Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(15): 8822-8835, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34352100

RESUMEN

The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.


Asunto(s)
Nidovirales/enzimología , Nucleótidos/metabolismo , Dominios Proteicos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Coenzimas/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Difosfatos/farmacología , Difosfonatos/farmacología , Guanosina Trifosfato/metabolismo , Manganeso , Modelos Moleculares , Nidovirales/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Uridina Trifosfato/metabolismo
2.
Virology ; 533: 21-33, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31078932

RESUMEN

Cavally virus (CavV) is a mosquito-borne plus-strand RNA virus in the family Mesoniviridae (order Nidovirales). We present X-ray structures for the CavV 3C-like protease (3CLpro), as a free enzyme and in complex with a peptide aldehyde inhibitor mimicking the P4-to-P1 residues of a natural substrate. The 3CLpro structure (refined to 1.94 Å) shows that the protein forms dimers. The monomers are comprised of N-terminal domains I and II, which adopt a chymotrypsin-like fold, and a C-terminal α-helical domain III. The catalytic Cys-His dyad is assisted by a complex network of interactions involving a water molecule that mediates polar contacts between the catalytic His and a conserved Asp located in the domain II-III junction and is suitably positioned to stabilize the developing positive charge of the catalytic His in the transition state during catalysis. The study also reveals the structural basis for the distinct P2 Asn-specific substrate-binding pocket of mesonivirus 3CLpros.


Asunto(s)
Culicidae/virología , Proteasas de Cisteína/química , Proteasas de Cisteína/metabolismo , Nidovirales/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Proteasas de Cisteína/genética , Nidovirales/química , Nidovirales/genética , Alineación de Secuencia , Especificidad por Sustrato , Proteínas Virales/genética
3.
J Biol Chem ; 293(31): 12054-12067, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29887523

RESUMEN

Nidovirus endoribonucleases (NendoUs) include nonstructural protein 15 (nsp15) from coronaviruses and nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E, and MHV nsp15 indicate that it mainly forms a functional hexamer, whereas nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine Deltacoronavirus (PDCoV) nsp15 primarily exists as dimers and monomers in vitro Biological experiments reveal that a PDCoV nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV nsp15. This result may explain why PDCoV nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells, that NendoU from arterivirus gained the ability to form dimers, and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses.


Asunto(s)
Coronavirus/química , Endorribonucleasas/química , Nidovirales/química , Subunidades de Proteína/química , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Arterivirus/química , Arterivirus/clasificación , Arterivirus/genética , Arterivirus/metabolismo , Sitios de Unión , Clonación Molecular , Coronavirus/clasificación , Coronavirus/genética , Coronavirus/metabolismo , Cristalografía por Rayos X , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolución Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Nidovirales/clasificación , Nidovirales/genética , Nidovirales/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/clasificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
4.
Cell Rep ; 11(12): 1966-78, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26095364

RESUMEN

Sialic acids (Sias), 9-carbon-backbone sugars, are among the most complex and versatile molecules of life. As terminal residues of glycans on proteins and lipids, Sias are key elements of glycotopes of both cellular and microbial lectins and thus act as important molecular tags in cell recognition and signaling events. Their functions in such interactions can be regulated by post-synthetic modifications, the most common of which is differential Sia-O-acetylation (O-Ac-Sias). The biology of O-Ac-Sias remains mostly unexplored, largely because of limitations associated with their specific in situ detection. Here, we show that dual-function hemagglutinin-esterase envelope proteins of nidoviruses distinguish between a variety of closely related O-Ac-Sias. By using soluble forms of hemagglutinin-esterases as lectins and sialate-O-acetylesterases, we demonstrate differential expression of distinct O-Ac-sialoglycan populations in an organ-, tissue- and cell-specific fashion. Our findings indicate that programmed Sia-O-acetylation/de-O-acetylation may be critical to key aspects of cell development, homeostasis, and/or function.


Asunto(s)
Acetilesterasa/biosíntesis , Hemaglutininas Virales/genética , Ácido N-Acetilneuramínico/genética , Ácidos Siálicos/genética , Proteínas Virales de Fusión/genética , Acetilación , Acetilesterasa/genética , Animales , Regulación de la Expresión Génica , Genoma , Hemaglutininas Virales/química , Hemaglutininas Virales/metabolismo , Humanos , Lípidos/química , Lípidos/genética , Mamíferos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Nidovirales/química , Proteínas/química , Proteínas/genética , Ácidos Siálicos/química , Especificidad de la Especie , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo
5.
J Gen Virol ; 93(Pt 6): 1247-1252, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22422065

RESUMEN

A bacilliform virus was isolated from diseased fathead minnows (Pimephales promelas). Analysis of the complete genome coding for the polyprotein (pp1ab), spike (S), membrane (M) and nucleocapsid (N) proteins revealed that the virus was most like white bream virus (WBV), another bacilliform virus isolated from white bream (Blicca bjoerkna L.) and the type species of the genus Bafinivirus within the order Nidovirales. In addition to similar gene order and size, alignment of deduced amino acid sequences of the pp1ab, M, N and S proteins of the fathead minnow nidovirus (FHMNV) with those of WBV showed 46, 44, 39 and 15 % identities, respectively. Phylogenetic analysis using the conserved helicase domain of the replicase showed FHMNV was distinct from WBV, yet the closest relative identified to date. Thus, FHMNV appears to represent a second species in the genus Bafinivirus. A PCR assay was developed for the identification of future FHMNV-like isolates.


Asunto(s)
Cyprinidae , Enfermedades de los Peces/virología , Infecciones por Nidovirales/veterinaria , Nidovirales/genética , Nidovirales/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Cyprinidae/virología , Variación Genética , Datos de Secuencia Molecular , Nidovirales/química , Nidovirales/clasificación , Infecciones por Nidovirales/virología , Filogenia , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética
6.
RNA Biol ; 8(2): 295-304, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21422822

RESUMEN

Nidoviruses employ unique strategies to replicate and express their exceptionally large RNA genomes. The viruses use a variety of enzymes to synthesize, modify and process an extensive set of viral RNAs of both genome and subgenome length, including RNA polymerase, primase, helicase, ribose 2'-O and guanosine-N7 methyltransferases and several types of nuclease activities. In this review, the recent progress in the structural and functional characterization of nidovirus nuclease activities is discussed, focusing on a nidovirus-wide conserved uridylate-specific endoribonuclease, NendoU, and a 3'-to-5' exoribonuclease called ExoN. The latter enzyme is related to members of the DEDD exoribonuclease superfamily and conserved in all nidovirus families with genome sizes approaching 30 kilobases. Recent evidence implicates ExoN in reduced mutation rates during viral RNA replication and, possibly, superior fidelity of nidovirus replicases, leading to the suggestion that ExoN may be a key factor in the expansion of nidovirus genomes to sizes not seen in other RNA viruses.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Nidovirales/química , Nidovirales/fisiología , Replicación Viral , Animales , Genoma Viral , Humanos , Nidovirales/genética , ARN Viral/genética
7.
J Virol ; 83(11): 5671-82, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19297500

RESUMEN

Nidoviruses (arteriviruses, coronaviruses, and roniviruses) are a phylogenetically compact but diverse group of positive-strand RNA viruses that includes important human and animal pathogens. Nidovirus RNA synthesis is mediated by a cytoplasmic membrane-associated replication/transcription complex that includes up to 16 viral nonstructural proteins (nsps), which carry common enzymatic activities, like the viral RNA polymerase, but also unusual and poorly understood RNA-processing functions. Of these, a conserved endoribonuclease (NendoU) is a major genetic marker that is unique to nidoviruses. NendoU activity was previously verified in vitro for the coronavirus nsp15, but not for any of its distantly related orthologs from other nidovirus lineages, like the arterivirus nsp11. Here, we show that the bacterially expressed nsp11 proteins of two arteriviruses, equine arteritis virus and porcine respiratory and reproductive syndrome virus, possess pyrimidine-specific endoribonuclease activity. RNA cleavage was independent of divalent cations in vitro and was greatly reduced by replacement of residues previously implicated in catalysis. Comparative characterization of the NendoU activity in arteriviruses and severe acute respiratory syndrome coronavirus revealed common and distinct features of their substrate requirements and reaction mechanism. Our data provide the first biochemical evidence of endoribonuclease activity associated with arterivirus nsp11 and support the conclusion that this remarkable RNA-processing enzyme, whose substrate in the infected cell remains to be identified, distinguishes nidoviruses from all other RNA viruses.


Asunto(s)
Endorribonucleasas/metabolismo , Nidovirales/metabolismo , ARN Viral/biosíntesis , ARN Viral/genética , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Secuencia Conservada , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Activación Enzimática/efectos de los fármacos , Genoma Viral/genética , Manganeso/farmacología , Datos de Secuencia Molecular , Mutación/genética , Nidovirales/química , Nidovirales/genética , Alineación de Secuencia , Especificidad por Sustrato , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
8.
J Gen Virol ; 84(Pt 4): 863-873, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12655087

RESUMEN

Yellow head virus (YHV) is a major agent of disease in farmed penaeid shrimp. YHV virions purified from infected shrimp contain three major structural proteins of molecular mass 116 kDa (gp116), 64 kDa (gp64) and 20 kDa (p20). Two different staining methods indicated that the gp116 and gp64 proteins are glycosylated. Here we report the complete nucleotide sequence of ORF3, which encodes a polypeptide of 1666 amino acids with a calculated molecular mass of 185 713 Da (pI=6.68). Hydropathy analysis of the deduced ORF3 protein sequence identified six potential transmembrane helices and three ectodomains containing multiple sites for potential N-linked and O-linked glycosylation. N-terminal sequence analysis of mature gp116 and gp64 proteins indicated that each was derived from ORF3 by proteolytic cleavage of the polyprotein between residues Ala(228) and Thr(229), and Ala(1127) and Leu(1128), located at the C-terminal side of transmembrane helices 3 and 5, respectively. Comparison with the deduced ORF3 protein sequence of Australian gill-associated virus (GAV) indicated 83 % amino acid identity in gp64 and 71 % identity in gp116, which featured two significant sequence deletions near the N terminus. Database searches revealed no significant homology with other proteins. Recombinant gp64 expressed in E. coli with and without the C-terminal transmembrane region was shown to react with antibody raised against native gp64 purified from virions.


Asunto(s)
Glicoproteínas/genética , Nidovirales/aislamiento & purificación , Penaeidae/virología , Proteínas Estructurales Virales/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Escherichia coli/metabolismo , Glicoproteínas/análisis , Glicoproteínas/biosíntesis , Glicosilación , Datos de Secuencia Molecular , Peso Molecular , Nidovirales/química , Nidovirales/genética , Sistemas de Lectura Abierta , Proteínas Recombinantes/biosíntesis , Coloración y Etiquetado , Proteínas Estructurales Virales/análisis , Proteínas Estructurales Virales/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...