Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.563
Filtrar
1.
Mol Biol Rep ; 51(1): 942, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196421

RESUMEN

BACKGROUND: The Muricidae family in the Class Gastropoda comprises numerous species with a vast range of morphological features and a worldwide presence. The phylogeny of the Muricidae has been analyzed in previous studies; however, the evolutionary relationships among the main branches of the Muricidae remain unknown. METHODS AND RESULTS: In the present study, the mitochondrial genome of Mancinella alouina was sequenced. The mitochondrial genome was found to be 16,671 bp in length and made up of 37 genes (13 protein-coding genes, 22 transfer RNA and 2 ribosomal RNA genes). The genome has an A-T-rich region (66.5% A + T content) and all of the PCGs use the ATN start codon and the TAG or TAA stop codons. The mitochondrial gene arrangement of Mancinella alouina is similar to that of other Muricidae, except for Ocinebrellus inornatus and Ceratostoma burnetti. On the basis of a flexible molecular clock model, time-calibrated phylogenetic results indicate that the genus Mancinella diverged roughly 18.09 Mya, and that the family Muricidae emerged in the Late Cretaceous. CONCLUSIONS: This study reveals the structural and sequence information features of the mitochondrial genome of Mancinella alouina. This study provides evidence for the relationships within the family Muricidae at the molecular level, and infer the divergence time. The results of phylogenetic analyses strongly support the current classification.


Asunto(s)
Genoma Mitocondrial , Filogenia , Genoma Mitocondrial/genética , Animales , ARN de Transferencia/genética , ARN Ribosómico/genética , Evolución Molecular , Gastrópodos/genética , Gastrópodos/clasificación , Composición de Base/genética , Análisis de Secuencia de ADN/métodos , Genes Mitocondriales/genética , Orden Génico , ADN Mitocondrial/genética
2.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891763

RESUMEN

The genus Henricia is known to have intraspecific morphological variations, making species identification difficult. Therefore, molecular phylogeny analysis based on genetic characteristics is valuable for species identification. We present complete mitochondrial genomic sequences of Henricia longispina aleutica, H. reniossa, and H. sanguinolenta for the first time in this study. This study will make a significant contribution to our understanding of Henricia species and its relationships within the class Asteroidea. Lengths of mitochondrial genomes of the three species are 16,217, 16,223, and 16,194 bp, respectively, with a circular form. These genomes contained 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a D-loop. The gene order and direction aligned with other asteroid species. Phylogenetic relationship analysis showed that our Henricia species were in a monophyletic clade with other Henricia species and in a large clade with species (Echinaster brasiliensis) from the same family. These findings provide valuable insight into understanding the phylogenetic relationships of species in the genus Henricia.


Asunto(s)
Genoma Mitocondrial , Filogenia , Animales , ARN de Transferencia/genética , ARN Ribosómico/genética , Orden Génico
3.
Sci Rep ; 14(1): 13820, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879694

RESUMEN

The Pama Croaker, Otolithoides pama, is an economically important fish species in Bangladesh. Intra-family similarities in morphology and typical barcode sequences of cox1 create ambiguities in its identification. Therefore, morphology and the complete mitochondrial genome of O. pama, and comparative mitogenomics within the family Sciaenidae have been studied. Extracted genomic DNA was subjected to Illumina-based short read sequencing for De-Novo mitogenome assembly. The complete mitogenome of O. pama (Accession: OQ784575.1) was 16,513 bp, with strong AC biasness and strand asymmetry. Relative synonymous codon usage (RSCU) among 13 protein-coding genes (PCGs) of O. pama was also analyzed. The studied mitogenomes including O. pama exhibited consistent sizes and gene orders, except for the genus Johnius which possessed notably longer mitogenomes with unique gene rearrangements. Different genetic distance metrics across 30 species of Sciaenidae family demonstrated 12S rRNA and the control region (CR) as the most conserved and variable regions, respectively, while most of the PCGs undergone a purifying selection. Different phylogenetic trees were congruent with one another, where O. pama was distinctly placed. This study would contribute to distinguishing closely related fish species of Sciaenidae family and can be instrumental in conserving the genetic diversity of O. pama.


Asunto(s)
Genoma Mitocondrial , Perciformes , Filogenia , Animales , Genoma Mitocondrial/genética , Perciformes/genética , Perciformes/clasificación , Uso de Codones , Orden Génico
4.
Toxins (Basel) ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922136

RESUMEN

Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of the infection are toxins produced by C. difficile, with toxin A (TcdA) and toxin B (TcdB) as the main virulence factors. Additionally, some strains produce a third toxin known as C. difficile transferase (CDT). Toxins damage the colonic epithelium, initiating a cascade of cellular events that lead to inflammation, fluid secretion, and further tissue damage within the colon. Mechanistically, the toxins bind to cell surface receptors, internalize, and then inactivate GTPase proteins, disrupting the organization of the cytoskeleton and affecting various Rho-dependent cellular processes. This results in a loss of epithelial barrier functions and the induction of cell death. The third toxin, CDT, however, functions as a binary actin-ADP-ribosylating toxin, causing actin depolymerization and inducing the formation of microtubule-based protrusions. In this review, we summarize our current understanding of the interaction between C. difficile toxins and host cells, elucidating the functional consequences of their actions. Furthermore, we will outline how this knowledge forms the basis for developing innovative, toxin-based strategies for treating and preventing CDI.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Interacciones Microbiota-Huesped , Clostridioides difficile/genética , Clostridioides difficile/patogenicidad , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/patología , Orden Génico , Inflamación/patología , Humanos , Animales
5.
Methods Mol Biol ; 2802: 247-265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819563

RESUMEN

Reconstructing ancestral gene orders from the genome data of extant species is an important problem in comparative and evolutionary genomics. In a phylogenomics setting that accounts for gene family evolution through gene duplication and gene loss, the reconstruction of ancestral gene orders involves several steps, including multiple sequence alignment, the inference of reconciled gene trees, and the inference of ancestral syntenies and gene adjacencies. For each of the steps of such a process, several methods can be used and implemented using a growing corpus of, often parameterized, tools; in practice, interfacing such tools into an ancestral gene order reconstruction pipeline is far from trivial. This chapter introduces AGO, a Python-based framework aimed at creating ancestral gene order reconstruction pipelines allowing to interface and parameterize different bioinformatics tools. The authors illustrate the features of AGO by reconstructing ancestral gene orders for the X chromosome of three ancestral Anopheles species using three different pipelines. AGO is freely available at https://github.com/cchauve/AGO-pipeline .


Asunto(s)
Evolución Molecular , Orden Génico , Genómica , Filogenia , Programas Informáticos , Animales , Genómica/métodos , Biología Computacional/métodos , Sintenía/genética , Anopheles/genética , Cromosoma X/genética , Alineación de Secuencia/métodos
6.
Viruses ; 16(4)2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38675982

RESUMEN

Previous studies have identified diverse bacteriophages that infect Caulobacter vibrioides strain CB15 ranging from small RNA phages to four genera of jumbo phages. In this study, we focus on 20 bacteriophages whose genomes range from 40 to 60 kb in length. Genome comparisons indicated that these diverse phages represent six Caulobacter phage genera and one additional genus that includes both Caulobacter and Brevundimonas phages. Within species, comparisons revealed that both single base changes and inserted or deleted genetic material cause the genomes of closely related phages to diverge. Among genera, the basic gene order and the orientation of key genes were retained with most of the observed variation occurring at ends of the genomes. We hypothesize that the nucleotide sequences of the ends of these phage genomes are less important than the need to maintain the size of the genome and the stability of the corresponding mRNAs.


Asunto(s)
Bacteriófagos , Caulobacter , Evolución Molecular , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/clasificación , Caulobacter/virología , Caulobacter/genética , Orden Génico
7.
Nucleic Acids Res ; 52(D1): D513-D521, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37962356

RESUMEN

In this update paper, we present the latest developments in the OMA browser knowledgebase, which aims to provide high-quality orthology inferences and facilitate the study of gene families, genomes and their evolution. First, we discuss the addition of new species in the database, particularly an expanded representation of prokaryotic species. The OMA browser now offers Ancestral Genome pages and an Ancestral Gene Order viewer, allowing users to explore the evolutionary history and gene content of ancestral genomes. We also introduce a revamped Local Synteny Viewer to compare genomic neighborhoods across both extant and ancestral genomes. Hierarchical Orthologous Groups (HOGs) are now annotated with Gene Ontology annotations, and users can easily perform extant or ancestral GO enrichments. Finally, we recap new tools in the OMA Ecosystem, including OMAmer for proteome mapping, OMArk for proteome quality assessment, OMAMO for model organism selection and Read2Tree for phylogenetic species tree construction from reads. These new features provide exciting opportunities for orthology analysis and comparative genomics. OMA is accessible at https://omabrowser.org.


Asunto(s)
Bases de Datos Genéticas , Ecosistema , Genoma , Proteoma , Genoma/genética , Filogenia , Sintenía , Internet , Orden Génico/genética
8.
Genetics ; 226(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38147527

RESUMEN

Inversions restrict recombination when heterozygous with standard arrangements, but often have few noticeable phenotypic effects. Nevertheless, there are several examples of inversions that can be maintained polymorphic by strong selection under laboratory conditions. A long-standing model for the source of such selection is divergence between arrangements with respect to recessive or partially recessive deleterious mutations, resulting in a selective advantage to heterokaryotypic individuals over homokaryotypes. This paper uses a combination of analytical and numerical methods to investigate this model, for the simple case of an autosomal inversion with multiple independent nucleotide sites subject to mildly deleterious mutations. A complete lack of recombination in heterokaryotypes is assumed, as well as constancy of the frequency of the inversion over space and time. It is shown that a significantly higher mutational load will develop for the less frequent arrangement. A selective advantage to heterokaryotypes is only expected when the two alternative arrangements are nearly equal in frequency, so that their mutational loads are very similar in size. The effects of some Drosophila pseudoobscura polymorphic inversions on fitness traits seem to be too large to be explained by this process, although it may contribute to some of the observed effects. Several population genomic statistics can provide evidence for signatures of a reduced efficacy of selection associated with the rarer of two arrangements, but there is currently little published data that are relevant to the theoretical predictions.


Asunto(s)
Inversión Cromosómica , Flujo Genético , Humanos , Orden Génico , Cromosomas , Genoma
9.
PeerJ ; 11: e16233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842035

RESUMEN

The mitochondrial genomes of six Phylloscopus species-small insectivores belonging to the Phylloscopidae family-were obtained using the Illumina sequencing platform. The mitogenomes were closed circular molecules 16,922-17,007 bp in size, containing 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and two control regions (CR1 and remnant CR2). The gene orders were conserved in 35 sampled Phylloscopus mitogenomes in the GenBank database, with a gene rearrangement of cytb-trnT-CR1-trnP-nad6-trnE-remnant CR2-trnF-rrnS. The average base compositions of the six Phylloscopus mitogenomes were 29.43% A, 32.75% C, 14.68% G, and 23.10% T, with the A+T content slightly higher than that of G+C. ATG and TAA were the most frequent initiating and terminating codons, respectively. Several conserved boxes were identified in CR1, including C-string in domain I; F, E, D, and C boxes, as well as bird similarity and B boxes, in domain II; and CSB1 in domain III. Tandem repeats were observed in remnant CR2 of the Phylloscopus fuscatus and Phylloscopus proregulus mitogenomes. A phylogenetic analysis with maximum likelihood (ML) and Bayesian inference (BI) methods, based on 13 protein-coding genes and two rRNA genes, indicated that the Phylloscopus species was divided into two larger clades, with a splitting time approximately 11.06 million years ago (mya). The taxa of Phylloscopus coronatus/Phylloscopus burkii and Phylloscopus inornatus/P. proregulus were located at the basal position of the different clades. The phylogenetic result of the cox1 gene showed that Seicercus was nested within Phylloscopus. The complete set of mitogenomes of the Phylloscopus species provides potentially useful resources for the further exploration of the taxonomic status and phylogenetic history of Phylloscopidae.


Asunto(s)
Genoma Mitocondrial , Passeriformes , Animales , Filogenia , Genoma Mitocondrial/genética , Teorema de Bayes , Orden Génico , Passeriformes/genética
10.
PeerJ ; 11: e16217, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868050

RESUMEN

Background: Thoracotremata belong to the large group of "true" crabs (infraorder Brachyura), and they exhibit a wide range of physiological and morphological adaptations to living in terrestrial, freshwater and marine habitats. Moreover, the clade comprises various symbiotic taxa (Aphanodactylidae, Cryptochiridae, Pinnotheridae, some Varunidae) that are specialised in living with invertebrate hosts, but the evolutionary history of these symbiotic crabs is still partially unresolved. Methods: Here we assembled and characterised the complete mitochondrial genomes (hereafter mitogenomes) of three gall crab species (Cryptochiridae): Kroppcarcinus siderastreicola, Opecarcinus hypostegus and Troglocarcinus corallicola. A phylogenetic tree of the Thoracotremata was reconstructed using 13 protein-coding genes and two ribosomal RNA genes retrieved from three new gall crab mitogenomes and a further 72 available thoracotreme mitogenomes. Furthermore, we applied a comparative analysis to characterise mitochondrial gene order arrangement, and performed a selection analysis to test for selective pressure of the protein-coding genes in symbiotic Cryptochiridae, Pinnotheridae, and Varunidae (Asthenognathus inaequipes and Tritodynamia horvathi). Results: The results of the phylogenetic reconstruction confirm the monophyly of Cryptochiridae, which clustered separately from the Pinnotheridae. The latter clustered at the base of the tree with robust branch values. The symbiotic varunids A. inaequipes and T. horvathi clustered together in a clade with free-living Varunidae species, highlighting that symbiosis in the Thoracotremata evolved independently on multiple occasions. Different gene orders were detected in symbionts and free-living species when compared with the ancestral brachyuran gene order. Lastly, the selective pressure analysis detected two positively selected sites in the nad6 gene of Cryptochiridae, but the evidence for positive selection in Pinnotheridae and A. inaequipes and T. horvathi was weak. Adaptive evolution of mitochondrial protein-coding genes is perhaps related to the presumably higher energetic demands of a symbiotic lifestyle.


Asunto(s)
Braquiuros , Animales , Filogenia , Braquiuros/genética , Simbiosis/genética , Genes Mitocondriales , Orden Génico
11.
Genes (Basel) ; 14(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37761878

RESUMEN

Tenebrionidae is widely recognized owing to its species diversity and economic importance. Here, we determined the mitochondrial genomes (mitogenomes) of three Tenebrionidae species (Melanesthes exilidentata, Anatolica potanini, and Myladina unguiculina) and performed a comparative mitogenomic analysis to characterize the evolutionary characteristics of the family. The tenebrionid mitogenomes were highly conserved with respect to genome size, gene arrangement, base composition, and codon usage. All protein-coding genes evolved under purifying selection. The largest non-coding region (i.e., control region) showed several unusual features, including several conserved repetitive fragments (e.g., A+T-rich regions, G+C-rich regions, Poly-T tracts, TATA repeat units, and longer repetitive fragments) and tRNA-like structures. These tRNA-like structures can bind to the appropriate anticodon to form a cloverleaf structure, although base-pairing is not complete. We summarized the quantity, types, and conservation of tRNA-like sequences and performed functional and evolutionary analyses of tRNA-like sequences with various anticodons. Phylogenetic analyses based on three mitogenomic datasets and two tree inference methods largely supported the monophyly of each of the three subfamilies (Stenochiinae, Pimeliinae, and Lagriinae), whereas both Tenebrioninae and Diaperinae were consistently recovered as polyphyletic. We obtained a tenebrionid mitogenomic phylogeny: (Lagriinae, (Pimeliinae, ((Tenebrioninae + Diaperinae), Stenochiinae))). Our results provide insights into the evolution and function of tRNA-like sequences in tenebrionid mitogenomes and contribute to our general understanding of the evolution of Tenebrionidae.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Filogenia , ARN de Transferencia/genética , Uso de Codones/genética , Orden Génico
12.
Int J Biol Macromol ; 253(Pt 2): 126742, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37689283

RESUMEN

Insect mitochondrial genomes (mitogenome) generally present a typical gene order, which is considered as the ancestral arrangement. All sequenced mitogenomes in the Thysanoptera display high levels of gene rearrangement. Due to limited number of thrips mitogenomes sequenced, how gene rearrangement may be shaped by evolution remain unclear. Here, we analyzed 33 thrips mitogenomes, including 14 newly sequenced. These mitogenomes were diverse in organization, nucleotides substitution and gene arrangements. We found 28 highly rearranged gene orders with the breakpoints of gene rearrangements from 25 to 33. Reconstruction of the ancestors mitochondrial gene arrangements states indicated that Tubulifera have more complex pathways than Terebrantia in the gene order evolution. Molecular calibration estimated that divergence of two suborders occurred in the middle Triassic while the radiation of thrips was associated with the arose and flourish of angiosperm. Our evolutionary hypothesis testing suggests that relaxation of selection pressure enabled the early phase of Thysanoptera evolution, followed by a stronger selective pressure fixed diversification. Our analyses found gene inversion increases the nonsynonymous substitution rates and provide an evolutionary hypothesis driving the diverse gene orders.


Asunto(s)
Genoma Mitocondrial , Thysanoptera , Animales , Thysanoptera/genética , Genoma Mitocondrial/genética , Filogenia , Insectos/genética , Reordenamiento Génico , Orden Génico , Evolución Molecular
13.
Genetics ; 224(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348059

RESUMEN

The strong reduction in the frequency of recombination in heterozygotes for an inversion and a standard gene arrangement causes the arrangements to become partially isolated genetically, resulting in sequence divergence between them and changes in the levels of neutral variability at nucleotide sites within each arrangement class. Previous theoretical studies on the effects of inversions on neutral variability have assumed either that the population is panmictic or that it is divided into 2 populations subject to divergent selection. Here, the theory is extended to a model of an arbitrary number of demes connected by migration, using a finite island model with the inversion present at the same frequency in all demes. Recursion relations for mean pairwise coalescent times are used to obtain simple approximate expressions for diversity and divergence statistics for an inversion polymorphism at equilibrium under recombination and drift, and for the approach to equilibrium following the sweep of an inversion to a stable intermediate frequency. The effects of an inversion polymorphism on patterns of linkage disequilibrium are also examined. The reduction in effective recombination rate caused by population subdivision can have significant effects on these statistics. The theoretical results are discussed in relation to population genomic data on inversion polymorphisms, with an emphasis on Drosophila melanogaster. Methods are proposed for testing whether or not inversions are close to recombination-drift equilibrium, and for estimating the rate of recombinational exchange in heterozygotes for inversions; difficulties involved in estimating the ages of inversions are also discussed.


Asunto(s)
Drosophila melanogaster , Polimorfismo Genético , Animales , Drosophila melanogaster/genética , Desequilibrio de Ligamiento , Orden Génico , Inversión Cromosómica
14.
Syst Biol ; 72(4): 925-945, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37083277

RESUMEN

The mitochondrial genomes of Bilateria are relatively conserved in their protein-coding, rRNA, and tRNA gene complement, but the order of these genes can range from very conserved to very variable depending on the taxon. The supposedly conserved gene order of Annelida has been used to support the placement of some taxa within Annelida. Recently, authors have cast doubts on the conserved nature of the annelid gene order. Various factors may influence gene order variability including, among others, increased substitution rates, base composition differences, structure of noncoding regions, parasitism, living in extreme habitats, short generation times, and biomineralization. However, these analyses were neither done systematically nor based on well-established reference trees. Several focused on only a few of these factors and biological factors were usually explored ad-hoc without rigorous testing or correlation analyses. Herein, we investigated the variability and evolution of the annelid gene order and the factors that potentially influenced its evolution, using a comprehensive and systematic approach. The analyses were based on 170 genomes, including 33 previously unrepresented species. Our analyses included 706 different molecular properties, 20 life-history and ecological traits, and a reference tree corresponding to recent improvements concerning the annelid tree. The results showed that the gene order with and without tRNAs is generally conserved. However, individual taxa exhibit higher degrees of variability. None of the analyzed life-history and ecological traits explained the observed variability across mitochondrial gene orders. In contrast, the combination and interaction of the best-predicting factors for substitution rate and base composition explained up to 30% of the observed variability. Accordingly, correlation analyses of different molecular properties of the mitochondrial genomes showed an intricate network of direct and indirect correlations between the different molecular factors. Hence, gene order evolution seems to be driven by molecular evolutionary aspects rather than by life history or ecology. On the other hand, variability of the gene order does not predict if a taxon is difficult to place in molecular phylogenetic reconstructions using sequence data or not. We also discuss the molecular properties of annelid mitochondrial genomes considering canonical views on gene evolution and potential reasons why the canonical views do not always fit to the observed patterns without making some adjustments. [Annelida; compositional biases; ecology; gene order; life history; macroevolution; mitochondrial genomes; substitution rates.].


Asunto(s)
Anélidos , Genoma Mitocondrial , Animales , Genoma Mitocondrial/genética , Orden Génico , Filogenia , Anélidos/genética , Genes Mitocondriales , Evolución Molecular , ADN Mitocondrial/genética
15.
Sci Rep ; 13(1): 6095, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055453

RESUMEN

To reconstruct the ancestral genome of a set of phylogenetically related descendant species, we use the RACCROCHE pipeline for organizing a large number of generalized gene adjacencies into contigs and then into chromosomes. Separate reconstructions are carried out for each ancestral node of the phylogenetic tree for focal taxa. The ancestral reconstructions are monoploids; they each contain at most one member of each gene family constructed from descendants, ordered along the chromosomes. We design and implement a new computational technique for solving the problem of estimating the ancestral monoploid number of chromosomes x. This involves a "g-mer" analysis to resolve a bias due long contigs, and gap statistics to estimate x. We find that the monoploid number of all the rosid and asterid orders is [Formula: see text]. We show that this is not an artifact of our method by deriving [Formula: see text] for the metazoan ancestor.


Asunto(s)
Cromosomas , Evolución Molecular , Animales , Orden Génico , Filogenia , Cromosomas/genética , Genoma , Cariotipo
16.
Insect Mol Biol ; 32(4): 387-399, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883292

RESUMEN

Mitochondrial gene order has contributed to the elucidation of evolutionary relationships in several animal groups. It generally has found its application as a phylogenetic marker for deep nodes. Yet, in Orthoptera limited research has been performed on the gene order, although the group represents one of the oldest insect orders. We performed a comprehensive study on mitochondrial genome rearrangements (MTRs) within Orthoptera in the context of mitogenomic sequence-based phylogeny. We used 280 published mitogenome sequences from 256 species, including three outgroup species, to reconstruct a molecular phylogeny. Using a heuristic approach, we assigned MTR scenarios to the edges of the phylogenetic tree and reconstructed ancestral gene orders to identify possible synapomorphies in Orthoptera. We found all types of MTRs in our dataset: inversions, transpositions, inverse transpositions, and tandem-duplication/random loss events (TDRL). Most of the suggested MTRs were in single and unrelated species. Out of five MTRs which were unique in subgroups of Orthoptera, we suggest four of them to be synapomorphies; those were in the infraorder Acrididea, in the tribe Holochlorini, in the subfamily Pseudophyllinae, and in the two families Phalangopsidae and Gryllidae or their common ancestor (leading to the relationship ((Phalangopsidae + Gryllidae) + Trigonidiidae)). However, similar MTRs have been found in distant insect lineages. Our findings suggest convergent evolution of specific mitochondrial gene orders in several species, deviant from the evolution of the mitogenome DNA sequence. As most MTRs were detected at terminal nodes, a phylogenetic inference of deeper nodes based on MTRs is not supported. Hence, the marker does not seem to aid resolving the phylogeny of Orthoptera, but adds further evidence for the complex evolution of the whole group, especially at the genetic and genomic levels. The results indicate a high demand for more research on patterns and underlying mechanisms of MTR events in Orthoptera.


Asunto(s)
Gryllidae , Mitocondrias , Animales , Filogenia , Orden Génico , Mitocondrias/genética , Genómica , Evolución Molecular
17.
Genes (Basel) ; 14(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36672951

RESUMEN

The enigmatic scaphopods, or tusk shells, are a small and rare group of molluscs whose phylogenomic position among the Conchifera is undetermined, and the taxonomy within this class also needs revision. Such work is hindered by there only being a very few mitochondrial genomes in this group that are currently available. Here, we present the assembly and annotation of the complete mitochondrial genome from Dentaliida Pictodentalium vernedei, whose mitochondrial genome is 14,519 bp in size, containing 13 protein-coding genes, 22 tRNA genes and two rRNA genes. The nucleotide composition was skewed toward A-T, with a 71.91% proportion of AT content. Due to the mitogenome-based phylogenetic analysis, we defined P. vernedei as a sister to Graptacme eborea in Dentaliida. Although a few re-arrangements occurred, the mitochondrial gene order showed deep conservation within Dentaliida. Yet, such a gene order in Dentaliida largely diverges from Gadilida and other molluscan classes, suggesting that scaphopods have the highest degree of mitogenome arrangement compared to other molluscs.


Asunto(s)
Genoma Mitocondrial , Animales , Filogenia , Orden Génico , Moluscos/genética , Mitocondrias/genética
18.
Funct Integr Genomics ; 23(1): 41, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36650401

RESUMEN

The complete mitochondrial genome (mitogenome) of the sawfly, Nesodiprion zhejiangensis Zhou & Xiao, was sequenced, assembled, and deposited in GenBank (Accession Number: OM501121). The 15,660 bp N. zhejiangensis mitogenome encodes for 2 ribosomal RNAs (rrnL and rrnS), 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and an AT-rich region of 450 bp in length. The nucleotide composition is biased toward adenine and thymine (A + T = 81.8%). Each PCG is initiated by an ATN codon, except for cox2, which starts with a TTG. Of 13 PCGs, 9 have a TAA termination codon, while the remainder terminate with a TAG or a single T. All tRNAs have the classic cloverleaf structure, except for the dihydrouridine (DHU) arm of tRNAval, which forms a simple loop. There are 49 helices belonging to 6 domains in rrnL and 30 helices belonging to 4 domains in rrnS. In comparison to the ancestral architecture, N. zhejiangensis has the most rearranged mitogenome in Symphyta, in which rearrangement events of local inversion and transposition are identified in three gene clusters. Specifically, the main hotspot of gene rearrangement occurred between rrnS and trnY, and rearranged from rrnS-(AT-rich region)-I-Q-M-nd2-W-C-Y to rrnS-Q-W-C-nd2-I-M-(AT-rich region)-Y, involving a local inversion event of a large gene cluster and transposition events of some tRNAs. Transposition of trnA and trnR (rearranged from A-R to R-A) was observed at the nd3-nd5 gene junction while shuffling of trnP and trnT (rearranged from T-P to P-T) occurred at the nd4l-nd6 gene junction. While illegitimate inter-mtDNA recombination might explain the opposite orientations of transcription between rrnS and trnY, transposition events of tRNA in some gene blocks can be accounted for by the tandem duplication/random loss (TDRL) model. Our phylogenetic analysis suggests that N. zhejiangensis is closely related to congeneric species N. biremis and N. japonicus, which together form a sister lineage with the European pine sawfly, Neodiprion sertifer.


Asunto(s)
Genoma Mitocondrial , Himenópteros , Animales , Orden Génico , Himenópteros/genética , Filogenia , ARN de Transferencia/genética
19.
Sci Rep ; 13(1): 87, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596857

RESUMEN

Species from the flowering plant genus Cyclamen are popular amongst consumers. In particular Cyclamen persicum Mill. has been significantly used commercially, and certain small flowering species such as Cyclamen hederifolium and Cyclamen coum are gradually growing in popularity in the potted flower market. Here, the chloroplast genomes of nine Cyclamen samples including four Cyclamen species and five varieties of C. hederifolium were sequenced for genome structure comparison, White green septal striped leaves related gene screening and DNA molecular markers were developed for phylogenetic analysis. In comparing Cyclamen species' chloroplast genomes, gene content and gene order were found to be highly similar with the length of genomes ranging from 151,626 to 153,058 bp. The chloroplast genome of Cyclamen has 128 genes, including 84 protein-coding genes, 36 transfer RNA genes, and 8 ribosomal RNA genes. Based on intraspecific variation, seven hotspots, including three genes and four intergenic regions, were identified as variable markers for downstream species delimitation and interspecific relationship analyses. Moreover, a phylogenetic tree constructed with complete chloroplast genomes, revealed that Cyclamen are monophyletic with Lysimachia as the closest neighbor. Phylogenetic analyses of the 14 Cyclamen species with the seven variable regions showed five distinct clades within this genus. The highly supported topologies showed these seven regions may be used as candidate DNA barcode sequences to distinguish Cyclamen species. White green septal striped leaves is common in C. hederifolium, however the molecular mechanism of this has not yet been described. Here, we find that the intergenic region rps4-trnT-UGU seems related to white green septal striped leaves.


Asunto(s)
Cyclamen , Genoma del Cloroplasto , Filogenia , Cyclamen/genética , Marcadores Genéticos , Orden Génico
20.
Commun Biol ; 6(1): 93, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690686

RESUMEN

Mitochondrial DNA (mtDNA) harbors essential genes in most metazoans, yet the regulatory impact of the multiple evolutionary mtDNA rearrangements has been overlooked. Here, by analyzing mtDNAs from ~8000 metazoans we found high gene content conservation (especially of protein and rRNA genes), and codon preferences for mtDNA-encoded tRNAs across most metazoans. In contrast, mtDNA gene order (MGO) was selectively constrained within but not between phyla, yet certain gene stretches (ATP8-ATP6, ND4-ND4L) were highly conserved across metazoans. Since certain metazoans with different MGOs diverge in mtDNA transcription, we hypothesized that evolutionary mtDNA rearrangements affected mtDNA transcriptional patterns. As a first step to test this hypothesis, we analyzed available RNA-seq data from 53 metazoans. Since polycistron mtDNA transcripts constitute a small fraction of the steady-state RNA, we enriched for polycistronic boundaries by calculating RNA-seq read densities across junctions between gene couples encoded either by the same strand (SSJ) or by different strands (DSJ). We found that organisms whose mtDNA is organized in alternating reverse-strand/forward-strand gene blocks (mostly arthropods), displayed significantly reduced DSJ read counts, in contrast to organisms whose mtDNA genes are preferentially encoded by one strand (all chordates). Our findings suggest that mtDNA rearrangements are selectively constrained and likely impact mtDNA regulation.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Animales , ADN Mitocondrial/genética , Orden Génico , Mitocondrias/metabolismo , ARN/metabolismo , ARN de Transferencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...