polar contacts similar to somatostatin-14 binding to SSTR2, while further structural and functional analysis shows that extracellular loops differently recognize CST17 and octreotide. These insights elucidate agonist selectivity and activation mechanisms of SSTR5, providing valuable guidance for structure-based drug development targeting this therapeutically relevant receptor.


Asunto(s)
Octreótido , Receptores de Somatostatina , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/química , Humanos , Octreótido/química , Octreótido/farmacología , Octreótido/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/química , Microscopía por Crioelectrón , Unión Proteica , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Somatostatina/metabolismo , Somatostatina/química , Somatostatina/análogos & derivados , Modelos Moleculares , Células HEK293
11.
eNeuro ; 11(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834302

RESUMEN

Linked rhythmic behaviors, such as respiration/locomotion or swallowing/chewing, often require coordination for proper function. Despite its prevalence, the cellular mechanisms controlling coordination of the underlying neural networks remain undetermined in most systems. We use the stomatogastric nervous system of the crab Cancer borealis to investigate mechanisms of internetwork coordination, due to its small, well-characterized feeding-related networks (gastric mill [chewing, ∼0.1 Hz]; pyloric [filtering food, ∼1 Hz]). Here, we investigate coordination between these networks during the Gly1-SIFamide neuropeptide modulatory state. Gly1-SIFamide activates a unique triphasic gastric mill rhythm in which the typically pyloric-only LPG neuron generates dual pyloric-plus gastric mill-timed oscillations. Additionally, the pyloric rhythm exhibits shorter cycles during gastric mill rhythm-timed LPG bursts, and longer cycles during IC, or IC plus LG gastric mill neuron bursts. Photoinactivation revealed that LPG is necessary to shorten pyloric cycle period, likely through its rectified electrical coupling to pyloric pacemaker neurons. Hyperpolarizing current injections demonstrated that although LG bursting enables IC bursts, only gastric mill rhythm bursts in IC are necessary to prolong the pyloric cycle period. Surprisingly, LPG photoinactivation also eliminated prolonged pyloric cycles, without changing IC firing frequency or gastric mill burst duration, suggesting that pyloric cycles are prolonged via IC synaptic inhibition of LPG, which indirectly slows the pyloric pacemakers via electrical coupling. Thus, the same dual-network neuron directly conveys excitation from its endogenous bursting and indirectly funnels synaptic inhibition to enable one network to alternately decrease and increase the cycle period of a related network.


Asunto(s)
Braquiuros , Ganglios de Invertebrados , Neuronas , Neuropéptidos , Animales , Braquiuros/fisiología , Neuropéptidos/farmacología , Neuropéptidos/metabolismo , Neuronas/fisiología , Neuronas/efectos de los fármacos , Ganglios de Invertebrados/fisiología , Ganglios de Invertebrados/efectos de los fármacos , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos , Red Nerviosa/fisiología , Red Nerviosa/efectos de los fármacos , Masculino , Conducta Alimentaria/fisiología , Conducta Alimentaria/efectos de los fármacos , Píloro/fisiología , Píloro/efectos de los fármacos , Periodicidad
12.
Elife ; 122024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904987

RESUMEN

Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.


Asunto(s)
Quinasa de Linfoma Anaplásico , Sistema Nervioso Central , Proteínas de Drosophila , Animales , Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/genética , Larva/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Transducción de Señal , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Drosophila/genética , Drosophila/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica
13.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928010

RESUMEN

The identification of novel drug targets in plant-parasitic nematodes (PPNs) is imperative due to the loss of traditional nematicides and a lack of replacements. Chemosensation, which is pivotal for PPNs in locating host roots, has become a focus in nematode behavioral research. However, its underlying molecular basis is still indistinct in such a diverse group of PPNs. To characterize genes participating in chemosensation in the Javanese root-knot nematode Meloidogyne javanica, RNA-sequencing of the second-stage juveniles (J2s) treated with tomato root exudate (TRE) for 1 h and 6 h was performed. Genes related to chemosensation in M. javanica mainly responded to TRE treatment at 1 h. Moreover, a gene ontology (GO) analysis underscored the significance of the neuropeptide G protein-coupled receptor signaling pathway. Consequently, the repertoire of putative neuropeptides in M. javanica, including FMRFamide-like peptides (FLPs), insulin-like peptides (ILPs), and neuropeptide-like peptides (NLPs), were outlined based on a homology analysis. The gene Mjflp-14a, harboring two neuropeptides, was significantly up-regulated at 1 h TRE treatment. Through peptide synthesis and J2 treatment, one of the two neuropeptides (MjFLP-14-2) was proven to influence the J2 chemotaxis towards tomato root tips. Overall, our study reinforces the potential of nematode neuropeptides as novel targets and tools for root-knot nematode control.


Asunto(s)
Neuropéptidos , Raíces de Plantas , Solanum lycopersicum , Tylenchoidea , Animales , Tylenchoidea/fisiología , Neuropéptidos/metabolismo , Neuropéptidos/genética , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Solanum lycopersicum/parasitología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Quimiotaxis , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética
14.
Eur J Neurosci ; 60(2): 3921-3945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38924215

RESUMEN

In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.


Asunto(s)
Ritmo Circadiano , Neuropéptidos , Transducción de Señal , Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/metabolismo , Ratones , Neuropéptidos/metabolismo , Neuropéptidos/genética , Ritmo Circadiano/fisiología , Transcriptoma
15.
Physiol Behav ; 283: 114601, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838800

RESUMEN

AIM: The hypothesis of this study is to determine the effects of intracerebroventricular (icv) prokineticin 2 infusion on food consumption and body weight and to elucidate whether it has effects on energy expenditure via the hypothalamus-pituitary-thyroid (HPT) axis in adipose tissue. MATERIAL AND METHODS: A total of 40 rats were used in the study and 4 groups were established: Control, Sham, Prokineticin 1.5 and Prokineticin 4.5 (n=10). Except for the Control group, rats were treated intracerebroventricularly via osmotic minipumps, the Sham group was infused with aCSF (vehicle), and the Prokineticin 1.5 and Prokineticin 4.5 groups were infused with 1.5 nMol and 4.5 nMol prokineticin 2, respectively. Food and water consumption and body weight were monitored during 7-day infusion in all groups. At the end of the infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined by ELISA. In addition, PGC-1α and UCP1 gene expression levels in white adipose tissue (WAT) and brown adipose tissue (BAT), TRH from rat hypothalamic tissue were determined by real-time PCR. RESULTS: Icv prokineticin 2 (4.5 nMol) infusion had no effect on water consumption but reduced daily food consumption and body weight (p<0.05). Icv prokineticin 2 (4.5 nMol) infusion significantly increased serum TSH, fT4 and fT3 levels when compared to Control and Sham groups (p<0.05). Also, icv prokineticin 2 (4.5 nMol) infusion increased the expression of TRH in the hypothalamus tissue and expression of PGC-1α UCP1 in the WAT and BAT (p<0.05). CONCLUSION: Icv prokineticin 2 (4.5 nMol) infusion may suppress food consumption via its receptors in the hypothalamus and reduce body weight by stimulating energy expenditure and thermogenesis in adipose tissue through the HPT axis.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Metabolismo Energético , Hormonas Gastrointestinales , Infusiones Intraventriculares , Glándula Tiroides , Animales , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Masculino , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Ratas , Hormonas Gastrointestinales/metabolismo , Hormonas Gastrointestinales/administración & dosificación , Proteína Desacopladora 1/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/administración & dosificación , Tirotropina/sangre , Tirotropina/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tiroxina/sangre , Tiroxina/administración & dosificación , Ingestión de Líquidos/efectos de los fármacos , Triyodotironina/administración & dosificación , Triyodotironina/sangre , Triyodotironina/farmacología , Ratas Wistar , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos
16.
Insect Biochem Mol Biol ; 171: 104149, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871133

RESUMEN

The central nervous system (CNS) plays a critical role in signal integration in animals and allows the orchestration of life processes to maintain homeostasis. Current research clearly shows that inflammatory processes can also be modulated by the CNS via the neuroendocrine system. One of the neuropeptide families that participate in vertebrates in this process is orexins (OXs). Interestingly, our previous results suggested that a similar dependency may also exist between neuropeptides and immune system activity in insects. Due to the structural homology of orexin and allatotropin receptors and the functional similarity between these two neuropeptide families, the main aim of this research was to perform a complex analysis of the relationships between allatotropin (AT) and the insect immune response. Our results revealed functional similarities between vertebrate OXs and insect ATs. Similar effects were observed in the profile of the expression level of the gene encoding the AT precursor in the Tenebrio molitor nervous system and in the general action of Tenmo-AT on selected immune parameters of the tested beetles. Moreover, for the first time in insects, we confirmed the role of cytokines in the modulation of neuroendocrine system by determining the effect of Spätzle-like protein injection on the expression of genes encoding AT precursor and receptor. All these results are important for understanding the evolutionary basis of hormonal regulation of the immune response.


Asunto(s)
Hormonas de Insectos , Neuropéptidos , Animales , Neuropéptidos/metabolismo , Neuropéptidos/genética , Hormonas de Insectos/metabolismo , Orexinas/metabolismo , Tenebrio/inmunología , Tenebrio/genética , Tenebrio/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Factores Inmunológicos/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo
17.
Sci Rep ; 14(1): 14191, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902334

RESUMEN

Feeding behavior, the most fundamental physiological activity, is controlled by two opposing groups of factors, orexigenic and anorexigenic factors. The sulfakinin family, an insect analogue of the mammalian satiety factor cholecystokinin (CCK), has been shown to suppress food intake in various insects. Nevertheless, the mechanisms through which sulfakinin regulates feeding behavior remain a biological question. This study aimed to elucidate the signaling pathway mediated by the anorexigenic peptide sulfakinin in Bombyx mori. We identified the Bombyx mori neuropeptide G protein-coupled receptor A9 (BNGR-A9) as the receptor for sulfakinin through functional assays. Stimulation with sulfakinin triggered a swift increase in intracellular IP3, Ca2+, and a notable enhancement of ERK1/2 phosphorylation, in a manner sensitive to a Gαq-specific inhibitor. Treatment with synthetic sulfakinin resulted in decreased food consumption and average body weight. Additionally, administering synthetic sulfakinin to silkworms significantly elevated hemolymph trehalose levels, an effect markedly reduced by pre-treatment with BNGR-A9 dsRNA. Consequently, our findings establish the sulfakinin/BNGR-A9 signaling pathway as a critical regulator of feeding behavior and hemolymph trehalose homeostasis in Bombyx mori, highlighting its roles in the negative control of food intake and the positive regulation of energy balance.


Asunto(s)
Bombyx , Conducta Alimentaria , Hemolinfa , Homeostasis , Proteínas de Insectos , Trehalosa , Animales , Bombyx/metabolismo , Bombyx/fisiología , Trehalosa/metabolismo , Trehalosa/análogos & derivados , Trehalosa/farmacología , Hemolinfa/metabolismo , Conducta Alimentaria/fisiología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Receptores Acoplados a Proteínas G/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal
18.
J Neurosci ; 44(29)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886056

RESUMEN

The small G-protein Ras-related C3 botulinum toxin substrate 1 (Rac1) promotes the formation of filamentous actin (F-actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an adeno-associated virus (AAV) expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning.


Asunto(s)
Cuerpo Estriado , Ratones Endogámicos C57BL , Plasticidad Neuronal , Proteína de Unión al GTP rac1 , Animales , Masculino , Ratones , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Femenino , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Etanol/farmacología , Aprendizaje/fisiología , Aprendizaje/efectos de los fármacos , Neuropéptidos/metabolismo , Neuropéptidos/genética , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de los fármacos
19.
Fish Shellfish Immunol ; 151: 109735, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945414

RESUMEN

Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.


Asunto(s)
Proteínas de Artrópodos , Regulación de la Expresión Génica , Neuropéptidos , Caracteres Sexuales , Animales , Masculino , Femenino , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/metabolismo , Regulación de la Expresión Génica/inmunología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Astacoidea/genética , Astacoidea/inmunología , Intestinos , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Inmunidad Innata/genética , Filogenia , Perfilación de la Expresión Génica , Secuencia de Aminoácidos , Alineación de Secuencia
20.
Neurobiol Dis ; 198: 106558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852754

RESUMEN

Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.


Asunto(s)
Corteza Cerebral , Filaminas , Proteína de Unión al GTP rac1 , Animales , Ratones , Factores Despolimerizantes de la Actina/metabolismo , Corteza Cerebral/metabolismo , Filaminas/metabolismo , Filaminas/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Heterotopia Nodular Periventricular/genética , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Células Piramidales/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...