Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.498
Filtrar
1.
Sci Rep ; 14(1): 15196, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956215

RESUMEN

Despite recent advancements in peripheral nerve regeneration, the creation of nerve conduits with chemical and physical cues to enhance glial cell function and support axonal growth remains challenging. This study aimed to assess the impact of electrical stimulation (ES) using a conductive nerve conduit on sciatic nerve regeneration in a rat model with transection injury. The study involved the fabrication of conductive nerve conduits using silk fibroin and Au nanoparticles (AuNPs). Collagen hydrogel loaded with green fluorescent protein (GFP)-positive adipose-derived mesenchymal stem cells (ADSCs) served as the filling for the conduit. Both conductive and non-conductive conduits were applied with and without ES in rat models. Locomotor recovery was assessed using walking track analysis. Histological evaluations were performed using H&E, luxol fast blue staining and immunohistochemistry. Moreover, TEM analysis was conducted to distinguish various ultrastructural aspects of sciatic tissue. In the ES + conductive conduit group, higher S100 (p < 0.0001) and neurofilament (p < 0.001) expression was seen after 6 weeks. Ultrastructural evaluations showed that conductive scaffolds with ES minimized Wallerian degeneration. Furthermore, the conductive conduit with ES group demonstrated significantly increased myelin sheet thickness and decreased G. ratio compared to the autograft. Immunofluorescent images confirmed the presence of GFP-positive ADSCs by the 6th week. Locomotor recovery assessments revealed improved function in the conductive conduit with ES group compared to the control group and groups without ES. These results show that a Silk/AuNPs conduit filled with ADSC-seeded collagen hydrogel can function as a nerve conduit, aiding in the restoration of substantial gaps in the sciatic nerve with ES. Histological and locomotor evaluations indicated that ES had a greater impact on functional recovery compared to using a conductive conduit alone, although the use of conductive conduits did enhance the effects of ES.


Asunto(s)
Regeneración Nerviosa , Nervio Ciático , Andamios del Tejido , Animales , Nervio Ciático/fisiología , Ratas , Andamios del Tejido/química , Oro/química , Ratas Sprague-Dawley , Seda/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Estimulación Eléctrica/métodos , Fibroínas/química , Nanopartículas del Metal/química , Masculino , Recuperación de la Función , Regeneración Tisular Dirigida/métodos , Hidrogeles/química
2.
Anal Chim Acta ; 1316: 342818, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969402

RESUMEN

Interdigitated electrodes (IDEs) enable electrochemical signal enhancement through repeated reduction and oxidation of the analyte molecule. Porosity on these electrodes is often used to lower the impedance background. However, their high capacitive current and signal interferences with oxygen reduction limit electrochemical detection ability. We present utilization of alkanethiol modification on nanoporous gold (NPG) electrodes to lower their background capacitance and chemically passivate them from interferences due to oxygen reduction, while maintaining their fast electron transfer rates, as validated by lower separation between anodic and cathodic peaks (ΔE) and lower charge transfer resistance (Rct) values in comparison to planar gold electrodes. Redox amplification based on this modification enables sensitive detection of various small molecules, including pyocyanin, p-aminophenol, and selective detection of dopamine in the presence of ascorbic acid. Alkanethiol NPG arrays are applied as a multiplexed sensor testbed within a well plate to screen binding of various peptide receptors to the SARS COV2 S-protein by using a sandwich assay for conversion of PAPP (4-aminophenyl phosphate) to PAP (p-aminophenol), by the action of AP (alkaline phosphatase), which is validated against optical ELISA screens of the peptides. Such arrays are especially of interest in small volume analytical settings with complex samples, wherein optical methods are unsuitable.


Asunto(s)
Aminofenoles , Técnicas Electroquímicas , Oro , Microelectrodos , Nanoporos , Oxidación-Reducción , Oro/química , Técnicas Electroquímicas/instrumentación , Aminofenoles/química , Compuestos de Sulfhidrilo/química , Dopamina/análisis , Dopamina/química , Técnicas Biosensibles , Límite de Detección , SARS-CoV-2/aislamiento & purificación , Humanos
3.
Anal Chim Acta ; 1316: 342827, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969404

RESUMEN

BACKGROUND: In recent years, miRNAs have emerged as potentially valuable tumor markers, and their sensitive and accurate detection is crucial for early screening and diagnosis of tumors. However, the analysis of miRNAs faces significant challenges due to their short sequence, susceptibility to degradation, high similarity, low expression level in cells, and stringent requirements for in vitro research environments. Therefore, the development of sensitive and efficient new methods for the detection of tumor markers is crucial for the early intervention of related tumors. RESULTS: An ultrasensitive electrochemical/colorimetric dual-mode self-powered biosensor platform is established to detect microRNA-21 (miR-21) via a multi-signal amplification strategy. Gold nanoparticles (AuNPs) and VS4 nanosheets self-assembled 3D nanorods (VS4-Ns-Nrs) are prepared for constructing a superior performance enzyme biofuel cell (EBFC). The double-signal amplification strategy of Y-shaped DNA nanostructure and catalytic hairpin assembly (CHA) is adopted to further improve enhance the strength and specificity of the output signal. In addition, a capacitor is matched with EBFC to generate an instantaneous current that is amplified several times, and the output detection signal is improved once more. At the same time, electrochemical and colorimetric methods are used for dual-mode strategy to achieve the accuracy of detection. The linear range of detection is from 0.001 pg/mL to 1000 pg/mL, with a relatively low limit of detection (LOD) of 0.16 fg/mL (S/N = 3). SIGNIFICANCE: The established method enables accurate and sensitive detection of markers in patients with lung cancer, providing technical support and data reference for precise identification. It is anticipated to offer a sensitive and practical new technology and approach for early diagnosis, clinical treatment, and drug screening of cancer and other related major diseases.


Asunto(s)
Biomarcadores de Tumor , Técnicas Biosensibles , Colorimetría , Técnicas Electroquímicas , Oro , Neoplasias Pulmonares , Nanopartículas del Metal , MicroARNs , Humanos , Técnicas Biosensibles/métodos , Neoplasias Pulmonares/diagnóstico , Técnicas Electroquímicas/métodos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Oro/química , MicroARNs/análisis , Nanopartículas del Metal/química , Límite de Detección
4.
Anal Chim Acta ; 1316: 342838, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969428

RESUMEN

The diagnosis of dengue virus (DENV) has been challenging particularly in areas far from clinical laboratories. Early diagnosis of pathogens is a prerequisite for the timely treatment and pathogen control. An ideal diagnostic for viral infections should possess high sensitivity, specificity, and flexibility. In this study, we implemented dual amplification involving Cas13a and Cas12a, enabling sensitive and visually aided diagnostics for the dengue virus. Cas13a recognized the target RNA by crRNA and formed the assembly of the Cas13a/crRNA/RNA ternary complex, engaged in collateral cleavage of nearby crRNA of Cas12a. The Cas12a/crRNA/dsDNA activator ternary complex could not be assembled due to the absence of crRNA of Cas12a. Moreover, the probe, with 5' and 3' termini labeled with FAM and biotin, could not be separated. The probes labeled with FAM and biotin, combined the Anti-FAM and the Anti-Biotin Ab-coated gold nanoparticle, and conformed sandwich structure on the T-line. The red line on the paper strip caused by clumping of AuNPs on the T-line indicated the detection of dengue virus. This technique, utilizing an activated Cas13a system cleaving the crRNA of Cas12a, triggered a cascade that amplifies the virus signal, achieving a low detection limit of 190 fM with fluorescence. Moreover, even at 1 pM, the red color on the T-line was easily visible by naked eyes. The developed strategy, incorporating cascade enzymatic amplification, exhibited good sensitivity and may serve as a field-deployable diagnostic tool for dengue virus.


Asunto(s)
Virus del Dengue , Virus del Dengue/aislamiento & purificación , Dengue/diagnóstico , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , Proteínas Asociadas a CRISPR/metabolismo , Nanopartículas del Metal/química , Límite de Detección , Oro/química , Proteínas Bacterianas , Endodesoxirribonucleasas
5.
Anal Chim Acta ; 1316: 342873, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969432

RESUMEN

BACKGROUND: DNA walker-based strategies have gained significant attention in nucleic acid analysis. However, they face challenges related to balancing design complexity, sequence dependence, and amplification efficiency. Furthermore, most existing DNA walkers rely on walking and lock probes, requiring optimization of various parameters like DNA probe sequence, walking-to-lock probe ratio, lock probe length, etc. to achieve optimal performance. This optimization process is time-consuming and adds complexity to experiments. To enhance the performance and reliability of DNA walker nanomachines, there is a need for a simpler, highly sensitive, and selective alternative strategy. RESULTS: A sensitive and rapid miRNA analysis strategy named hairpin-shaped DNA aligner and nicking endonuclease-fueled DNA walker (HDA-NE DNA walker) was developed. The HDA-NE DNA walker was constructed by modifying hairpin-shaped DNA aligner (HDA) probe and substrate report (SR) probe on the surface of AuNPs. Under normal conditions, HDA and SR remained stable. However, in the presence of miR-373, HDA underwent a conformational transition to an activated structure to continuously cleave the SR probe on the AuNPs with the assistance of Nt.AlwI nicking endonuclease, resulting in sensitive miRNA detection with a detection limit as low as 0.23 pM. Additionally, the proposed HDA-NE DNA walker exhibited high selectivity in distinguishing miRNAs with single base differences and can effectively analyze miR-373 levels in both normal and breast cancer patient serums. SIGNIFICANCE: The proposed HDA-NE DNA walker system was activated by a conformational change of HDA probe only in the presence of the target miRNA, eliminating the need for a lock probe and without sequence dependence for SR probe. This strategy demonstrated a rapid reaction rate of only 30 min, minimal background noise, and a high signal-to-noise ratio (S/B) compared to capture/lock-based DNA walker. The method is expected to become a powerful tool and play an important role in disease diagnosis and precision therapy.


Asunto(s)
ADN , MicroARNs , MicroARNs/sangre , MicroARNs/análisis , Humanos , ADN/química , Límite de Detección , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Sondas de ADN/química , Sondas de ADN/genética , Endonucleasas/metabolismo , Endonucleasas/química , Secuencias Invertidas Repetidas
6.
Anal Chim Acta ; 1316: 342800, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969435

RESUMEN

Heavy metal pollution in the environment has become a significant global concern due to its detrimental effects on human health and the environment. In this study, we report an electrochemical aptasensor for the simultaneous detection of Hg2+ and Pb2+. Gold nanoflower/polyethyleneimine-reduced graphene oxide (AuNFs/PEI-rGO) was introduced on the surface of a gold electrode to improve sensing performance. The aptasensor is based on the formation of a T-Hg2+-T mismatch structure and specific cleavage of the Pb2+-dependent DNAzyme, resulting in a dual signal generated by the Exo III specific digestion of methylene blue (MB) labeled at the 3' end of probe DNA-1 and the reduction of the substrate ascorbic acid (AA) catalyzed by the signal label. The decrease of MB signal and the increase of AA oxidation peak was used to indicate the content of Hg2+ and Pb2+, respectively, with detection limits of 0.11 pM (Hg2+) and 0.093 pM (Pb2+). The aptasensor was also used for detecting Hg2+ and Pb2+ in water samples with good recoveries. Overall, this electrochemical aptasensor shows promising potential for sensitive and selective detection of heavy metals in environmental samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Exodesoxirribonucleasas , Plomo , Mercurio , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Mercurio/análisis , Plomo/análisis , Plomo/química , Estructuras Metalorgánicas/química , Aptámeros de Nucleótidos/química , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Contaminantes Químicos del Agua/análisis , Técnicas Biosensibles/métodos , Grafito/química , Oro/química , Límite de Detección , Electrodos , ADN Catalítico/química
7.
PLoS One ; 19(7): e0304670, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968211

RESUMEN

In gold nanoparticle-enhanced radiotherapy, intravenously administered nanoparticles tend to accumulate in the tumor tissue by means of the so-called permeability and retention effect and upon irradiation with x-rays, the nanoparticles release a secondary electron field that increases the absorbed dose that would otherwise be obtained from the interaction of the x-rays with tissue alone. The concentration of the nanoparticles in the tumor, number of nanoparticles per unit of mass, which determines the total absorbed dose imparted, can be measured via magnetic resonance or computed tomography images, usually with a resolution of several millimeters. Using a tumor vasculature model with a resolution of 500 nm, we show that for a given concentration of nanoparticles, the dose enhancement that occurs upon irradiation with x-rays greatly depends on whether the nanoparticles are confined to the tumor vasculature or have already extravasated into the surrounding tumor tissue. We show that, compared to the reference irradiation with no nanoparticles present in the tumor model, irradiation with the nanoparticles confined to the tumor vasculature, either in the bloodstream or attached to the inner blood vessel walls, results in a two to three-fold increase in the absorbed dose to the whole tumor model, with respect to an irradiation when the nanoparticles have already extravasated into the tumor tissue. Therefore, it is not enough to measure the concentration of the nanoparticles in a tumor, but the location of the nanoparticles within each volume element of a tumor, be it inside the vasculature or the tumor tissue, needs to be determined as well if an accurate estimation of the resultant absorbed dose distribution, a key element in the success of a radiotherapy treatment, is to be made.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Animales , Ratones , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagen , Neoplasias/irrigación sanguínea , Humanos , Dosificación Radioterapéutica , Neovascularización Patológica/radioterapia , Neovascularización Patológica/diagnóstico por imagen
8.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954045

RESUMEN

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Escherichia coli O157 , Oro , Límite de Detección , Nanopartículas del Metal , Leche , Espectrometría Raman , Escherichia coli O157/aislamiento & purificación , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Oro/química , Leche/microbiología , Leche/química , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Animales , Catálisis , Secuencias Invertidas Repetidas , Contaminación de Alimentos/análisis , Microbiología del Agua , Reproducibilidad de los Resultados
9.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955823

RESUMEN

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos , Oro , Espectrometría Raman , Ácidos Borónicos/química , Técnicas Biosensibles/métodos , Oro/química , Humanos , Espectrometría Raman/métodos , Plata/química , Nanopartículas del Metal/química , Límite de Detección , Transferrina/análisis , Transferrina/química , Impresión Molecular , Polímeros Impresos Molecularmente/química , Glicoproteínas/sangre , Glicoproteínas/química , Materiales Biomiméticos/química , Dopamina/sangre , Dopamina/análisis , Compuestos de Sulfhidrilo
10.
Sci Adv ; 10(28): eadn5698, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985882

RESUMEN

Gold nanoparticle-based lateral flow immunoassays (AuNP LFIAs) are widely used point-of-care (POC) sensors for in vitro diagnostics. However, the sensitivity limitation of conventional AuNP LFIAs impedes the detection of trace biomarkers. Several studies have explored the size and shape factors of AuNPs and derivative nanohybrids, showing limited improvements or enhanced sensitivity at the cost of convenience and affordability. Here, we investigated surface chemistry on the sensitivity of AuNP LFIAs. By modifying surface ligands, a surface chemistry strategy involving weakly ionized AuNPs enables ultrasensitive naked-eye LFIAs (~100-fold enhanced sensitivity). We demonstrated how this surface chemistry-amplified immunoassay approach modulates nanointerfacial bindings to promote antibody adsorption and higher activity of adsorbed antibodies. This surface chemistry design eliminates complex nanosynthesis, auxiliary devices, or additional reagents while efficiently improving sensitivity with advantages: simplified fabrication process, excellent reproducibility and reliability, and ultrasensitivity toward various biomarkers. The surface chemistry using weakly ionized AuNPs represents a versatile approach for sensitizing POC sensors.


Asunto(s)
Oro , Nanopartículas del Metal , Sistemas de Atención de Punto , Oro/química , Nanopartículas del Metal/química , Inmunoensayo/métodos , Humanos , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Biomarcadores/análisis
11.
Mikrochim Acta ; 191(8): 454, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976069

RESUMEN

An intelligent colorimetric sensing platform integrated with in situ immunomagnetic separation function was developed for ultrasensitive detection of Escherichia coli O157: H7 (E. coli O157: H7) in food. Captured antibody modified magnetic nanoparticles (cMNPs) and detection antibody/horseradish peroxidase (HRP) co-functionalized AuNPs (dHAuNPs) were firstly synthesized for targeted enrichment and colorimetric assay of E. coli O157: H7, in which remarkable signal amplification was realized by loading large amounts of HRP on the surface of AuNPs. Coupling with the optical collimation attachments and embedded magnetic separation module, a highly integrated optical device was constructed, by which in situ magnetic separation and high-quality imaging of 96-well microplates containing E. coli O157: H7 was achieved with a smartphone. The concentration of E. coli O157: H7 could be achieved in one-step by performing digital image colorimetric analysis of the obtained image with a custom-designed app. This biosensor possesses high sensitivity (1.63 CFU/mL), short detecting time (3 h), and good anti-interference performance even in real-sample testing. Overall, the developed method is expected to be a novel field detection platform for foodborne pathogens in water and food as well as for the diagnosis of infections due to its portability, ease of operation, and high feasibility.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Escherichia coli O157 , Microbiología de Alimentos , Oro , Peroxidasa de Rábano Silvestre , Separación Inmunomagnética , Nanopartículas del Metal , Escherichia coli O157/aislamiento & purificación , Colorimetría/métodos , Oro/química , Peroxidasa de Rábano Silvestre/química , Separación Inmunomagnética/métodos , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis , Límite de Detección , Teléfono Inteligente , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química , Nanopartículas de Magnetita/química
12.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000351

RESUMEN

This study assessed the biocompatibility of two types of nanogold composites: fibronectin-gold (FN-Au) and collagen-gold (Col-Au). It consisted of three main parts: surface characterization, in vitro biocompatibility assessments, and animal models. To determine the structural and functional differences between the materials used in this study, atomic force microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectrophotometry were used to investigate their surface topography and functional groups. The F-actin staining, proliferation, migration, reactive oxygen species generation, platelet activation, and monocyte activation of mesenchymal stem cells (MSCs) cultured on the FN-Au and Col-Au nanocomposites were investigated to determine their biological and cellular behaviors. Additionally, animal biocompatibility experiments measured capsule formation and collagen deposition in female Sprague-Dawley rats. The results showed that MSCs responded better on the FN-Au and Col-AU nanocomposites than on the control (tissue culture polystyrene) or pure substances, attributed to their incorporation of an optimal Au concentration (12.2 ppm), which induced significant surface morphological changes, nano topography cues, and better biocompatibility. Moreover, neuronal, endothelial, bone, and adipose tissues demonstrated better differentiation ability on the FN-Au and Col-Au nanocomposites. Nanocomposites have a crucial role in tissue engineering and even vascular grafts. Finally, MSCs were demonstrated to effectively enhance the stability of the endothelial structure, indicating that they can be applied as promising alternatives to clinics in the future.


Asunto(s)
Materiales Biocompatibles , Diferenciación Celular , Oro , Células Madre Mesenquimatosas , Nanocompuestos , Ratas Sprague-Dawley , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Oro/química , Animales , Nanocompuestos/química , Diferenciación Celular/efectos de los fármacos , Ratas , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Femenino , Proliferación Celular/efectos de los fármacos , Colágeno/química , Biopolímeros/química , Fibronectinas/metabolismo , Células Cultivadas , Nanopartículas del Metal/química , Ensayo de Materiales , Ingeniería de Tejidos/métodos , Especies Reactivas de Oxígeno/metabolismo , Movimiento Celular/efectos de los fármacos
13.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000548

RESUMEN

Gold nanoparticles with sizes in the range of 5-15 nm are a standard method of providing fiducial markers to assist with alignment during reconstruction in cryogenic electron tomography. However, due to their high electron density and resulting contrast when compared to standard cellular or biological samples, they introduce artifacts such as streaking in the reconstructed tomograms. Here, we demonstrate a tool that automatically detects these nanoparticles and suppresses them by replacing them with a local background as a post-processing step, providing a cleaner tomogram without removing any sample relevant information or introducing new artifacts or edge effects from uniform density replacements.


Asunto(s)
Tomografía con Microscopio Electrónico , Marcadores Fiduciales , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Algoritmos
14.
Luminescence ; 39(7): e4829, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39004775

RESUMEN

A ratio luminescence probe was developed for detecting Staphylococcus aureus (S. aureus) based on luminescence energy transfer (LET) using double-wavelength emission (550 nm and 812 nm) upconversion nanoparticles (UCNPs) as donor, gold nanoparticles (AuNPs) as acceptor and the aptamer for S. aureus as the specific recognition and link unit. The LET process could cause luminescence quenching because of the spectral overlap between the acceptor and the donor at 550 nm. In the presence of S. aureus, S. aureus selectively combined with the aptamer, and the AuNPs left the surface of UCNPs, which weakened the quenching effect and restored the luminescence of UCNPs. Based on this, the ratio detection was realized by monitoring the change of the luminescence signal of the probe at 550 nm and taking the luminescence signal at 812 nm as the reference signal. Crucially, the probe has a fast reaction speed, with a reaction time of 25 min, and the detection of S. aureus is realized in the concentration range of 5.0 × 103-3.0 × 105 CFU/ml, with the detection limit of 106 CFU/ml. Therefore, the ratio probe has great potential for detecting of S. aureus in food because of its high sensitivity, fast speed and good selectivity.


Asunto(s)
Aptámeros de Nucleótidos , Transferencia de Energía , Oro , Luminiscencia , Mediciones Luminiscentes , Nanopartículas del Metal , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Oro/química , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Límite de Detección
15.
ACS Appl Bio Mater ; 7(7): 4542-4552, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38957152

RESUMEN

Surface-engineered gold nanoparticles have been considered as versatile systems for theranostics applications. Moreover, surface covering or stabilizing agents on gold nanoparticles especially gold nanobipyramids (AuNBPs) provides an extra space for cargo molecules entrapment. However, it is not well studied yet and also the preparation of AuNBPs still remains dependent largely on cetyltrimethylammonium bromide (CTAB), a cytotoxic surfactant. Therefore, the direct use of CTAB stabilized nanoparticles is not recommended for cancer theranostics applications. Herein, we address an approach of dodecyl ethyl dimethylammonium bromide (DMAB) as biocompatible structure directing agent for AuNBPs, which also accommodate anticancer drug doxorubicin (45%), an additional chemotherapeutics agent. Upon near-infrared light (NIR, 808 nm) exposure, engineered AuNBPs exhibit (i) better phototransduction (51 °C) due to NIR absorption ability (650-900 nm), (ii) photo triggered drug release (more than 80%), and (iii) synergistic chemophototherapy for breast cancer cells. Drug release response has been evaluated in tumor microenvironment conditions (84% in acidic pH and 80% at high GSH) due to protonation and high affinity of thiol binding with AuNBPs followed by DMAB replacement. Intracellular glutathione (GSH, 5-7.5 mM) replaces DMAB from AuNBPs, which cause easy aggregation of nanoparticles as corroborated by colorimetric shifts, suggesting their utilization as a molecular sensing probe of early stage cancer biomarkers. Our optimized recipe yield is monodisperse DMAB-AuNBPs with ∼90% purity even at large scales (500 mL volume per batch). DMAB-AuNBPs show better cell viability (more than 90%) across all concentrations (5-500 ug/mL) when directly compared to CTAB-AuNBPs (less than 10%). Our findings show the potential of DMAB-AuNBPs for early stage cancer detection and theranostics applications.


Asunto(s)
Doxorrubicina , Ensayos de Selección de Medicamentos Antitumorales , Oro , Nanopartículas del Metal , Tamaño de la Partícula , Oro/química , Oro/farmacología , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Nanopartículas del Metal/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayo de Materiales , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Liberación de Fármacos , Estructura Molecular
16.
Mikrochim Acta ; 191(8): 477, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039391

RESUMEN

A novel biofuel cell (BFC)-based self-powered electrochemical immunosensing platform was developed by integrating the target-induced biofuel release and biogate immunoassay for ultrasensitive 17ß-estradiol (E2) detection. The carbon nanocages/gold nanoparticle composite was employed in the BFCs device as the electrode material, through which bilirubin oxidase and glucose oxidase were wired to form the biocathode and bioanode, respectively. Positively charged mesoporous silica nanoparticles (PMSN) were encapsulated with glucose molecules as biofuel and subsequently coated by the negatively charged AuNPs-labelled anti-E2 antibody (AuNPs-Ab) serving as a biogate. The biogate could be opened efficiently and the trapped glucose released once the target E2 was recognized and captured by AuNPs-Ab due to the decreased adhesion between the antigen-antibody complex and PMSN. Then, glucose oxidase oxidized the glucose to produce a large number of electrons, resulting in significantly increased open-circuit voltage (EOCV). Promisingly, the proposed BFC-based self-powered immunosensor demonstrated exceptional sensitivity for the detection of E2 in the concentration range from 1.0 pg mL-1 to 10.0 ng mL -1, with a detection limit of 0.32 pg mL-1 (S/N = 3). Furthermore, the prepared BFC-based self-powered homogeneous immunosensor showed significant potential for implementation as a viable prototype for a mobile and an on-site bioassay system in food and environmental safety applications.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Estradiol , Glucosa Oxidasa , Oro , Límite de Detección , Nanopartículas del Metal , Inmunoensayo/métodos , Estradiol/química , Estradiol/análisis , Oro/química , Glucosa Oxidasa/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , Electrodos , Glucosa/análisis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Anticuerpos Inmovilizados/inmunología , Dióxido de Silicio/química , Enzimas Inmovilizadas/química
17.
Bioconjug Chem ; 35(7): 1064-1074, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38980173

RESUMEN

The innovative PD-1/PD-L1 pathway strategy is gaining significant traction in cancer therapeutics. However, fluctuating response rates of 20-40% to PD-1/PD-L1 inhibitors, coupled with the risk of hyperprogression after immunotherapy, underscore the need for accurate patient selection and the identification of more beneficiaries. Molecular imaging, specifically near-infrared (NIR) fluorescence imaging, is a valuable alternative for real-time, noninvasive visualization of dynamic PD-L1 expression in vivo. This research introduces AUNP-12, a novel PD-L1-targeting peptide antagonist conjugated with Cy5.5 and CH1055 for first (NIR-I) and second near-infrared (NIR-II) imaging. These probes have proven to be effective in mapping PD-L1 expression across various mouse tumor models, offering insights into tumor-immune interactions. This study highlights the potential of AUNP-12-Cy5.5 and AUNP-12-CH1055 for guiding clinical immunotherapy through precise patient stratification and dynamic monitoring, supporting the shift toward molecular imaging for personalized cancer care.


Asunto(s)
Antígeno B7-H1 , Colorantes Fluorescentes , Oro , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral , Animales , Antígeno B7-H1/metabolismo , Antígeno B7-H1/análisis , Colorantes Fluorescentes/química , Receptor de Muerte Celular Programada 1/metabolismo , Ratones , Humanos , Oro/química , Imagen Óptica/métodos , Carbocianinas/química , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Rayos Infrarrojos
18.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998998

RESUMEN

Cancer is one of the major public health challenges in the world, which is characterized by rapid progression and high mortality. Immunotherapy, represented by PD-1 monoclonal antibody, has significantly improved the efficacy of malignant tumors and has become one of the most popular immunotherapy methods at present. Therefore, there is an increasing demand for novel detection methods for PD-1 monoclonal antibodies. The aim of this work was to establish a rapid, simple, and sensitive immunochromatographic test strip (ICTS) based on the AuNPs enlargement for both visual and instrumental detection of the PD-1 monoclonal antibody concentration. The mixed solution of NH2OH·HCl and HAuCl4 was used as an enhancement solution to lower the detection limit and achieve higher sensitivity. A test strip reader was used to construct a visualized quantitative detection standard curve for the PD-1 monoclonal antibody concentration. The LOD was 1.58 ng/mL through a triple signal-to-noise ratio. The detection time was within 10 min. The constructed test strips can rapidly, accurately, and efficiently detect the concentration of PD-1 monoclonal antibody in real samples.


Asunto(s)
Anticuerpos Monoclonales , Cromatografía de Afinidad , Nanopartículas del Metal , Receptor de Muerte Celular Programada 1 , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Receptor de Muerte Celular Programada 1/inmunología , Cromatografía de Afinidad/métodos , Nanopartículas del Metal/química , Humanos , Oro/química , Tiras Reactivas , Límite de Detección
19.
ACS Appl Mater Interfaces ; 16(27): 34510-34523, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38946393

RESUMEN

Photoluminescence (PL) metal nanoclusters (NCs) have attracted extensive attention due to their excellent physicochemical properties, good biocompatibility, and broad application prospects. However, developing water-soluble PL metal NCs with a high quantum yield (QY) and high stability for visual drug delivery remains a great challenge. Herein, we have synthesized ultrabright l-Arg-ATT-Au/Ag NCs (Au/Ag NCs) with a PL QY as high as 73% and excellent photostability by heteroatom doping and surface rigidization in aqueous solution. The as-prepared Au/Ag NCs can maintain a high QY of over 61% in a wide pH range and various ionic environments as well as a respectable resistance to photobleaching. The results from structure characterization and steady-state and time-resolved spectroscopic analysis reveal that Ag doping into Au NCs not only effectively modifies the electronic structure and photostability but also significantly regulates the interfacial dynamics of the excited states and enhances the PL QY of Au/Ag NCs. Studies in vitro indicate Au/Ag NCs have a high loading capacity and pH-triggered release ability of doxorubicin (DOX) that can be visualized from the quenching and recovery of PL intensity and lifetime. Imaging-guided experiments in cancer cells show that DOX of Au/Ag NCs-DOX agents can be efficiently delivered and released in the nucleus with preferential accumulation in the nucleolus, facilitating deep insight into the drug action sites and pharmacological mechanisms. Moreover, the evaluation of anticancer activity in vivo reveals an outstanding suppression rate of 90.2% for mice tumors. These findings demonstrate Au/Ag NCs to be a superior platform for bioimaging and visual drug delivery in biomedical applications.


Asunto(s)
Doxorrubicina , Oro , Nanopartículas del Metal , Plata , Agua , Oro/química , Plata/química , Plata/farmacología , Humanos , Animales , Doxorrubicina/química , Doxorrubicina/farmacología , Nanopartículas del Metal/química , Ratones , Agua/química , Sistemas de Liberación de Medicamentos , Células HeLa , Portadores de Fármacos/química , Solubilidad , Liberación de Fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Luminiscencia
20.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985204

RESUMEN

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Asunto(s)
Pollos , Oro , Metapneumovirus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Infecciones por Paramyxoviridae , Enfermedades de las Aves de Corral , Sensibilidad y Especificidad , Metapneumovirus/genética , Metapneumovirus/aislamiento & purificación , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/economía , Pollos/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economía , Infecciones por Paramyxoviridae/diagnóstico , Infecciones por Paramyxoviridae/veterinaria , Infecciones por Paramyxoviridae/virología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Oro/química , Pavos , Nanopartículas del Metal/química , Límite de Detección , Colorimetría/métodos , ADN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...