Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 750: 117-29, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21618087

RESUMEN

A stem cell niche is a specialized tissue environment that controls the proliferation and differentiation of its resident stem cells. The functions of these structures have been well characterized in adult organisms. In particular, the bone marrow stem cell niche in mammals has been amenable to analysis because of the ability of transplanted hematopoietic cells to home and to recolonize the bone marrow of an irradiated host. Despite clues from adult models, it remains unclear how stem cells become partitioned into appropriate niches during embryonic development. To examine the earliest steps in niche formation, we created an organ culture system to observe the development of primordial germ cells (PGCs), a migratory stem cell population that will eventually give rise to the gametes. Using this assay, we can watch PGCs as they migrate to colonize the developing gonads and can introduce growth factor agonists or antagonists to test the function of proteins that regulate this process. This provides an unprecedented opportunity to identify the cellular and molecular interactions required for the formation of the germ cell niche.


Asunto(s)
Movimiento Celular , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Germinativas , Técnicas de Cultivo de Órganos/métodos , Nicho de Células Madre/citología , Animales , Diferenciación Celular , Supervivencia Celular , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Fluorescencia , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas Fluorescentes Verdes/análisis , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Modelos Animales , Embarazo , Nicho de Células Madre/embriología , Imagen de Lapso de Tiempo
2.
Brain Res ; 1383: 90-8, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21303665

RESUMEN

Neurogenesis is a process influenced by environmental cues that create highly specific functional niches. Recently, the role of blood vessels in the maintenance and functioning of neurogenic niches during development and in adult life has been hallmarked. In addition to their trophic support for the highly demanding neurogenic process, blood vessels regulate neuroblast differentiation and migration and define functional domains. Since neurogenesis along the forebrain neurogenic niche (FNN) is a multistage process, in which neuroblast proliferation, differentiation and migration are spatially restricted to specific locations; we evaluated the structural features of vascular beds that support these processes during critical time points in their development. Additionally, we studied the molecular identity of the endothelial components of vascular beds using the expression of the venous marker EphB4. Our results show that blood vessels along the FNN: 1) are present very early in development; 2) define the borders of the FNN since early developmental stages; 3) experience constant remodeling until achieving their mature structure; 4) show venous features during perinatal developmental times; and 5) down-regulate their EphB4 expression as development proceeds. Collectively, our results describe the formation of the intricate vascular network that may support neurogenesis along the FNN and show that blood vessels along this neurogenic niche are dynamic entities that experience significant structural and molecular remodeling throughout development.


Asunto(s)
Circulación Cerebrovascular/fisiología , Neurogénesis/fisiología , Prosencéfalo/irrigación sanguínea , Prosencéfalo/embriología , Receptor EphB4/biosíntesis , Nicho de Células Madre/irrigación sanguínea , Animales , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Ratones , Neovascularización Fisiológica/fisiología , Células-Madre Neurales/metabolismo , Prosencéfalo/citología , Nicho de Células Madre/embriología
3.
PLoS One ; 5(9)2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20941365

RESUMEN

BACKGROUND: Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system. METHODOLOGY/PRINCIPAL FINDINGS: We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2), lipid metabolism (e.g., Srebp1) and cell migration (e.g., Areb6 and Rreb1). Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche. CONCLUSIONS/SIGNIFICANCE: We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may be common to mammalian niches in general. This study provides a comprehensive source for further studies of mesenchymal/epithelial interactions in the prostate stem cell niche. The elucidation of pathways in the normal primitive niche may provide greater insight into mechanisms subverted during abnormal proliferative and oncogenic processes. Understanding these events may result in the development of specific targeted therapies for prostatic diseases such as benign prostatic hypertrophy and carcinomas.


Asunto(s)
Comunicación Celular , Células Epiteliales/metabolismo , Mesodermo/metabolismo , Próstata/metabolismo , Transducción de Señal , Nicho de Células Madre/metabolismo , Animales , Masculino , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Endogámicos C57BL , Próstata/citología , Próstata/embriología , Nicho de Células Madre/citología , Nicho de Células Madre/embriología
4.
Dev Neurobiol ; 70(9): 659-78, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20506362

RESUMEN

Progenitor cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing forebrain give rise to neurons and glial cells, and are characterized by distinct morphologies and proliferative behaviors. The mechanisms that distinguish VZ and SVZ progenitors are not well understood, although the homeodomain transcription factor Cux2 and Cyclin D2, a core component of the cell cycle machinery, are specifically involved in controlling SVZ cell proliferation. Rho GTPases have been implicated in regulating the proliferation, differentiation, and migration of many cell types, and one family member, Cdc42, affects the polarity and proliferation of radial glial cells in the VZ. Here, we show that another family member, Rac1, is required for the normal proliferation and differentiation of SVZ progenitors and for survival of both VZ and SVZ progenitors. A forebrain-specific loss of Rac1 leads to an SVZ-specific reduction in proliferation, a concomitant increase in cell cycle exit, and premature differentiation. In Rac1 mutants, the SVZ and VZ can no longer be delineated, but rather fuse to become a single compact zone of intermingled cells. Cyclin D2 expression, which is normally expressed by both VZ and SVZ progenitors, is reduced in Rac1 mutants, suggesting that the mutant cells differentiate precociously. Rac1-deficient mice can still generate SVZ-derived upper layer neurons, indicating that Rac1 is not required for the acquisition of upper layer neuronal fates, but instead is needed for the normal regulation of proliferation by progenitor cells in the SVZ.


Asunto(s)
Proliferación Celular , Neuronas/fisiología , Neuropéptidos/metabolismo , Prosencéfalo/embriología , Prosencéfalo/fisiología , Células Madre/fisiología , Proteínas de Unión al GTP rac/metabolismo , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Corteza Cerebral/embriología , Corteza Cerebral/patología , Corteza Cerebral/fisiología , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Neurogénesis/fisiología , Neuropéptidos/deficiencia , Neuropéptidos/genética , Prosencéfalo/patología , Nicho de Células Madre/embriología , Nicho de Células Madre/patología , Nicho de Células Madre/fisiología , Proteínas de Unión al GTP rac/deficiencia , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1
5.
Nat Neurosci ; 13(6): 690-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436478

RESUMEN

A major cause of the cerebral cortex expansion that occurred during evolution is the increase in subventricular zone (SVZ) progenitors. We found that progenitors in the outer SVZ (OSVZ) of developing human neocortex retain features of radial glia, in contrast to rodent SVZ progenitors, which have limited proliferation potential. Although delaminating from apical adherens junctions, OSVZ progenitors maintained a basal process contacting the basal lamina, a canonical epithelial property. OSVZ progenitor divisions resulted in asymmetric inheritance of their basal process. Notably, OSVZ progenitors are also found in the ferret, a gyrencephalic nonprimate. Functional disruption of integrins, expressed on the basal process of ferret OSVZ progenitors, markedly decreased the OSVZ progenitor population size, but not that of other, process-lacking SVZ progenitors, in slice cultures of ferret neocortex. Our findings suggest that maintenance of this epithelial property allows integrin-mediated, repeated asymmetric divisions of OSVZ progenitors, providing a basis for neocortical expansion.


Asunto(s)
Integrinas/metabolismo , Neocórtex/embriología , Neocórtex/fisiología , Nicho de Células Madre/embriología , Nicho de Células Madre/fisiología , Células Madre/fisiología , Animales , Recuento de Células , División Celular/fisiología , Centrosoma/fisiología , Centrosoma/ultraestructura , Células Epiteliales/fisiología , Hurones , Humanos , Inmunohistoquímica , Hibridación in Situ , Técnicas In Vitro , Integrina beta3/metabolismo , Microscopía Electrónica , Neocórtex/ultraestructura , Neuroglía/fisiología , Neuroglía/ultraestructura , Factores de Transcripción Paired Box/metabolismo , Especificidad de la Especie , Nicho de Células Madre/ultraestructura , Células Madre/ultraestructura
7.
Neural Dev ; 4: 40, 2009 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-19883498

RESUMEN

BACKGROUND: Glutamatergic neurons of the murine cerebral cortex are generated within periventricular proliferative layers of the embryonic pallium, directly from apical precursors or indirectly via their basal progenies. Cortical neuronogenesis is the result of different morphogenetic subroutines, including precursor proliferation and death, changes in histogenetic potencies, and post-mitotic neuronal differentiation. Control of these processes is extremely complex, involving numerous polypeptide-encoding genes. Moreover, many so-called 'non-coding genes' are also expressed in the developing cortex. Currently, their implication in corticogenesis is the subject of intensive functional studies. A subset of them encodes microRNAs (miRNAs), a class of small RNAs with complex biogenesis that regulate gene expression at multiple levels and modulate histogenetic progression and are implicated in refinement of positional information. Among the cortical miRNAs, miR-124 has been consistently shown to promote neuronogenesis progression in a variety of experimental contexts. Some aspects of its activity, however, are still controversial, and some have to be clarified. An in depth in vivo characterization of its function in the embryonic mammalian cortex is still missing. RESULTS: By integrating locked nucleic acid (LNA)-oligo in situ hybridization, electroporation of stage-specific reporters and immunofluorescence, we reconstructed the cortico-cerebral miR-124 expression pattern during direct neuronogenesis from apical precursors and indirect neuronogenesis via basal progenitors. The miR-124 expression profile in the developing embryonic cortex includes an abrupt upregulation in apical precursors undergoing direct neuronogenesis as well as a two-step upregulation in basal progenitors during indirect neuronogenesis. Differential post-transcriptional processing seems to contribute to this pattern. Moreover, we investigated the role of miR-124 in embryonic corticogenesis by gain-of-function approaches, both in vitro, by lentivirus-based gene transfer, and in vivo, by in utero electroporation. Following overexpression of miR-124, both direct neuronogenesis and progression of neural precursors from the apical to the basal compartment were stimulated. CONCLUSION: We show that miR-124 expression is progressively up-regulated in the mouse embryonic neocortex during the apical to basal transition of neural precursor cells and upon their exit from cell cycle, and that miR-124 is involved in the fine regulation of these processes.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/fisiología , MicroARNs/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Ciclo Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Células HeLa , Humanos , Ratones , Ratones Endogámicos , Neuritas/fisiología , Nicho de Células Madre/embriología , Nicho de Células Madre/fisiología , Células Madre/fisiología , Factores de Tiempo , Regulación hacia Arriba
8.
J Neurosci ; 29(43): 13710-9, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19864583

RESUMEN

The mechanisms underlying the timing of the laminar fate decisions during cortical neurogenesis remain poorly understood. Here we show that beta-catenin signaling in cortical neural precursors can regulate the laminar fate of their daughters. In ventricular zone neural precursors, beta-catenin signaling is higher when deep-layer neurons are being generated and lower when upper-layer neurons are being generated. Overactivation of beta-catenin in cortical precursors midway through corticogenesis increased the relative production of deep-layer neurons, while inhibition of signaling increased the relative production of upper-layer neurons. Furthermore, in late-gestation upper-layer precursors, overactive beta-catenin signaling was able to partially restore production of deep-layer neurons. These observations suggest that increased beta-catenin signaling can reset the timing of cortical precursors to promote the production of deep-layer neurons, while inhibition of beta-catenin signaling advances the timing to promote upper-layer production.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Células Madre/fisiología , beta Catenina/metabolismo , Animales , Axones/fisiología , Corteza Cerebral/anatomía & histología , Electroporación , Ratones , Ratones Transgénicos , Transducción de Señal , Nicho de Células Madre/embriología , Nicho de Células Madre/fisiología , Factores de Tiempo , beta Catenina/genética
9.
J Comp Neurol ; 516(6): 507-18, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19673002

RESUMEN

During the development of the inner ear, auditory and vestibular ganglion neurons are generated in a highly regulated sequential process. First, neuroblasts are specified, delaminate from the epithelium of the otocyst, and migrate to form the auditory-vestibular ganglion (AVG). These neuroblasts then undergo proliferation and differentiate into afferent neurons of the auditory and vestibular ganglia. The zinc finger transcription factor Gata3 has been shown to play a role in cell proliferation and differentiation in various regions of the inner ear. Here we profile the spatiotemporal expression pattern of Gata3 in the developing auditory and vestibular ganglia of the chick embryo. Gata3 is expressed in a distinct population of sensorineural precursor cells within the otic epithelium, but is not expressed in migrating or proliferating neuroblasts. Following terminal mitosis, Gata3 expression is restricted to very few cells in the auditory ganglion and is not expressed in any cells of the vestibular ganglion. Gata3 expression levels then increase in auditory neurons as they mature. The increase of Gata3 in auditory ganglion neurons is accompanied by decreased expression of NeuroD. Our results suggest that Gata3 may be specifically involved in the differentiation of auditory ganglion neurons.


Asunto(s)
Proteínas Aviares/metabolismo , Oído Interno/embriología , Factor de Transcripción GATA3/metabolismo , Ganglios Sensoriales/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Movimiento Celular , Embrión de Pollo , Oído Interno/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Ganglios Sensoriales/embriología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Factores de Transcripción SOXB1/metabolismo , Células Receptoras Sensoriales/metabolismo , Nicho de Células Madre/embriología , Nicho de Células Madre/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo , Nervio Vestibular/embriología , Nervio Vestibular/metabolismo
10.
Biochem Biophys Res Commun ; 385(1): 11-5, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19442651

RESUMEN

Prophet of PIT1 (PROP1) is a pituitary-specific factor and responsive gene for the combined pituitary hormone deficiency in Ames dwarf mice and human patients. Our immunohistochemical studies demonstrated that PROP1 is consistently expressed in SOX2-expressing stem/progenitor cells in the rat pituitary from embryonic (E) to postnatal periods. At E13.5, all the cells in Rathke's pouch, the primordium of the pituitary, express PROP1. Afterward, PROP1-positive cells localize along the marginal cell layer, a putative stem cell niche in the pituitary, and stratify in the parenchyma of the anterior pituitary. In the embryonic period, PROP1 coexists transiently with PIT1, which is the anterior pituitary-specific factor and is a target of PROP1, but not any hormones. Thus, the present results imply a regulatory role of PROP1 not only in pituitary organogenesis but also in conversion of PIT1-lineage cells.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Organogénesis , Hipófisis/embriología , Factores de Transcripción SOXB1/metabolismo , Nicho de Células Madre/embriología , Factor de Transcripción Pit-1/metabolismo , Animales , Linaje de la Célula , Humanos , Ratones , Hipófisis/citología , Hipófisis/metabolismo , Ratas , Nicho de Células Madre/metabolismo
11.
Dev Dyn ; 238(2): 324-30, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18985768

RESUMEN

Constant supplies of dental epithelial cells from stem cell niches in the cervical loop enable mouse incisors to grow continuously through life. Fibroblast growth factor 10 (FGF10) has been shown to be essential for development of mouse incisors and maintenance of incisor cervical loops during prenatal development. Whether its cognate receptor, FGFR2IIIB, in the dental epithelium is required for postnatal tooth development remains unknown because Fgfr2IIIb ablation causes neonatal lethality. Here we report that tissue-specific ablation of Fgfr2 in the dental epithelium led to defective maxillary incisors that lacked ameloblasts and the enamel, and had poorly developed odontoblasts. Although the cervical loop in Fgfr2 null maxillary incisors was formed initially, it failed to continue to develop and gradually diminished soon after birth. The results suggest that the FGFR2 signaling axis plays a role in maintaining the stem cell niche required for incisor development and lifelong growth.


Asunto(s)
Incisivo/embriología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Nicho de Células Madre/embriología , Ameloblastos/citología , Ameloblastos/metabolismo , Animales , Epitelio/embriología , Epitelio/metabolismo , Incisivo/metabolismo , Maxilar/embriología , Maxilar/metabolismo , Ratones , Ratones Noqueados , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Nicho de Células Madre/metabolismo
12.
Curr Opin Genet Dev ; 18(4): 354-61, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18617392

RESUMEN

Developmental patterning events involve cell fate specification and maintenance processes in diverse, multicellular organisms. The simple arrangement of tissue layers in the Arabidopsis thaliana root provides a highly tractable system for the study of these processes. This review highlights recent work addressing the patterning of root tissues focusing on the factors involved and their complex regulation. In the past two years studies of root patterning have indicated that chromatin remodeling, protein movement, transcriptional networks, and an auxin gradient, all contribute to the complexity inherent in developmental patterning events within the root. As a result, future research advances in this field will require tissue-specific information at both the single gene and global level.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Modelos Biológicos , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Raíces de Plantas/genética , Nicho de Células Madre/embriología , Nicho de Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...