Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Microbiol ; 55(2): 1679-1691, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38393617

RESUMEN

Fungal plant pathogens are responsible for serious losses in many economically important crop species worldwide. Due to the use of fungicides and the fungi genome plasticity, multi-drug resistant strains are emerging as a new generation of pathogens, causing an expansive range of superficial and systemic plant infections, or new opportunistic fungal pathogens for humans. The group of antagonistic fungi Trichoderma spp. has been widely used to enhance plant growth and for the control of different pathogens affecting crops. Although Neurospora crassa is not a mycoparasitic fungus, its secretion of secondary metabolites with antimicrobial activity has been described. In this work, the effect of crude extract of the monoculture of Trichoderma asperellum T8a or the co-culture with N. crassa as an inhibitory treatment against the fungal pathogens Botrytis cinerea and Fusarium solani was evaluated. The findings demonstrate that the secondary metabolites contained in the T. asperellum crude extract have a clear fungistatic activity against B. cinerea and F. solani. Interestingly, this fungistatic activity highly increases when T. asperellum is co-cultivated with the non-pathogenic fungus N. crassa. Moreover, the co-culture crude extract also showed antifungal activity on post-harvest fruits, and no toxic effects on Murine fibroblast L929 (CCL-1) and murine macrophages RAW 264.7 (TIB-71) were observed. All these results together are solid evidence of the potential of the co-culture crude extract of T. asperellum and N. crassa, as an antifungal agent against phytopathogenic fungi, or post-harvest fruits during the transportation or commercialization time.


Asunto(s)
Botrytis , Técnicas de Cocultivo , Frutas , Fusarium , Trichoderma , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Frutas/microbiología , Frutas/química , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Trichoderma/metabolismo , Trichoderma/genética , Animales , Ratones , Antifúngicos/farmacología , Antifúngicos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Neurospora crassa/efectos de los fármacos , Neurospora crassa/metabolismo , Células RAW 264.7 , Mezclas Complejas/farmacología , Mezclas Complejas/química
2.
mBio ; 14(1): e0329122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744948

RESUMEN

Heat shock protein (HSP)-encoding genes (hsp), part of the highly conserved heat shock response (HSR), are known to be induced by thermal stress in several organisms. In Neurospora crassa, three hsp genes, hsp30, hsp70, and hsp80, have been characterized; however, the role of defined cis elements in their responses to discrete changes in temperature remains largely unexplored. To fill this gap, while also aiming to obtain a reliable fungal heat shock-inducible system, we analyzed different sections of each hsp promoter by assessing the expression of real-time transcriptional reporters. Whereas all three promoters and their resected versions were acutely induced by high temperatures, only hsp30 displayed a broad range of expression and high tunability, amply exceeding other inducible promoter systems existing in Neurospora, such as quinic acid- or light-inducible ones. As proof of concept, we employed one of these promoters to control the expression of clr-2, which encodes the master regulator of Neurospora cellulolytic capabilities. The resulting strain fails to grow on cellulose at 25°C, whereas it grows robustly if heat shock pulses are delivered daily. Additionally, we designed two hsp30 synthetic promoters and characterized them, as well as the native promoters, using a gradient of high temperatures, yielding a wide range of responses to thermal stimuli. Thus, Neurospora hsp30-based promoters represent a new set of modular elements that can be used as transcriptional rheostats to adjust the expression of a gene of interest or for the implementation of regulated circuitries for synthetic biology and biotechnological strategies. IMPORTANCE A timely and dynamic response to strong temperature fluctuations is paramount for organismal biology. At the same time, inducible promoters are a powerful tool for fungal biotechnological and synthetic biology endeavors. In this work, we analyzed the activity of several N. crassa heat shock protein (hsp) promoters at a wide range of temperatures, observing that hsp30 exhibits remarkable sensitivity and a dynamic range of expression as we charted the response of this promoter to subtle increases in temperature, and also as we built and analyzed synthetic promoters based on hsp30 cis elements. As proof of concept, we tested the ability of hsp30 to provide tight control of a central process, cellulose degradation. While this study provides an unprecedented description of the regulation of the N. crassa hsp genes, it also contributes a noteworthy addition to the molecular toolset of transcriptional controllers in filamentous fungi.


Asunto(s)
Neurospora crassa , Neurospora crassa/genética , Neurospora crassa/metabolismo , Temperatura , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Regiones Promotoras Genéticas
3.
Fungal Genet Biol ; 162: 103729, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35944835

RESUMEN

γ-Tubulin ring complexes (γ-TuRC) mediate nucleation and anchorage of microtubules (MTs) to microtubule organizing centers (MTOCs). In fungi, the spindle pole body (SPB) is the functional equivalent of the centrosome, which is the main MTOC. In addition, non-centrosomal MTOCs (ncMTOCs) contribute to MT formation in some fungi like Schizosaccharomyces pombe and Aspergillus nidulans. In A. nidulans, MTOCs are anchored at septa (sMTOC) and share components of the outer plaque of the SPB. Here we show that the Neurospora crassa SPB is embedded in the nuclear envelope, with the γ-TuRC targeting proteins PCP-1Pcp1/PcpA located at the inner plaque and APS-2Mto1/ApsB located at the outer plaque of the SPB. PCP-1 was a specific component of nuclear MTOCs, while APS-2 was also present at the septal pore. Although γ-tubulin was only detected at the nucleus, spontaneous MT nucleation occurred in the apical and subapical cytoplasm during recovery from benomyl-induced MT depolymerization experiments. There was no evidence for MT nucleation at septa. However, without benomyl treatment MT plus-ends were organized in the septal pore through MTB-3EB1. Those septal MT plus ends polymerized MTs from septa in interphase cells Thus we conclude that the SPB is the only MT nucleation site in N. crassa, but the septal pore aids the MT network arrangement through the anchorage of the MT plus-ends through a pseudo-MTOC.


Asunto(s)
Proteínas Portadoras , Proteínas Fúngicas , Proteínas Asociadas a Microtúbulos , Neurospora crassa , Benomilo/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Cuerpos Polares del Huso/metabolismo , Tubulina (Proteína)/genética
4.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445244

RESUMEN

Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light-oxygen-voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call "HAP-LOV", displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems.


Asunto(s)
Proteínas Fúngicas , Microorganismos Modificados Genéticamente , Neurospora crassa/genética , Optogenética , Fotorreceptores Microbianos , Saccharomyces cerevisiae , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Neurospora crassa/metabolismo , Fotorreceptores Microbianos/biosíntesis , Fotorreceptores Microbianos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
G3 (Bethesda) ; 11(6)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33792687

RESUMEN

Eukaryotic circadian oscillators share a common circuit architecture, a negative feedback loop in which a positive element activates the transcription of a negative one that then represses the action of the former, inhibiting its own expression. While studies in mammals and insects have revealed additional transcriptional inputs modulating the expression of core clock components, this has been less characterized in the model Neurospora crassa, where the participation of other transcriptional components impacting circadian clock dynamics remains rather unexplored. Thus, we sought to identify additional transcriptional regulators modulating the N. crassa clock, following a reverse genetic screen based on luminescent circadian reporters and a collection of transcription factors (TFs) knockouts, successfully covering close to 60% of them. Besides the canonical core clock components WC-1 and -2, none of the tested transcriptional regulators proved to be essential for rhythmicity. Nevertheless, we identified a set of 23 TFs that when absent lead to discrete, but significant, changes in circadian period. While the current level of analysis does not provide mechanistic information about how these new players modulate circadian parameters, the results of this screen reveal that an important number of light and clock-regulated TFs, involved in a plethora of processes, are capable of modulating the clockworks. This partial reverse genetic clock screen also exemplifies how the N. crassa knockout collection continues to serve as an expedite platform to address broad biological questions.


Asunto(s)
Relojes Circadianos , Neurospora crassa , Neurospora crassa/metabolismo , Relojes Circadianos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
6.
Fungal Biol ; 124(5): 501-508, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32389313

RESUMEN

Circadian clocks are autonomous timers that are believed to confer organisms a selective advantage by enabling processes to occur at appropriate times of the day. In the model fungus Neurospora crassa, 20-40 % of its genes are reported to be under circadian regulation, as assayed in simple sugar media. Although it has been well-described that Neurospora efficiently deconstructs plant cell wall components, little is known regarding the status of the clock when Neurospora grows on cellulosic material, or whether such a clock has an impact on any of the genes involved in this process. Through luciferase-based reporters and fluorescent detection assays, we show that a clock is functioning when Neurospora grows on cellulose-containing wheat straw as the only carbon and nitrogen source. Additionally, we found that the major cellobiohydrolase encoding gene involved in plant cell wall deconstruction, cbh-1, is rhythmically regulated by the Neurospora clock, in a manner that depends on cellulose concentration and on the transcription factor CRE-1, known as a key player in carbon-catabolite repression in this fungus. Our findings are a step towards a more comprehensive understanding on how clock regulation modulates cellulose degradation, and thus Neurospora's physiology.


Asunto(s)
Pared Celular , Relojes Circadianos , Proteínas Fúngicas , Neurospora crassa , Pared Celular/metabolismo , Relojes Circadianos/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Neurospora crassa/metabolismo
7.
J Biomed Opt ; 24(1): 1-8, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30612379

RESUMEN

We present a multicolor fluorescence microscope system, under a selective plane illumination microscopy (SPIM) configuration, using three continuous wave-lasers and a single-channel-detection camera. The laser intensities are modulated with three time-delayed pulse trains that operate synchronously at one third of the camera frame rate, allowing a sequential excitation and an image acquisition of up to three different biomarkers. The feasibility of this imaging acquisition mode is demonstrated by acquiring single-plane multicolor images of living hyphae of Neurospora crassa. This allows visualizing simultaneously the localization and dynamics of different cellular components involved in apical growth in living hyphae. The configuration presented represents a noncommercial, cost-effective alternative microscopy system for the rapid and simultaneous acquisition of multifluorescent images and can be potentially useful for three-dimensional imaging of large biological samples.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Neurospora crassa/metabolismo , Biomarcadores/metabolismo , Color , Diseño de Equipo , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Rayos Láser , Luz , Proteínas Luminiscentes/química , Rodaminas/química , Proteína Fluorescente Roja
8.
PLoS One ; 13(4): e0195871, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29668735

RESUMEN

Advances in the understanding of molecular systems depend on specific tools like the disruption of genes to produce strains with the desired characteristics. The disruption of any mutagen sensitive (mus) genes in the model fungus Neurospora crassa, i.e. mus-51, mus-52, or mus-53, orthologous to the human genes KU70, KU80, and LIG4, respectively, provides efficient tools for gene targeting. Accordingly, we used RNA-sequencing and reverse transcription-quantitative polymerase chain reaction amplification techniques to evaluate the effects of mus-52 deletion in N. crassa gene transcriptional modulation, and thus, infer its influence regarding metabolic response to extracellular availability of inorganic phosphate (Pi). Notably, the absence of MUS-52 affected the transcription of a vast number of genes, highlighting the expression of those coding for transcription factors, kinases, circadian clocks, oxi-reduction balance, and membrane- and nucleolus-related proteins. These findings may provide insights toward the KU molecular mechanisms, which have been related to telomere maintenance, apoptosis, DNA replication, and gene transcription regulation, as well as associated human conditions including immune system disorders, cancer, and aging.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación , Neurospora crassa/genética , Neurospora crassa/metabolismo , Biología Computacional/métodos , Metabolismo Energético/genética , Espacio Extracelular/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Anotación de Secuencia Molecular , Fosfatos/metabolismo , Reproducibilidad de los Resultados , Transcripción Genética
9.
Curr Genet ; 64(3): 529-534, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29119270

RESUMEN

Microorganisms have the ability to adapt and respond to different environmental conditions, whether they are stressful or not. Although the detection and/or responding mechanisms are often unknown, a large number of proteins may participate in signal transduction pathways involved in environmental stimulus to induce physiological and cellular events. Here, we examine the important role in cell homeostasis that extracellular pH plays in different fungi, and summarize the recent data reported in distinct organisms, by comparing them to the well-characterized mechanisms firstly described in Aspergillus and yeast. While most of the knowledge regarding the cellular processes triggered by the pH signaling pathway is based on the work in these two organisms, new data have been emerging in a diverse group of filamentous fungi, namely the involvement of this signaling pathway in metabolism and fungal pathogenicity. In this review, we present the major aspects of the pH signaling pathway in different model organisms, focusing on the protein components and the biological processes influenced by this pathway. In particular, we discuss novel cellular processes regulated by this pathway in the fungus Neurospora crassa. The diversity of functional processes that are affected under pH stress highlights how broadly this condition impacts on basic cellular processes in fungi and reveals how divergent fungal species are.


Asunto(s)
Neurospora crassa/metabolismo , Transducción de Señal , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Concentración de Iones de Hidrógeno , Neurospora crassa/genética
10.
Biochem J ; 474(24): 4091-4104, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29054975

RESUMEN

The Neurospora crassa NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods. A complemented strain that produced an sfGFP-NIT-2 fusion protein was constructed, and nuclear localization assessments were made under conditions that favored protein translocation to the nucleus. Nuclear translocation was also investigated using HeLa cells, which showed that the putative NIT-2 nuclear localization sequence (NLS; 915TISSKRQRRHSKS927) was recognized by importin-α and that subsequent transport occurred via the classical import pathway. The interaction between the N. crassa importin-α (NcImpα) and the NIT-2 NLS was quantified with calorimetric assays, leading to the observation that the peptide bound to two sites with different affinities, which is typical of a monopartite NLS sequence. The crystal structure of the NcImpα/NIT-2 NLS complex was solved and revealed that the NIT-2 peptide binds to NcImpα with the major NLS-binding site playing a primary role. This result contrasts other recent studies that suggested a major role for the minor NLS-binding site in importin-α from the α2 family, indicating that both sites can be used for different cargo proteins according to specific metabolic requirements.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/metabolismo , Factores de Transcripción/metabolismo , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Células Cultivadas , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Células HeLa , Humanos , Neurospora crassa/genética , Estructura Secundaria de Proteína , Esporas Fúngicas , Factores de Transcripción/química , Factores de Transcripción/genética , Difracción de Rayos X , alfa Carioferinas/química , alfa Carioferinas/genética
11.
BMC Genomics ; 18(1): 457, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28599643

RESUMEN

BACKGROUND: Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. RESULTS: We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. CONCLUSIONS: We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the reserve carbohydrate glycogen and trehalose. We also demonstrated that calcium stress affects the reserve carbohydrate levels and the response to calcium stress may require PAC-3. Considering that the reserve carbohydrate metabolism may be subjected to different signaling pathways control, our data contribute to the understanding of the N. crassa responses under pH and calcium stresses.


Asunto(s)
Calcio/metabolismo , Glucógeno/metabolismo , Neurospora crassa/citología , Neurospora crassa/metabolismo , Transducción de Señal , Trehalosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Neurospora crassa/genética , Factores de Transcripción/metabolismo
12.
PLoS One ; 12(1): e0169796, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28107376

RESUMEN

Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0), neutral (pH 7.0), and alkaline (pH 10.0) medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry.


Asunto(s)
Celulasa/metabolismo , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Concentración de Iones de Hidrógeno , Neurospora crassa/metabolismo , Saccharum/metabolismo , Perfilación de la Expresión Génica , Genes Fúngicos , Hidrólisis , Neurospora crassa/enzimología , Regiones Promotoras Genéticas
13.
PLoS One ; 11(8): e0161659, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557053

RESUMEN

Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism.


Asunto(s)
Concentración de Iones de Hidrógeno , Neurospora crassa/genética , Neurospora crassa/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Melaninas/biosíntesis , Monofenol Monooxigenasa , Mutación , Fenotipo , Regiones Promotoras Genéticas , Transporte de Proteínas , Proteolisis , alfa Carioferinas/metabolismo
14.
J Biol Chem ; 291(36): 18620-31, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27402847

RESUMEN

To accomplish its crucial role, mitochondria require proteins that are produced in the cytosol, delivered by cytosolic Hsp90, and translocated to its interior by the translocase outer membrane (TOM) complex. Hsp90 is a dimeric molecular chaperone and its function is modulated by its interaction with a large variety of co-chaperones expressed within the cell. An important family of co-chaperones is characterized by the presence of one TPR (tetratricopeptide repeat) domain, which binds to the C-terminal MEEVD motif of Hsp90. These include Tom70, an important component of the TOM complex. Despite a wealth of studies conducted on the relevance of Tom70·Hsp90 complex formation, there is a dearth of information regarding the exact molecular mode of interaction. To help fill this void, we have employed a combined experimental strategy consisting of cross-linking/mass spectrometry to investigate binding of the C-terminal Hsp90 domain to the cytosolic domain of Tom70. This approach has identified a novel region of contact between C-Hsp90 and Tom70, a finding that is confirmed by probing the corresponding peptides derived from cross-linking experiments via isothermal titration calorimetry and mitochondrial import assays. The data generated in this study are combined to input constraints for a molecular model of the Hsp90/Tom70 interaction, which has been validated by small angle x-ray scattering, hydrogen/deuterium exchange, and mass spectrometry. The resultant model suggests that only one of the MEEVD motifs within dimeric Hsp90 contacts Tom70. Collectively, our findings provide significant insight on the mechanisms by which preproteins interact with Hsp90 and are translocated via Tom70 to the mitochondria.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Mitocondriales/metabolismo , Neurospora crassa/metabolismo , Proteínas Protozoarias/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Bovinos , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Neurospora crassa/química , Neurospora crassa/genética , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
15.
Genetics ; 204(1): 163-76, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27449058

RESUMEN

Neurospora crassa is a model organism for the study of circadian clocks, molecular machineries that confer ∼24-hr rhythms to different processes at the cellular and organismal levels. The FREQUENCY (FRQ) protein is a central component of the Neurospora core clock, a transcription/translation negative feedback loop that controls genome-wide rhythmic gene expression. A genetic screen aimed at determining new components involved in the latter process identified regulation of conidiation 1 (rco-1), the ortholog of the Saccharomyces cerevisiae Tup1 corepressor, as affecting period length. By employing bioluminescent transcriptional and translational fusion reporters, we evaluated frq and FRQ expression levels in the rco-1 mutant background observing that, in contrast to prior reports, frq and FRQ expression are robustly rhythmic in the absence of RCO-1, although both amplitude and period length of the core clock are affected. Moreover, we detected a defect in metabolic compensation, such that high-glucose concentrations in the medium result in a significant decrease in period when RCO-1 is absent. Proteins physically interacting with RCO-1 were identified through co-immunoprecipitation and mass spectrometry; these include several components involved in chromatin remodeling and transcription, some of which, when absent, lead to a slight change in period. In the aggregate, these results indicate a dual role for RCO-1: although it is not essential for core-clock function, it regulates proper period and amplitude of core-clock dynamics and is also required for the rhythmic regulation of several clock-controlled genes.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Neurospora crassa/genética , Neurospora crassa/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Relojes Circadianos/fisiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Fosforilación , Proteínas Represoras/metabolismo
16.
G3 (Bethesda) ; 6(5): 1327-43, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-26994287

RESUMEN

When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms.


Asunto(s)
Sitios de Unión , Metabolismo de los Hidratos de Carbono , Neurospora crassa/genética , Neurospora crassa/metabolismo , Motivos de Nucleótidos , Elementos de Respuesta , Estrés Fisiológico , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Inmunoprecipitación de Cromatina , Ambiente , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Estrés Fisiológico/genética
17.
Fungal Genet Biol ; 88: 24-34, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26805950

RESUMEN

The subapical endocytic collar is a prominent feature of hyphae of Neurospora crassa. It comprises a dynamic collection of actin patches associated with a number of proteins required for endocytosis, namely, ARP-2/3 complex, fimbrin, coronin, etc. We presently show that MYO-1 is another key component of this endocytic collar. A myo-1 sequence was identified in the genome of N. crassa and used it to generate a strain with a myo-1-sgfp allele under the ccg1 promoter. Examination of living hyphae by confocal microscopy, revealed MYO-1-GFP located mainly as a dynamic collection of small patches arranged in collar-like fashion in the hyphal subapex. Dual tagging showed MYO-1-GFP partially colocalized with two other endocytic proteins, fimbrin and coronin. MYO-1 was also present during septum formation. By recovering a viable strain, albeit severely inhibited, after deletion of myo-1, it was possible to investigate the phenotypic consequences of the elimination of MYO-1. Deletion of myo-1 caused a severe reduction in growth rate (95%), near absence of aerial mycelium and no conidiation. A reduced uptake of the lipophilic dye FM4-64 indicated a deficiency in endocytosis in the Δmyo-1 mutant. Hyphae were produced by the Δmyo-1 mutant but their morphogenesis was severely affected; hyphal morphology was distorted displaying irregular periods of isotropic and polarized growth. The morphological alterations were accompanied, and presumably caused, by a disruption in the organization and dynamics of a myosin-deprived actin cytoskeleton that, ultimately, compromised the stability and function of the Spitzenkörper as a vesicle supply center.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Miosinas/genética , Miosinas/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Endocitosis , Genoma Fúngico , Proteínas Fluorescentes Verdes , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Hifa/ultraestructura , Morfogénesis , Mutación , Neurospora crassa/crecimiento & desarrollo , Fenotipo , Esporas Fúngicas/fisiología
18.
Fungal Genet Biol ; 82: 213-27, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26231681

RESUMEN

LIS1 is a microtubule (Mt) plus-end binding protein that interacts with the dynein/dynactin complex. In humans, LIS1 is required for proper nuclear and organelle migration during cell growth. Although gene duplication is absent from Neurospora crassa, we found two paralogues of human LIS1. We named them LIS1-1 and LIS1-2 and studied their dynamics and function by fluorescent tagging. At the protein level, LIS1-1 and LIS1-2 were very similar. Although, the characteristic coiled-coil motif was not present in LIS1-2. LIS1-1-GFP and LIS1-2-GFP showed the same cellular distribution and dynamics, but LIS1-2-GFP was less abundant. Both LIS1 proteins were found in the subapical region as single fluorescent particles traveling toward the cell apex, they accumulated in the apical dome forming prominent short filament-like structures, some of which traversed the Spitzenkörper (Spk). The fluorescent structures moved exclusively in anterograde fashion along straight paths suggesting they traveled on Mts. There was no effect in the filament behavior of LIS1-1-GFP in the Δlis1-2 mutant but the dynamics of LIS1-2-GFP was affected in the Δlis1-1 mutant. Microtubular integrity and the dynein-dynactin complex were necessary for the formation of filament-like structures of LIS1-1-GFP in the subapical and apical regions; however, conventional kinesin (KIN-1) was not. Deletion mutants showed that the lack of lis1-1 decreased cell growth by ∼75%; however, the lack of lis1-2 had no effect on growth. A Δlis1-1;Δlis1-2 double mutant showed slower growth than either single mutant. Conidia production was reduced but branching rate increased in Δlis1-1 and the Δlis1-1;Δlis1-2 double mutants. The absence of LIS1-1 had a strong effect on Mt organization and dynamics and indirectly affected nuclear and mitochondrial distribution. The absence of LIS1-1 filaments in dynein mutants (ropy mutants) or in benomyl treated hyphae indicates the strong association between this protein and the regulation of the dynein-dynactin complex and Mt organization. LIS1-1 and LIS1-2 had a high amino acid homology, nevertheless, the absence of the coiled-coil motif in LIS1-2 suggests that its function or regulation may be distinct from that of LIS1-1.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Proteínas Fúngicas/genética , Proteínas Asociadas a Microtúbulos/genética , Neurospora crassa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/química , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Complejo Dinactina , Dineínas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Expresión Génica , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutación , Neurospora crassa/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión , Alineación de Secuencia
19.
Fungal Genet Biol ; 82: 104-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150287

RESUMEN

The subcellular localization and dynamics of FKS-1, the putative catalytic subunit of the ß-1,3-glucan synthase complex, was analyzed in growing hyphae of Neurospora crassa by live confocal microscopy. GFP-tagged FKS-1 accumulated at the outer layer of the Spitzenkörper (Spk), and at the apical plasma membrane (PM). Fluorescence recovery after photobleaching analysis revealed arrival of FKS-1-containing carriers first at the immediate surroundings of the core region of the Spk, and thereafter to the Spk most outer region. The results obtained here and previous data suggest that FKS-1 is transported to the Spk in macrovesicles.


Asunto(s)
Glucosiltransferasas/metabolismo , Hifa/metabolismo , Neurospora crassa/metabolismo , Grabación en Video , beta-Glucanos/metabolismo
20.
PLoS One ; 10(7): e0131415, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26132395

RESUMEN

High protein secretion capacity in filamentous fungi requires an extremely efficient system for protein synthesis, folding and transport. When the folding capacity of the endoplasmic reticulum (ER) is exceeded, a pathway known as the unfolded protein response (UPR) is triggered, allowing cells to mitigate and cope with this stress. In yeast, this pathway relies on the transcription factor Hac1, which mediates the up-regulation of several genes required under these stressful conditions. In this work, we identified and characterized the ortholog of the yeast HAC1 gene in the filamentous fungus Neurospora crassa. We show that its mRNA undergoes an ER stress-dependent splicing reaction, which in N. crassa removes a 23 nt intron and leads to a change in the open reading frame. By disrupting the N. crassa hac-1 gene, we determined it to be crucial for activating UPR and for proper growth in the presence of ER stress-inducing chemical agents. Neurospora is naturally found growing on dead plant material, composed primarily by lignocellulose, and is a model organism for the study of plant cell wall deconstruction. Notably, we found that growth on cellulose, a substrate that requires secretion of numerous enzymes, imposes major demands on ER function and is dramatically impaired in the absence of hac-1, thus broadening the range of physiological functions of the UPR in filamentous fungi. Growth on hemicellulose however, another carbon source that necessitates the secretion of various enzymes for its deconstruction, is not impaired in the mutant nor is the amount of proteins secreted on this substrate, suggesting that secretion, as a whole, is unaltered in the absence of hac-1. The characterization of this signaling pathway in N. crassa will help in the study of plant cell wall deconstruction by fungi and its manipulation may result in important industrial biotechnological applications.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Neurospora crassa/crecimiento & desarrollo , Respuesta de Proteína Desplegada/fisiología , Celulosa , Retículo Endoplásmico/fisiología , Proteínas Fúngicas/fisiología , Genes Fúngicos/fisiología , Neurospora crassa/metabolismo , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA