Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.465
Filtrar
1.
PLoS Biol ; 22(7): e3002655, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38985832

RESUMEN

Oligodendrocyte precursor cells (OPCs) are a class of glial cells that uniformly tiles the entire central nervous system (CNS). They play several key functions across the brain including the generation of oligodendrocytes and the control of myelination. Whether the functional diversity of OPCs is the result of genetically defined subpopulations or of their regulation by external factors has not been definitely established. We discovered that a subpopulation of OPCs found across the brain is defined by the expression of C1ql1, a gene previously described for its synaptic function in neurons. This subpopulation starts to appear during the first postnatal week in the mouse cortex. Ablation of C1ql1-expressing OPCs in the mouse leads to a massive lack of oligodendrocytes and myelination in many brain regions. This deficit cannot be rescued, even though some OPCs escape Sox10-driven ablation and end up partially compensating the OPC loss in the adult. Therefore, C1ql1 is a molecular marker of a functionally non-redundant subpopulation of OPCs, which controls the generation of myelinating oligodendrocytes.


Asunto(s)
Vaina de Mielina , Células Precursoras de Oligodendrocitos , Oligodendroglía , Animales , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Vaina de Mielina/metabolismo , Ratones , Diferenciación Celular/genética , Encéfalo/metabolismo , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica
2.
Cells ; 13(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38994990

RESUMEN

In zebrafish, like in mammals, radial glial cells (RGCs) can act as neural progenitors during development and regeneration in adults. However, the heterogeneity of glia subpopulations entails the need for different specific markers of zebrafish glia. Currently, fluorescent protein expression mediated by a regulatory element from the glial fibrillary acidic protein (gfap) gene is used as a prominent glia reporter. We now expand this tool by demonstrating that a regulatory element from the mouse Fatty acid binding protein 7 (Fabp7) gene drives reliable expression in fabp7-expressing zebrafish glial cells. By using three different Fabp7 regulatory element-mediated fluorescent protein reporter strains, we reveal in double transgenic zebrafish that progenitor cells expressing fluorescent proteins driven by the Fabp7 regulatory element give rise to radial glia, oligodendrocyte progenitors, and some neuronal precursors. Furthermore, Bergmann glia represent the almost only glial population of the zebrafish cerebellum (besides a few oligodendrocytes), and the radial glia also remain in the mature cerebellum. Fabp7 regulatory element-mediated reporter protein expression in Bergmann glia progenitors suggests their origin from the ventral cerebellar proliferation zone, the ventricular zone, but not from the dorsally positioned upper rhombic lip. These new Fabp7 reporters will be valuable for functional studies during development and regeneration.


Asunto(s)
Animales Modificados Genéticamente , Proteína de Unión a los Ácidos Grasos 7 , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Proteína de Unión a los Ácidos Grasos 7/metabolismo , Proteína de Unión a los Ácidos Grasos 7/genética , Neuroglía/metabolismo , Cerebelo/metabolismo , Cerebelo/citología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Ratones , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
3.
Cells ; 13(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38995010

RESUMEN

The transcription factor Sox10 is an important determinant of oligodendroglial identity and influences oligodendroglial development and characteristics at various stages. Starting from RNA-seq data, we here show that the expression of several voltage-gated ion channels with known expression and important function in oligodendroglial cells depends upon Sox10. These include the Nav1.1, Cav2.2, Kv1.1, and Kir4.1 channels. For each of the four encoding genes, we found at least one regulatory region that is activated by Sox10 in vitro and at the same time bound by Sox10 in vivo. Cell-specific deletion of Sox10 in oligodendroglial cells furthermore led to a strong downregulation of all four ion channels in a mouse model and thus in vivo. Our study provides a clear functional link between voltage-gated ion channels and the transcriptional regulatory network in oligodendroglial cells. Furthermore, our study argues that Sox10 exerts at least some of its functions in oligodendrocyte progenitor cells, in myelinating oligodendrocytes, or throughout lineage development via these ion channels. By doing so, we present one way in which oligodendroglial development and properties can be linked to neuronal activity to ensure crosstalk between cell types during the development and function of the central nervous system.


Asunto(s)
Oligodendroglía , Factores de Transcripción SOXE , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética , Animales , Oligodendroglía/metabolismo , Oligodendroglía/citología , Ratones , Canales Iónicos/metabolismo , Canales Iónicos/genética , Transcripción Genética , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular/genética , Humanos
4.
Sci Adv ; 10(28): eadk9918, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996029

RESUMEN

Cell therapy for the treatment of demyelinating diseases such as multiple sclerosis is hampered by poor survival of donor oligodendrocyte cell preparations, resulting in limited therapeutic outcomes. Excessive cell death leads to the release of intracellular alloantigens, which likely exacerbate local inflammation and may predispose the graft to eventual rejection. Here, we engineered innovative cell-instructive shear-thinning hydrogels (STHs) with tunable viscoelasticity and bioactivity for minimally invasive delivery of primary human oligodendrocyte progenitor cells (hOPCs) to the brain of a shiverer/rag2 mouse, a model of congenital hypomyelinating disease. The STHs enabled immobilization of prosurvival signals, including a recombinantly designed bidomain peptide and platelet-derived growth factor. Notably, STHs reduced the death rate of hOPCs significantly, promoted the production of myelinating oligodendrocytes, and enhanced myelination of the mouse brain 12 weeks post-implantation. Our results demonstrate the potential of STHs loaded with biological cues to improve cell therapies for the treatment of devastating myelopathies.


Asunto(s)
Supervivencia Celular , Hidrogeles , Células Precursoras de Oligodendrocitos , Remielinización , Animales , Hidrogeles/química , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/citología , Ratones , Humanos , Sistema Nervioso Central/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/citología , Vaina de Mielina/metabolismo , Modelos Animales de Enfermedad
5.
PLoS Biol ; 22(7): e3002691, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990827

RESUMEN

The diversity of oligodendrocyte precursor cells (OPCs) is not well understood and is actively discussed in the field. A new study in PLOS Biology describes a novel marker for an OPC subpopulation that controls oligodendrogenesis and myelination.


Asunto(s)
Diferenciación Celular , Oligodendroglía , Oligodendroglía/fisiología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Animales , Humanos , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología , Células Precursoras de Oligodendrocitos/fisiología , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Biomarcadores/metabolismo
6.
Cells ; 13(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38920654

RESUMEN

Oligodendrocyte progenitor cells (OPCs) represent a subtype of glia, giving rise to oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). While OPCs are highly proliferative during development, they become relatively quiescent during adulthood, when their fate is strictly influenced by the extracellular context. In traumatic injuries and chronic neurodegenerative conditions, including those of autoimmune origin, oligodendrocytes undergo apoptosis, and demyelination starts. Adult OPCs become immediately activated; they migrate at the lesion site and proliferate to replenish the damaged area, but their efficiency is hampered by the presence of a glial scar-a barrier mainly formed by reactive astrocytes, microglia and the deposition of inhibitory extracellular matrix components. If, on the one hand, a glial scar limits the lesion spreading, it also blocks tissue regeneration. Therapeutic strategies aimed at reducing astrocyte or microglia activation and shifting them toward a neuroprotective phenotype have been proposed, whereas the role of OPCs has been largely overlooked. In this review, we have considered the glial scar from the perspective of OPCs, analysing their behaviour when lesions originate and exploring the potential therapies aimed at sustaining OPCs to efficiently differentiate and promote remyelination.


Asunto(s)
Cicatriz , Neuroglía , Células Precursoras de Oligodendrocitos , Remielinización , Humanos , Animales , Células Precursoras de Oligodendrocitos/metabolismo , Cicatriz/patología , Neuroglía/metabolismo , Neuroglía/patología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Vaina de Mielina/metabolismo , Diferenciación Celular
7.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928201

RESUMEN

Clinical treatment options to combat Encephalopathy of Prematurity (EoP) are still lacking. We, and others, have proposed (intranasal) mesenchymal stem cells (MSCs) as a potent therapeutic strategy to boost white matter repair in the injured preterm brain. Using a double-hit mouse model of diffuse white matter injury, we previously showed that the efficacy of MSC treatment was time dependent, with a significant decrease in functional and histological improvements after the postponement of cell administration. In this follow-up study, we aimed to investigate the mechanisms underlying this loss of therapeutic efficacy. Additionally, we optimized the regenerative potential of MSCs by means of genetic engineering with the transient hypersecretion of beneficial factors, in order to prolong the treatment window. Though the cerebral expression of known chemoattractants was stable over time, the migration of MSCs to the injured brain was partially impaired. Moreover, using a primary oligodendrocyte (OL) culture, we showed that the rescue of injured OLs was reduced after delayed MSC coculture. Cocultures of modified MSCs, hypersecreting IGF1, LIF, IL11, or IL10, with primary microglia and OLs, revealed a superior treatment efficacy over naïve MSCs. Additionally, we showed that the delayed intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, improved myelination and the functional outcome in EoP mice. In conclusion, the impaired migration and regenerative capacity of intranasally applied MSCs likely underlie the observed loss of efficacy after delayed treatment. The intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, is a promising optimization strategy to prolong the window for effective MSC treatment in preterm infants with EoP.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Trasplante de Células Madre Mesenquimatosas/métodos , Secretoma/metabolismo , Modelos Animales de Enfermedad , Oligodendroglía/metabolismo , Oligodendroglía/citología , Humanos , Técnicas de Cocultivo , Microglía/metabolismo , Ratones Endogámicos C57BL
8.
Cell Biochem Funct ; 42(4): e4057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853469

RESUMEN

White matter hyperintensities (WMHs) refer to a group of diseases with numerous etiologies while oligodendrocytes remain the centerpiece in the pathogenesis of WMHs. Ring Finger Protein 216 (RNF216) encodes a ubiquitin ligase, and its mutation begets WMHs, ataxia, and cognitive decline in patients. Yet no study has revealed the function of RNF216 in oligodendroglia and WHIs before. In this study, we summarized the phenotypes of RNF216-mutation cases and explored the normal distribution of RNF216 in distinct brain regions and neuronal cells by bioinformatic analysis. Furthermore, MO3.13, a human oligodendrocyte cell line, was applied to study the function alteration after RNF216 knockdown. As a result, WMHs were the most common symptom in RNF216-mutated diseases, and RNF216 was indeed relatively enriched in corpus callosum and oligodendroglia in humans. The downregulation of RNF216 in oligodendroglia remarkably hampered cell proliferation by inhibiting the Akt pathway while having no significant effect on cell injury and oligodendrocyte maturation. Combining clinical, bioinformatical, and experimental evidence, our study implied the pivotal role of RNF216 in WMHs which might serve as a potent target in the therapy of WMHs.


Asunto(s)
Proliferación Celular , Oligodendroglía , Ubiquitina-Proteína Ligasas , Sustancia Blanca , Humanos , Mutación con Pérdida de Función , Oligodendroglía/metabolismo , Oligodendroglía/citología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Sustancia Blanca/citología
9.
Nature ; 630(8017): 677-685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839962

RESUMEN

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Asunto(s)
Analgésicos Opioides , Vaina de Mielina , Vías Nerviosas , Plasticidad Neuronal , Recompensa , Área Tegmental Ventral , Animales , Femenino , Masculino , Ratones , Analgésicos Opioides/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Ratones Endogámicos C57BL , Morfina/farmacología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Optogenética , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Linaje de la Célula
10.
Cells ; 13(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38891067

RESUMEN

Rapid information processing in the central nervous system requires the myelination of axons by oligodendrocytes. The transcription factor Sox2 and its close relative Sox3 redundantly regulate the development of myelin-forming oligodendrocytes, but little is known about the underlying molecular mechanisms. Here, we characterized the expression profile of cultured oligodendroglial cells during early differentiation and identified Bcas1, Enpp6, Zfp488 and Nkx2.2 as major downregulated genes upon Sox2 and Sox3 deletion. An analysis of mice with oligodendrocyte-specific deletion of Sox2 and Sox3 validated all four genes as downstream targets in vivo. Additional functional assays identified regulatory regions in the vicinity of each gene that are responsive to and bind both Sox proteins. Bcas1, Enpp6, Zfp488 and Nkx2.2 therefore likely represent direct target genes and major effectors of Sox2 and Sox3. Considering the preferential expression and role of these genes in premyelinating oligodendrocytes, our findings suggest that Sox2 and Sox3 impact oligodendroglial development at the premyelinating stage with Bcas1, Enpp6, Zfp488 and Nkx2.2 as their major effectors.


Asunto(s)
Diferenciación Celular , Proteína Homeobox Nkx-2.2 , Oligodendroglía , Factores de Transcripción SOXB1 , Factores de Transcripción , Animales , Ratones , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Oligodendroglía/metabolismo , Oligodendroglía/citología , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
11.
Int J Biol Macromol ; 269(Pt 2): 131964, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692525

RESUMEN

This study aims to identify FDA-approved drugs that can target the kappa-opioid receptor (KOR) for the treatment of demyelinating diseases. Demyelinating diseases are characterized by myelin sheath destruction or formation that results in severe neurological dysfunction. Remission of this disease is largely dependent on the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLGs) in demyelinating lesions. KOR is an important regulatory protein and drug target for the treatment of demyelinating diseases. However, no drug targeting KOR has been developed due to the long clinical trials for drug discovery. Here, a structure-based virtual screening was applied to identify drugs targeting KOR among 1843 drugs of FDA-approved drug libraries, and famotidine was screen out by its high affinity cooperation with KOR as well as the clinical safety. We discovered that famotidine directly promoted OPC maturation and remyelination using the complementary in vitro and in vivo models. Administration of famotidine was not only effectively enhanced CNS myelinogenesis, but also promoted remyelination. Mechanically speaking, famotidine promoted myelinogenesis or remyelination through KOR/STAT3 signaling pathway. In general, our study provided evidence of new clinical applicability of famotidine for the treatment of demyelinating diseases for which there is currently no effective therapy.


Asunto(s)
Diferenciación Celular , Famotidina , Receptores Opioides kappa , Remielinización , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Humanos , Ratones , Diferenciación Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Famotidina/farmacología , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/citología , Receptores Opioides kappa/metabolismo , Remielinización/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Femenino , Ratones Endogámicos C57BL , Células HEK293
12.
Cells ; 13(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38667289

RESUMEN

Oligodendrocytes originating in the brain and spinal cord as well as in the ventral and dorsal domains of the neural tube are transcriptomically and functionally distinct. These distinctions are also reflected in the ultrastructure of the produced myelin, and the susceptibility to myelin-related disorders, which highlights the significance of the choice of patterning protocols in the differentiation of induced pluripotent stem cells (iPSCs) into oligodendrocytes. Thus, our first goal was to survey the different approaches applied to the generation of iPSC-derived oligodendrocytes in 2D culture and in organoids, as well as reflect on how these approaches pertain to the regional and spatial fate of the generated oligodendrocyte progenitors and myelinating oligodendrocytes. This knowledge is increasingly important to disease modeling and future therapeutic strategies. Our second goal was to recap the recent advances in the development of oligodendrocyte-enriched organoids, as we explore their relevance to a regional specification alongside their duration, complexity, and maturation stages of oligodendrocytes and myelin biology. Finally, we discuss the shortcomings of the existing protocols and potential future explorations.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Oligodendroglía , Organoides , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Organoides/citología , Humanos , Animales , Vaina de Mielina/metabolismo , Técnicas de Cultivo de Célula/métodos
13.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664022

RESUMEN

Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.


Asunto(s)
Astrocitos , Diferenciación Celular , Linaje de la Célula , Dinaminas , Mitocondrias , Dinámicas Mitocondriales , Células-Madre Neurales , Neuronas , Oligodendroglía , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Mitocondrias/metabolismo , Ratones , Diferenciación Celular/genética , Linaje de la Célula/genética , Astrocitos/metabolismo , Astrocitos/citología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Neuronas/metabolismo , Neuronas/citología , Células Cultivadas , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Neurogénesis , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo
14.
Stem Cell Reports ; 19(5): 654-672, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38579710

RESUMEN

Here, we used single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq), and single-cell spatial transcriptomics to characterize murine cortical OPCs throughout postnatal life. During development, we identified two groups of differentially localized PDGFRα+ OPCs that are transcriptionally and epigenetically distinct. One group (active, or actOPCs) is metabolically active and enriched in white matter. The second (homeostatic, or hOPCs) is less active, enriched in gray matter, and predicted to derive from actOPCs. In adulthood, these two groups are transcriptionally but not epigenetically distinct, and relative to developing OPCs are less active metabolically and have less open chromatin. When adult oligodendrogenesis is enhanced during experimentally induced remyelination, adult OPCs do not reacquire a developmental open chromatin state, and the oligodendrogenesis trajectory is distinct from that seen neonatally. These data suggest that there are two OPC groups subserving distinct postnatal functions and that neonatal and adult OPC-mediated oligodendrogenesis are fundamentally different.


Asunto(s)
Células Precursoras de Oligodendrocitos , Análisis de la Célula Individual , Animales , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/citología , Ratones , Diferenciación Celular/genética , Oligodendroglía/metabolismo , Oligodendroglía/citología , Epigénesis Genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Transcriptoma , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Sustancia Blanca/metabolismo , Sustancia Blanca/citología
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631406

RESUMEN

Mature oligodendrocytes (OLs) arise from oligodendrocyte precursor cells that, in case of demyelination, are recruited at the lesion site to remyelinate the axons and therefore restore the transmission of nerve impulses. It has been widely documented that exogenously administered steroid molecules are potent inducers of myelination. However, little is known about how neurosteroids produced de novo by OLs can impact this process. Here, we employed a human OL precursor cell line to investigate the role of de novo neurosteroidogenesis in the regulation of OLs differentiation, paying particular attention to the 18 kDa Translocator Protein (TSPO) which controls the rate-limiting step of the neurosteroidogenic process. Our results showed that, over the time of OL maturation, the availability of cholesterol, which is the neurosteroidogenesis initial substrate, and key members of the neurosteroidogenic machinery, including TSPO, were upregulated. In addition, OLs differentiation was impaired following neurosteroidogenesis inhibition and TSPO silencing. On the contrary, TSPO pharmacological stimulation promoted neurosteroidogenic function and positively impacted differentiation. Collectively, our results suggest that de novo neurosteroidogenesis is actively involved in the autocrine and paracrine regulation of human OL differentiation. Moreover, since TSPO was able to promote OL differentiation through a positive modulation of the neurosteroid biosynthetic process, it could be exploited as a promising target to tackle demyelinating diseases.


Asunto(s)
Diferenciación Celular , Oligodendroglía , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/citología , Diferenciación Celular/efectos de los fármacos , Neuroesteroides/metabolismo , Colesterol/metabolismo , Colesterol/biosíntesis , Línea Celular , Vaina de Mielina/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-38503504

RESUMEN

Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.


Asunto(s)
Diferenciación Celular , Vaina de Mielina , Oligodendroglía , Oligodendroglía/fisiología , Oligodendroglía/citología , Humanos , Animales , Vaina de Mielina/fisiología , Vaina de Mielina/metabolismo , Transducción de Señal , Sistema Nervioso Central/fisiología , Axones/fisiología , Axones/metabolismo
17.
Mol Neurobiol ; 61(8): 5738-5753, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38227271

RESUMEN

Oligodendrocytes (OL) are the myelinating cells of the central nervous system that mediate nerve conduction. Loss of oligodendrocytes results in demyelination, triggering neurological deficits. Developing a better understanding of the cell signaling pathways influencing OL development may aid in the development of therapeutic strategies. The primary focus of this study was to investigate and elucidate the cell signaling pathways implicated in the developmental maturation of oligodendrocytes using human fetal neural stem cells (hFNSCs)-derived primary OL and MO3.13 cell line. Successful differentiation into OL was established by examining morphological changes, increased expression of mature OL markers MBP, MOG and decreased expression of pre-OL markers CSPG4 and O4. Analyzing transcriptional datasets (using RNA sequencing) in pre-OL and mature OL derived from hFNSCs revealed the novel and critical involvement of the JAK-STAT cell signaling pathway in terminal OL maturation. The finding was validated in MO3.13 cell line whose differentiation was accompanied by upregulation of IL-6 and the transcription factor STAT3. Increased phosphorylated STAT3 (pY705) levels were demonstrated by western blotting in hFNSCs-derived primary OL as well as terminal maturation in MO3.13 cells, thus validating the involvement of the JAK-STAT pathway in OL maturation. Pharmacological suppression of STAT3 phosphorylation (confirmed by western blotting) was able to prevent the increase of MBP-positive cells as demonstrated by flow cytometry. These novel findings highlight the involvement of the JAK-STAT pathway in OL maturation and raise the possibility of using this as a therapeutic strategy in demyelinating diseases.


Asunto(s)
Diferenciación Celular , Quinasas Janus , Células-Madre Neurales , Oligodendroglía , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Oligodendroglía/metabolismo , Oligodendroglía/citología , Transducción de Señal/fisiología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Diferenciación Celular/fisiología , Quinasas Janus/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción STAT/metabolismo , Fosforilación , Línea Celular , Feto/citología , Células Madre Fetales/metabolismo , Interleucina-6/metabolismo
18.
Nature ; 620(7972): 145-153, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37468639

RESUMEN

Human-specific genomic changes contribute to the unique functionalities of the human brain1-5. The cellular heterogeneity of the human brain6,7 and the complex regulation of gene expression highlight the need to characterize human-specific molecular features at cellular resolution. Here we analysed single-nucleus RNA-sequencing and single-nucleus assay for transposase-accessible chromatin with sequencing datasets for human, chimpanzee and rhesus macaque brain tissue from posterior cingulate cortex. We show a human-specific increase of oligodendrocyte progenitor cells and a decrease of mature oligodendrocytes across cortical tissues. Human-specific regulatory changes were accelerated in oligodendrocyte progenitor cells, and we highlight key biological pathways that may be associated with the proportional changes. We also identify human-specific regulatory changes in neuronal subtypes, which reveal human-specific upregulation of FOXP2 in only two of the neuronal subtypes. We additionally identify hundreds of new human accelerated genomic regions associated with human-specific chromatin accessibility changes. Our data also reveal that FOS::JUN and FOX motifs are enriched in the human-specifically accessible chromatin regions of excitatory neuronal subtypes. Together, our results reveal several new mechanisms underlying the evolutionary innovation of human brain at cell-type resolution.


Asunto(s)
Evolución Molecular , Giro del Cíngulo , Animales , Humanos , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Conjuntos de Datos como Asunto , Genoma Humano/genética , Genómica , Giro del Cíngulo/citología , Giro del Cíngulo/metabolismo , Macaca mulatta/genética , Neuronas/clasificación , Neuronas/citología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Pan troglodytes/genética , Análisis de Expresión Génica de una Sola Célula , Células Madre/citología , Transposasas/metabolismo , Ensamble y Desensamble de Cromatina
19.
Biochemistry (Mosc) ; 88(3): 337-352, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076281

RESUMEN

Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.


Asunto(s)
Comunicación Celular , Lípidos , Neuroglía , Neuronas , Ácido Araquidónico/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Colesterol/metabolismo , Microglía/citología , Microglía/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ácidos Fosfatidicos/metabolismo , Transducción de Señal , Humanos , Animales
20.
Ann N Y Acad Sci ; 1522(1): 24-41, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36740586

RESUMEN

The epigenetic landscape of oligodendrocyte lineage cells refers to the cell-specific modifications of DNA, chromatin, and RNA that define a unique gene expression pattern of functionally specialized cells. Here, we focus on the epigenetic changes occurring as progenitors differentiate into myelin-forming cells and respond to the local environment. First, modifications of DNA, RNA, nucleosomal histones, key principles of chromatin organization, topologically associating domains, and local remodeling will be reviewed. Then, the relationship between epigenetic modulators and RNA processing will be explored. Finally, the reciprocal relationship between the epigenome as a determinant of the mechanical properties of cell nuclei and the target of mechanotransduction will be discussed. The overall goal is to provide an interpretative key on how epigenetic changes may account for the heterogeneity of the transcriptional profiles identified in this lineage.


Asunto(s)
Epigénesis Genética , Oligodendroglía , Diferenciación Celular , Linaje de la Célula , Cromatina , Mecanotransducción Celular , ARN , Oligodendroglía/citología , Oligodendroglía/metabolismo , Humanos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...