Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83.334
Filtrar
1.
J Environ Sci (China) ; 147: 359-369, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003053

RESUMEN

Agricultural practices significantly contribute to greenhouse gas (GHG) emissions, necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production. Plastic film mulching is commonly used in the Loess Plateau region. Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity. Combining these techniques represents a novel agricultural approach in semi-arid areas. However, the impact of this integration on soil carbon storage (SOCS), carbon footprint (CF), and economic benefits has received limited research attention. Therefore, we conducted an eight-year study (2015-2022) in the semi-arid northwestern region to quantify the effects of four treatments [urea supplied without plastic film mulching (CK-U), slow-release fertilizer supplied without plastic film mulching (CK-S), urea supplied with plastic film mulching (PM-U), and slow-release fertilizer supplied with plastic film mulching (PM-S)] on soil fertility, economic and environmental benefits. The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions (≥71.97%). Compared to other treatments, PM-S increased average grain yield by 12.01%-37.89%, water use efficiency by 9.19%-23.33%, nitrogen accumulation by 27.07%-66.19%, and net return by 6.21%-29.57%. Furthermore, PM-S decreased CF by 12.87%-44.31% and CF per net return by 14.25%-41.16%. After eight years, PM-S increased SOCS (0-40 cm) by 2.46%, while PM-U decreased it by 7.09%. These findings highlight the positive effects of PM-S on surface soil fertility, economic gains, and environmental benefits in spring maize production on the Loess Plateau, underscoring its potential for widespread adoption and application.


Asunto(s)
Agricultura , Huella de Carbono , Fertilizantes , Plásticos , Zea mays , Zea mays/crecimiento & desarrollo , Agricultura/métodos , China , Suelo/química , Gases de Efecto Invernadero/análisis , Nitrógeno/análisis
2.
J Environ Sci (China) ; 147: 404-413, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003058

RESUMEN

Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.


Asunto(s)
Reactores Biológicos , Nitrógeno , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Fósforo/metabolismo , Salinidad , Cloruro de Sodio , Bacterias/metabolismo , Microbiota , Análisis de la Demanda Biológica de Oxígeno
3.
J Environ Sci (China) ; 147: 571-581, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003072

RESUMEN

Mining and tailings deposition can cause serious heavy metal(loids) pollution to the surrounding soil environment. Soil microorganisms adapt their metabolism to such conditions, driving alterations in soil function. This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids) exposure. The results showed that the diversity and abundance of nitrogen-cycling microorganisms showed negative feedback to heavy metal(loids) concentrations. Denitrifying microorganisms were shown to be the dominant microorganisms with over 60% of relative abundance and a complex community structure including 27 phyla. Further, the key bacterial species in the denitrification process were calculated using a random forest model, where the top three key species (Pseudomonas stutzei, Sphingobium japonicum and Leifsonia rubra) were found to play a prominent role in nitrite reduction. Functional gene analysis and qPCR revealed that nirK, which is involved in nitrite reduction, significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%. The experimental results confirmed that the activity of nitrite reductase (Nir) encoded by nirK in the soil was increased at high concentrations of heavy metal(loids). Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids), the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species. The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids).


Asunto(s)
Oro , Metales Pesados , Minería , Nitritos , Microbiología del Suelo , Contaminantes del Suelo , Metales Pesados/toxicidad , Ciclo del Nitrógeno , Desnitrificación , Nitrógeno , Suelo/química
4.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003069

RESUMEN

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Asunto(s)
Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Nitrificación , Nitrógeno/metabolismo , Suelo/química , Desnitrificación , Aguas Residuales/química , Aguas del Alcantarillado/microbiología , Microbiología del Suelo , Zeolitas/química , Fósforo/metabolismo , Reactores Biológicos/microbiología , Bacterias/metabolismo
5.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003065

RESUMEN

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Asunto(s)
Antibacterianos , Ganado , Estiércol , Microbiología del Suelo , Animales , Suelo/química , Secuestro de Carbono , Carbono/metabolismo , Fósforo , Reciclaje , Contaminantes del Suelo/metabolismo , Bovinos , Porcinos , Nitrógeno/análisis , Oxitetraciclina
6.
Environ Geochem Health ; 46(8): 278, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958772

RESUMEN

Miyun Reservoir plays a vital role as a source of drinking water for Beijing, however it grapples with nitrogen contamination issues that have been poorly understood in terms of their distribution, source, and associated health risks. This study addresses this knowledge gap by employing data on nitrate nitrogen (NO3--N), chloride (Cl-), dual isotopic compositions of NO3- (δ15N-NO3- and δ18O-NO3-) data in water ecosystems, systematically exploring the distribution, source and health risk of nitrogen contaminants in Miyun reservoir watersheds. The results showed that over the past 30 years, surface water runoff has exhibited a notable decrease and periodic fluctuations due to the combined influence of climate and anthropogenic activities, while the total nitrogen (TN) concentration in aquatic ecosystems presented an annual fluctuating upward trend. The TN concentration in the wet season was predominantly elevated because a large amount of nitrogen contaminants migrated into water ecosystems through heavy rainfall or river erosion. The concentration of NO3--N, the main contaminant of the water ecosystems, showed distinct variations across different watersheds, followed as rivers over the Miyun reservoir. Moreover, NO3--N levels gradually increased from upstream to downstream in different basins. NO3--N in surface water was mainly derived from the mixture of agricultural ammonia fertilizer and sewage and manure, with a minority of samples potentially undergoing denitrification. Comparatively, the main sources of NO3--N in groundwater were soil N and sewage and manure, while the denitrification process was inactive. The carcinogenic risks caused by NO3--N in groundwater were deemed either nonexistent or minimal, while the focus should predominantly be on potential non-carcinogenic risks, particularly for infants and children. Therefore, it is crucial to perform proactive measures aimed at safeguarding water ecosystems, guided by an understanding of the distribution, sources, and associated risks of nitrogen contamination.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Nitrógeno , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , China , Nitrógeno/análisis , Abastecimiento de Agua , Nitratos/análisis , Humanos
7.
Yale J Biol Med ; 97(2): 153-164, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947101

RESUMEN

The blood-brain barrier (BBB) prevents the use of many drugs for the treatment of neurological disorders. Recently, nitrogen-doped carbon dots (NCDs) have emerged as promising nanocarriers to cross BBB. The primary focus of our study was to evaluate the effectiveness of NCDs for the symptomatic treatment of Alzheimer's disease (AD). In this study, we developed and characterized NCDs bound to rutin, a flavonoid with known benefits for AD. Despite its benefits, the transportation of rutin via NCDs for AD therapy has not been explored previously. We characterized the particles using FTIR and UV-visible spectroscopy followed by atomic force microscopy. Once the design was optimized and validated, we performed in vivo testing via a hemolytic assay to optimize the dosage. Preliminary in vitro testing was performed in AlCl3-induced rat models of AD whereby a single dose of 10 mg/kg NCDs-rutin was administered intraperitoneally. Interestingly, this single dose of 10 mg/kg NCDs-rutin produced the same behavioral effects as 50 mg/kg rutin administered intraperitoneally for 1 month. Similarly, histological and biomarker profiles (SOD2 and TLR4) also presented significant protective effects of NCDs-rutin against neuronal loss, inflammation, and oxidative stress. Hence, NCDs-rutin are a promising approach for the treatment of neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Carbono , Glucosa , Nitrógeno , Rutina , Rutina/farmacología , Rutina/química , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Carbono/química , Carbono/farmacología , Nitrógeno/química , Ratas , Glucosa/metabolismo , Masculino , Puntos Cuánticos/química , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Humanos
8.
Sci Rep ; 14(1): 15027, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951138

RESUMEN

Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial-temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant's life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil-plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.


Asunto(s)
Nitrificación , Nitrógeno , Raíces de Plantas , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Microbiología del Suelo , Nitratos/metabolismo , Plantas/metabolismo , Compuestos de Amonio/metabolismo , Suelo/química , Rizosfera , Fertilizantes
9.
BMC Plant Biol ; 24(1): 621, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951829

RESUMEN

Slow-controlled release fertilizers are experiencing a popularity in rice cultivation due to their effectiveness in yield and quality with low environmental costs. However, the underlying mechanism by which these fertilizers regulate grain quality remains inadequately understood. This study investigated the effects of five fertilizer management practices on rice yield and quality in a two-year field experiment: CK, conventional fertilization, and four applications of slow-controlled release fertilizer (UF, urea formaldehyde; SCU, sulfur-coated urea; PCU, polymer-coated urea; BBF, controlled-release bulk blending fertilizer). In 2020 and 2021, the yields of UF and SCU groups showed significant decreases when compared to conventional fertilization, accompanied by a decline in nutritional quality. Additionally, PCU group exhibited poorer cooking and eating qualities. However, BBF group achieved increases in both yield (10.8 t hm-2 and 11.0 t hm-2) and grain quality reaching the level of CK group. The adequate nitrogen supply in PCU group during the grain-filling stage led to a greater capacity for the accumulation of proteins and amino acids in the PCU group compared to starch accumulation. Intriguingly, BBF group showed better carbon-nitrogen metabolism than that of PCU group. The optimal nitrogen supply present in BBF group suitable boosted the synthesis of amino acids involved in the glycolysis/ tricarboxylic acid cycle, thereby effectively coordinating carbon-nitrogen metabolism. The application of the new slow-controlled release fertilizer, BBF, is advantageous in regulating the carbon flow in the carbon-nitrogen metabolism to enhance rice quality.


Asunto(s)
Carbono , Fertilizantes , Nitrógeno , Oryza , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Nitrógeno/metabolismo , Carbono/metabolismo , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Preparaciones de Acción Retardada
10.
PLoS One ; 19(7): e0304004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959254

RESUMEN

Due to low adoption and sub-optimal fertilizer use and planting density recommendation in maize, redesigning and testing these technologies are required. The study was conducted to evaluate redesigned fertilizer use of maize in two pant densities (32,443 and 53,333 plants ha-1 in Central Rift Valley (CRV); 27724 and 62,000 plants ha-1 in Jimma) on farmers' fields in contrasting agro-ecologies of Ethiopia. The on-farm study was conducted in the 2017 and 2018 cropping seasons with 3 × 2 fertilizer and plant density, factors in both regions of Ethiopia. In redesigned fertilizer use, nutrients were estimated based on the target yield. In this study, 40.8, 0.0, and 12.2 kg ha-1 N, P, and K were estimated for the redesigned fertilizer use in CRV (50% of water-limited potential yield (Yw) = 3.1 t ha-1) whereas in Jimma (50% of Yw = 7.5 t ha-1) 149.8, 9, 130.6 kg ha-1 N, P and K were estimated to produce the 50% of Yw. Linear mixed modeling was used to assess the effect of fertilizer-plant density treatments on maize yield and nutrient use efficiency. The result revealed that the average estimated maize yield for WOF, FFU, and RDFU fertilizer treatments were 2.6, 3.6, and 4.5 t ha-1 under current plant density (32,443 plants ha-1) in CRV whereas the average yields of these treatments were 3.2, 4.5 and 4.5 t ha-1 respectively when maize was grown with redesigned plant density (53,333 plants ha-1) in the same location. The average maize yield with WOF, FFU, and RDFU were 3.0, 4.6, and 4.6 t ha-1 with 27,774 plants ha-1 plant density in Jimma whereas the average maize yields over the two seasons with the same treatments were 4.3, 6.0 and 8.0 t ha-1 respectively when the crop is planted with 62,000 plants ha-1 plant density. The RDFU and redesigned plant density resulted in significantly higher yield compared to their respective control CRV but RDFU significantly increased maize yield when it was planted at redesigned (62,000 plant ha-1) in Jimma. FFU and RDFU were economically viable and redesigned plant density was also a cheaper means of improving maize productivity, especially in the Jimma region. Soil organic carbon and N were closely related to the grain yield response of maize compared to other soil factors. In conclusion, this investigation gives an insight into the importance of redesigned fertilizer use and redesigned plant density for improving maize productivity and thereby narrowing the yield gaps of the crop in high maize potential regions in Ethiopia like Jimma.


Asunto(s)
Fertilizantes , Zea mays , Zea mays/crecimiento & desarrollo , Fertilizantes/análisis , Etiopía , Agricultura/métodos , Nitrógeno/análisis , Nitrógeno/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Suelo/química , Producción de Cultivos/métodos , Fósforo/análisis , Fósforo/metabolismo
11.
J Environ Sci (China) ; 146: 272-282, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969455

RESUMEN

Further treatment of secondary effluents before their discharge into the receiving water bodies could alleviate water eutrophication. In this study, the Chlorella proteinosa was cultured in a membrane photobioreactor to further remove nitrogen from the secondary effluents. The effect of hydraulic retention time (HRT) on microalgae biomass yields and nutrient removal was studied. The results showed that soluble algal products concentration reduced in the suspension at low HRT, thereby alleviating microalgal growth inhibition. In addition, the lower HRT reduced the nitrogen limitation for Chlorella proteinosa's growth through the phase-out of nitrogen-related functional bacteria. As a result, the productivity for Chlorella proteinosa increased from 6.12 mg/L/day at an HRT of 24 hr to 20.18 mg/L/day at an HRT of 8 hr. The highest removal rates of 19.7 mg/L/day, 23.8 mg/L/day, and 105.4 mg/L/day were achieved at an HRT of 8 hr for total nitrogen (TN), ammonia, and chemical oxygen demand (COD), respectively. However, in terms of removal rate, TN and COD were the largest when HRT is 24 hr, which were 74.5% and 82.6% respectively. The maximum removal rate of ammonia nitrogen was 99.2% when HRT was 8 hr.


Asunto(s)
Biomasa , Chlorella , Nitrógeno , Fotobiorreactores , Eliminación de Residuos Líquidos , Nitrógeno/metabolismo , Chlorella/metabolismo , Chlorella/crecimiento & desarrollo , Eliminación de Residuos Líquidos/métodos , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Eutrofización
12.
J Environ Sci (China) ; 146: 3-14, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969459

RESUMEN

Bacillus velezensis M3-1 strain isolated from the sediment of Myriophyllum aquatium constructed wetlands was found to efficiently convert NO3--N to NO2--N, and the requirements for carbon source addition were not very rigorous. This work demonstrates, for the first time, the feasibility of using the synergy of anammox and Bacillus velezensis M3-1 microorganisms for nitrogen removal. In this study, the possibility of M3-1 that converted NO3--N produced by anammox to NO2--N was verified in an anaerobic reactor. The NO3--N reduction ability of M3-1 and denitrifying bacteria in coupling system was investigated under different C/N conditions, and it was found that M3-1 used carbon sources preferentially over denitrifying bacteria. By adjusting the ratio of NH4+-N to NO2--N, it was found that the NO2--N converted from NO3--N by M3-1 participated in the original anammox.The nitrogen removal efficacy (NRE) of the coupled system was increased by 12.1%, compared to the control group anammox system at C/N = 2:1. Functional gene indicated that it might be a nitrate reducing bacterium.This study shows that the nitrate reduction rate achieved by the Bacillus velezensis M3-1 can be high enough for removing nitrate produced by anammox process, which would enable improve nitrogen removal from wastewater.


Asunto(s)
Amoníaco , Bacillus , Nitratos , Nitrógeno , Oxidación-Reducción , Bacillus/metabolismo , Nitrógeno/metabolismo , Nitratos/metabolismo , Amoníaco/metabolismo , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Desnitrificación
13.
Glob Chang Biol ; 30(7): e17410, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978457

RESUMEN

Forests are the largest carbon sink in terrestrial ecosystems, and the impact of nitrogen (N) deposition on this carbon sink depends on the fate of external N inputs. However, the patterns and driving factors of N retention in different forest compartments remain elusive. In this study, we synthesized 408 observations from global forest 15N tracer experiments to reveal the variation and underlying mechanisms of 15N retention in plants and soils. The results showed that the average total ecosystem 15N retention in global forests was 63.04 ± 1.23%, with the soil pool being the main N sink (45.76 ± 1.29%). Plants absorbed 17.28 ± 0.83% of 15N, with more allocated to leaves (5.83 ± 0.63%) and roots (5.84 ± 0.44%). In subtropical and tropical forests, 15N was mainly absorbed by plants and mineral soils, while the organic soil layer in temperate forests retained more 15N. Additionally, forests retained more N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ than N 15 O 3 - $$ {}^{15}\mathrm{N}{\mathrm{O}}_3^{-} $$ , primarily due to the stronger capacity of the organic soil layer to retain N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ . The mechanisms of 15N retention varied among ecosystem compartments, with total ecosystem 15N retention affected by N deposition. Plant 15N retention was influenced by vegetative and microbial nutrient demands, while soil 15N retention was regulated by climate factors and soil nutrient supply. Overall, this study emphasizes the importance of climate and nutrient supply and demand in regulating forest N retention and provides data to further explore the impacts of N deposition on forest carbon sequestration.


Asunto(s)
Bosques , Isótopos de Nitrógeno , Nitrógeno , Suelo , Nitrógeno/análisis , Nitrógeno/metabolismo , Suelo/química , Isótopos de Nitrógeno/análisis , Atmósfera/química , Secuestro de Carbono , Árboles/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/química
14.
Sci Rep ; 14(1): 16007, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992147

RESUMEN

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Asunto(s)
Alimentación Animal , Heces , Suelo , Orina , Animales , Heces/química , Bovinos , Suelo/química , Ovinos , Orina/química , Alimentación Animal/análisis , Nutrientes/análisis , Nutrientes/metabolismo , Rumiantes/fisiología , Nitrógeno/metabolismo , Nitrógeno/orina , Nitrógeno/análisis , Fósforo/orina , Fósforo/análisis , Fósforo/metabolismo
15.
PLoS One ; 19(7): e0306602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995889

RESUMEN

The insectivorous Northern Pitcher Plant, Sarracenia purpurea, recruits a dynamic biotic community in the rainwater collected by its pitcher-shaped leaves. Insect capture and degradation within the pitcher fluid (phytotelma) has been well documented as a mechanism for supplementing the plant's nitrogen, phosphorous, and micronutrient requirements. Metagenomic studies have shown a diverse microbiome in this phytotelm environment, including taxa that contribute metabolically to prey digestion. In this investigation, we used high-throughput 16S rDNA sequencing and bioinformatics to analyze the S. purpurea phytotelm bacteriome as it changes through the growing season (May-September) in plants from the north-central region of the species' native range. Additionally, we used molecular techniques to detect and quantify bacterial nitrogenase genes (nifH) in all phytotelm samples to explore the hypothesis that diazotrophy is an additional mechanism of supplying biologically available nitrogen to S. purpurea. The results of this study indicate that while prokaryote diversity remains relatively stable in plants at different locations within our region, diversity changes significantly as the growing season progresses. Furthermore, nifH genes were detected at biologically significant concentrations in one hundred percent of samples, suggesting that nitrogen fixation may be an important contributor to the S. purpurea nutrient budget.


Asunto(s)
Sarraceniaceae , Estaciones del Año , Sarraceniaceae/microbiología , Microbiota/genética , ARN Ribosómico 16S/genética , Nitrógeno/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Fijación del Nitrógeno , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
16.
Eur J Med Chem ; 275: 116617, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959729

RESUMEN

Agents that cause apoptotic cell death by interfering with tubulin dynamics, such as vinblastine and paclitaxel, are an important class of chemotherapeutics. Unfortunately, these compounds are substrates for multidrug resistance (MDR) pumps, allowing cancer cells to gain resistance to these chemotherapeutics. The indolesulfonamide family of tubulin inhibitors are not excluded by MDR pumps and have a promising activity profile, although their high lipophilicity is a pharmacokinetic limitation for their clinical use. Here we present a new family of N-indolyl-3,4,5-trimethoxybenzenesulfonamide derivatives with modifications on the indole system at positions 1 and 3 and on the sulfonamide nitrogen. We synthesized and screened against HeLa cells 34 novel indolic benzenesulfonamides. The most potent derivatives (1.7-109 nM) were tested against a broad panel of cancer cell lines, which revealed that substituted benzenesulfonamides analogs had highest potency. Importantly, these compounds were only moderately toxic to non-tumorigenic cells, suggesting the presence of a therapeutic index. Consistent with known clinical anti-tubulin agents, these compounds arrested the cell cycle at G2/M phase. Mechanistically, they induced apoptosis via caspase 3/7 activation, which occurred during M arrest. The substituents on the sulfonamide nitrogen appeared to determine different mechanistic results and cell fates. These results suggest that the compounds act differently depending on the bridge substituents, thus making them very interesting as mechanistic probes as well as potential drugs for further development.


Asunto(s)
Antineoplásicos , Apoptosis , Bencenosulfonamidas , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Indoles , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Estructura Molecular , Indoles/química , Indoles/farmacología , Indoles/síntesis química , Relación Dosis-Respuesta a Droga , Nitrógeno/química , Línea Celular Tumoral , Células HeLa , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/síntesis química
17.
J Environ Manage ; 365: 121601, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959771

RESUMEN

Tetracycline (TC) is widely present in the environment, and adsorption technology is a potential remediation method. S/N co-doped tea residue biochar (SNBC) was successfully prepared by hydrothermal carbonization method using tea residue as raw material. S was doped by Na2S2O3·5H2O, and N was doped by N in tea residue. The adsorption efficiency of SNBC could reach 94.16% when the concentration of TC was 100 mg L-1. The adsorption effect of SNBC on TC was 9.38 times more than that of unmodified biochar. Tea biochar had good adsorption effect at pH 4-9. The maximum adsorption capacity of 271 mg g-1 was calculated by the Langmuir isotherm model. The adsorption mechanism involved many mechanisms such as pore filling, π-π interaction and hydrogen bonding. The adsorbent prepared in this study could be used as an effective adsorbent in the treatment of TC wastewater.


Asunto(s)
Carbón Orgánico , , Tetraciclina , Contaminantes Químicos del Agua , Carbón Orgánico/química , Tetraciclina/química , Adsorción , Té/química , Contaminantes Químicos del Agua/química , Nitrógeno/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Aguas Residuales/química
18.
J Environ Manage ; 365: 121681, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963966

RESUMEN

The denitrification process in aquaculture systems plays a crucial role in nitrogen (N) cycle and N budget estimation. Reliable models are needed to rapidly quantify denitrification rates and assess nitrogen losses. This study conducted a comparative analysis of denitrification rates in fish, crabs, and natural ponds in the Taihu region from March to November 2021, covering a complete aquaculture cycle. The results revealed that aquaculture ponds exhibited higher denitrification rates compared to natural ponds. Key variables influencing denitrification rates were Nitrate nitrogen (NO3--N), Suspended particles (SPS), and chlorophyll a (Chla). There was a significant positive correlation between SPS concentration and denitrification rates. However, we observed that the denitrification rate initially rose with increasing Chla concentration, followed by a subsequent decline. To develop parsimonious models for denitrification rates in aquaculture ponds, we constructed five different statistical models to predict denitrification rates, among which the improved quadratic polynomial regression model (SQPR) that incorporated the three key parameters accounted for 80.7% of the variability in denitrification rates. Additionally, a remote sensing model (RSM) utilizing SPS and Chla explained 43.8% of the variability. The RSM model is particularly valuable for rapid estimation in large regions where remote sensing data are the only available source. This study enhances the understanding of denitrification processes in aquaculture systems, introduces a new model for estimating denitrification in aquaculture ponds, and offers valuable insights for environmental management.


Asunto(s)
Acuicultura , Clorofila A , Desnitrificación , Estanques , Clorofila A/metabolismo , Nitrógeno/metabolismo , Nitratos/metabolismo , Clorofila/metabolismo
19.
J Environ Manage ; 365: 121695, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968891

RESUMEN

Pyric herbivory, the combination of controlled burning and targeted grazing, is an effective strategy for restoring abandoned, shrub-encroached rangelands to open ecosystems. This practice may impact soil nitrogen pools by altering soil nitrification and denitrification rates, and may lead to an increase of nitrogen losses through nitrate leaching and N-gas emissions. This research, located in the south-western Pyrenees, investigated the effects of pyric herbivory on soil nitrification and denitrification potentials and mineral nitrogen content in a gorse-encroached temperate rangeland six months after the burning was implemented. The study included three treatments: high-severity burning plus grazing, low-severity burning plus grazing, and unburned and ungrazed areas (control). We measured soil nitrification and denitrification potentials (net and gross), the limitation of denitrifiers by nitrogen or organic carbon, and the abundance of nitrite- and nitrous oxide-reducing bacteria. Additional soil and vegetation data complemented these measurements. Results showed that pyric herbivory did not significantly affect nitrification potential, which was low and highly variable. However, it decreased gross denitrification potential and nitrous oxide reduction to dinitrogen in high-severely burned areas compared to the control. Denitrification rates directly correlated with microbial biomass nitrogen, soil organic carbon, soil water content and abundance of nirS-harbouring bacteria. Contrary to the expected, soil nitrate availability did not directly influence denitrification despite being highest in burned areas. Overall, the study suggests that pyric herbivory does not significantly affect mid-term nitrification rates in temperate open ecosystems, but may decrease denitrification rates in intensely burned areas. These findings highlight the importance of assessing the potential impacts of land management practices, such as pyric herbivory, on soil nutrient cycling and ecosystem functioning.


Asunto(s)
Desnitrificación , Pradera , Herbivoria , Nitratos , Suelo , Suelo/química , Nitratos/metabolismo , Nitratos/análisis , Nitrógeno/metabolismo , Nitrificación , Animales
20.
J Environ Manage ; 365: 121709, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968889

RESUMEN

The current work investigated the performance of an Integrated Fixed-Film Activated Sludge Sequencing Batch Reactor (IFAS-SBR) for Biological Nitrogen Removal (BNR) from mature landfill leachate through the nitritation-denitritation process. During the experimental period two IFAS-SBR configurations were examined using two different biocarrier types with the same filling ratio (50%). The dissolved oxygen (DO) concentration ranged between 2 and 3 mg/L and 4-6 mg/L in the first (baseline-IFAS) and the second (S8-IFAS) setup, respectively. Baseline-IFAS operated for 542 days and demonstrated a high and stable BNR performance maintaining a removal efficiency above 90% under a Nitrogen Loading Rate (NLR) up to 0.45 kg N/m3-d, while S8-IFAS, which operated for 230 days, was characterized by a limited and unstable BNR performance being unable to operate sufficiently under an NLR higher than 0.20 kg N/m3-d. It also experienced a severe inhibition period, when the BNR process was fully deteriorated. Moreover, S8-IFAS suffered from extensive biocarrier stagnant zones and a particularly poor sludge settleability. The attached biomass cultivated in both IFAS configurations had a negligible content of nitrifying bacteria, probably attributed to the insufficient DO diffusion through the biofilm, caused by the low DO concentration in the liquid in the baseline case and the extensive stagnant zones in the S8-IFAS case. As a result of the high biocarrier filling ratio, the S8-IFAS was unstable and low. This was probably attributed to the mass transfer limitations caused by the biocarrier stagnant zones, which hinder substrate and oxygen diffusion, thus reducing the biomass activity and increasing its vulnerability to inhibitory and toxic factors. Hence, the biocarrier filling fraction is a crucial parameter for the efficient operation of the IFAS-SBR and should be carefully selected taking into consideration both the media type and the overall reactor configuration.


Asunto(s)
Reactores Biológicos , Nitrógeno , Aguas del Alcantarillado , Nitrógeno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Eliminación de Residuos Líquidos/métodos , Desnitrificación , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...