Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.323
Filtrar
1.
Commun Biol ; 7(1): 1054, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191965

RESUMEN

The kidney is vulnerable to ischemia and reperfusion (I/R) injury that can be fatal after major surgery. Currently, there are no effective treatments for I/R-induced kidney injury. Trimethylamine N-oxide (TMAO) is a gut-derived metabolite linked to many diseases, but its role in I/R-induced kidney injury remains unclear. Here, our clinical data reveals an association between preoperative systemic TMAO levels and postoperative kidney injury in patients after post-cardiopulmonary bypass surgery. By genetic deletion of TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) and dietary supplementation of choline to modulate TMAO levels, we found that TMAO aggravated acute kidney injury through the triggering of endoplasmic reticulum (ER) stress and worsened subsequent renal fibrosis through TGFß/Smad signaling activation. Together, our study underscores the negative role of TMAO in I/R-induced kidney injury and highlights the therapeutic potential through the modulation of TMAO levels by targeting FMO3, thereby mitigating acute kidney injury and preventing subsequent renal fibrosis.


Asunto(s)
Lesión Renal Aguda , Riñón , Metilaminas , Oxigenasas , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Ratones , Masculino , Metilaminas/metabolismo , Riñón/metabolismo , Riñón/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Ratones Noqueados , Ratones Endogámicos C57BL , Humanos , Fibrosis , Transducción de Señal , Estrés del Retículo Endoplásmico , Factor de Crecimiento Transformador beta/metabolismo
2.
Microb Biotechnol ; 17(8): e70000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160605

RESUMEN

Methane capture via oxidation is considered one of the 'Holy Grails' of catalysis (Tucci and Rosenzweig, 2024). Methane is also a primary greenhouse gas that has to be reduced by 1.2 billion metric tonnes in 10 years to decrease global warming by only 0.23°C (He and Lidstrom, 2024); hence, new technologies are needed to reduce atmospheric methane levels. In Nature, methane is captured aerobically by methanotrophs and anaerobically by anaerobic methanotrophic archaea; however, the anaerobic process dominates. Here, we describe the history and potential of using the two remarkable enzymes that have been cloned with activity for capturing methane: aerobic capture via soluble methane monooxygenase and anaerobic capture via methyl-coenzyme M reductase. We suggest these two enzymes may play a prominent, sustainable role in addressing our current global warming crisis.


Asunto(s)
Metano , Oxidorreductasas , Oxigenasas , Proteínas Recombinantes , Metano/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxidación-Reducción , Anaerobiosis , Aerobiosis , Archaea/enzimología , Archaea/genética , Archaea/metabolismo
3.
Cardiovasc Diabetol ; 23(1): 299, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143579

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is associated with systemic inflammation, obesity, metabolic syndrome, and gut microbiome changes. Increased trimethylamine-N-oxide (TMAO) levels are predictive for mortality in HFpEF. The TMAO precursor trimethylamine (TMA) is synthesized by the intestinal microbiome, crosses the intestinal barrier and is metabolized to TMAO by hepatic flavin-containing monooxygenases (FMO). The intricate interactions of microbiome alterations and TMAO in relation to HFpEF manifestation and progression are analyzed here. METHODS: Healthy lean (L-ZSF1, n = 12) and obese ZSF1 rats with HFpEF (O-ZSF1, n = 12) were studied. HFpEF was confirmed by transthoracic echocardiography, invasive hemodynamic measurements, and detection of N-terminal pro-brain natriuretic peptide (NT-proBNP). TMAO, carnitine, symmetric dimethylarginine (SDMA), and amino acids were measured using mass-spectrometry. The intestinal epithelial barrier was analyzed by immunohistochemistry, in-vitro impedance measurements and determination of plasma lipopolysaccharide via ELISA. Hepatic FMO3 quantity was determined by Western blot. The fecal microbiome at the age of 8, 13 and 20 weeks was assessed using 16s rRNA amplicon sequencing. RESULTS: Increased levels of TMAO (+ 54%), carnitine (+ 46%) and the cardiac stress marker NT-proBNP (+ 25%) as well as a pronounced amino acid imbalance were observed in obese rats with HFpEF. SDMA levels in O-ZSF1 were comparable to L-ZSF1, indicating stable kidney function. Anatomy and zonula occludens protein density in the intestinal epithelium remained unchanged, but both impedance measurements and increased levels of LPS indicated an impaired epithelial barrier function. FMO3 was decreased (- 20%) in the enlarged, but histologically normal livers of O-ZSF1. Alpha diversity, as indicated by the Shannon diversity index, was comparable at 8 weeks of age, but decreased by 13 weeks of age, when HFpEF manifests in O-ZSF1. Bray-Curtis dissimilarity (Beta-Diversity) was shown to be effective in differentiating L-ZSF1 from O-ZSF1 at 20 weeks of age. Members of the microbial families Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae and Lachnospiraceae were significantly differentially abundant in O-ZSF1 and L-ZSF1 rats. CONCLUSIONS: In the ZSF1 HFpEF rat model, increased dietary intake is associated with alterations in gut microbiome composition and bacterial metabolites, an impaired intestinal barrier, and changes in pro-inflammatory and health-predictive metabolic profiles. HFpEF as well as its most common comorbidities obesity and metabolic syndrome and the alterations described here evolve in parallel and are likely to be interrelated and mutually reinforcing. Dietary adaption may have a positive impact on all entities.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Metilaminas , Volumen Sistólico , Función Ventricular Izquierda , Animales , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/microbiología , Insuficiencia Cardíaca/metabolismo , Metilaminas/metabolismo , Metilaminas/sangre , Masculino , Obesidad/microbiología , Obesidad/fisiopatología , Obesidad/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Hígado/metabolismo , Biomarcadores/sangre , Heces/microbiología , Ratas , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Bacterias/metabolismo , Disbiosis
4.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124879

RESUMEN

Flavin-containing monooxygenase from Methylophaga sp. (mFMO) was previously discovered to be a valuable biocatalyst used to convert small amines, such as trimethylamine, and various indoles. As FMOs are also known to act on sulfides, we explored mFMO and some mutants thereof for their ability to convert prochiral aromatic sulfides. We included a newly identified thermostable FMO obtained from the bacterium Nitrincola lacisaponensis (NiFMO). The FMOs were found to be active with most tested sulfides, forming chiral sulfoxides with moderate-to-high enantioselectivity. Each enzyme variant exhibited a different enantioselective behavior. This shows that small changes in the substrate binding pocket of mFMO influence selectivity, representing a tunable biocatalyst for enantioselective sulfoxidations.


Asunto(s)
Oxigenasas , Oxigenasas/metabolismo , Oxigenasas/química , Especificidad por Sustrato , Biocatálisis , Oxidación-Reducción , Sulfuros/metabolismo , Sulfuros/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sulfóxidos/química , Sulfóxidos/metabolismo , Catálisis , Flavinas/metabolismo , Flavinas/química , Estereoisomerismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética
5.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2444-2456, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39174464

RESUMEN

Indigo, as a water-soluble non-azo colorant, is widely used in textile, food, pharmaceutical and other industrial fields. Currently, indigo is primarily synthesized by chemical methods, which causes environmental pollution, potential safety hazards, and other issues. Therefore, there is an urgent need to find a safer and greener synthetic method. In this study, a dual-enzyme cascade pathway was constructed with the tryptophan synthase (tryptophanase, EcTnaA) from Escherichia coli and flavin-dependent monooxygenase (flavin-dependent monooxygenase, MaFMO) from Methylophaga aminisulfidivorans to synthesize indigo with L-tryptophan as substrate. A recombinant strain EM-IND01 was obtained. The beneficial mutant MaFMOD197E was obtained by protein engineering of the rate-limiting enzyme MaFMO. MaFMOD197E showed the specific activity and kcat/Km value 2.36 times and 1.34 times higher than that of the wild type, respectively. Furthermore, MaFMOD197E was introduced into the strain EM-IND01 to construct the strain EM-IND02. After the fermentation conditions were optimized, the strain achieved the indigo titer of (1 288.59±7.50) mg/L, the yield of 0.86 mg/mg L-tryptophan, and the productivity of 26.85 mg/(L·h) in a 5 L fermenter. Protein engineering was used to obtain mutants with increased MaFMO activity in this study, which laid a foundation for industrial production of indigo.


Asunto(s)
Escherichia coli , Carmin de Índigo , Triptófano , Carmin de Índigo/metabolismo , Triptófano/metabolismo , Triptófano/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería de Proteínas , Triptofanasa/genética , Triptofanasa/metabolismo , Triptófano Sintasa/metabolismo , Triptófano Sintasa/genética , Fermentación , Oxigenasas/genética , Oxigenasas/metabolismo
6.
Mol Med ; 30(1): 128, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180015

RESUMEN

BACKGROUND: Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT: In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION: Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.


Asunto(s)
Fibrosis , Microbioma Gastrointestinal , Metilaminas , Metilaminas/metabolismo , Humanos , Animales , Disbiosis/metabolismo , Oxigenasas/metabolismo
7.
Arch Microbiol ; 206(8): 363, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073473

RESUMEN

Soil and groundwater were investigated for the genes encoding soluble and particulate methane monooxygenase/ammonia monooxygenase (sMMO, pMMO/AMO), toluene 4-monooxygenase (T4MO), propane monooxygenase (PMO) and phenol hydroxylase (PH). The objectives were (1) to determine which subunits were present, (2) to examine the diversity of the phylotypes associated with the biomarkers and (3) to identify which metagenome associated genomes (MAGs) contained these subunits. All T4MO and PH subunits were annotated in the groundwater metagenomes, while few were annotated in the soil metagenomes. The majority of the soil metagenomes included only four sMMO subunits. Only two groundwater metagenomes contained five sMMO subunits. Gene counts for the pMMO subunits varied between samples. The majority of the soil metagenomes were annotated for all four PMO subunits, while three out of eight groundwater metagenomes contained all four PMO subunits. A comparison of the blast alignments for the sMMO alpha chain (mmoX) indicated the phylotypes differed between the soil and groundwater metagenomes. For the pMMO/AMO alpha subunit (pmoA/amoA), Nitrosospira was important for the soil metagenomes, while Methylosinus and Methylocystis were dominant for the groundwater metagenomes. The majority of pmoA alignments from both metagenomes were from uncultured bacteria. High quality MAGs were obtained from the groundwater data. Four MAGs (Methylocella and Cypionkella) contained sMMO subunits. Another three MAGs, within the order Pseudomonadales, contained all three pMMO subunits. All PH subunits were detected in seven MAGs (Azonexus, Rhodoferax, Aquabacterium). In those seven, all contained catechol 2,3-dioxagenase, and Aquabacterium also contained catechol 1,2-dioxygenase. T4MO subunits were detected in eight MAGs (Azonexus, Rhodoferax, Siculibacillus) and all, except one, contained all six subunits. Four MAGs (Rhodoferax and Azonexus) contained all subunits for PH and T4MO, as well as catechol 2,3-dixoygenase. The detection of T4MO and PH in groundwater metagenomes and MAGs has important implications for the potential oxidation of groundwater contaminants.


Asunto(s)
Agua Subterránea , Metagenoma , Oxigenasas , Filogenia , Microbiología del Suelo , Agua Subterránea/microbiología , Agua Subterránea/química , Oxigenasas/genética , Oxigenasas/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta
8.
Environ Sci Technol ; 58(31): 13820-13832, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39038214

RESUMEN

Numerous US drinking water aquifers have been contaminated with per- and polyfluoroalkyl substances (PFAS) from fire-fighting and fire-training activities using aqueous film-forming foam (AFFF). These sites often contain other organic compounds, such as fuel hydrocarbons and methane, which may serve as primary substrates for cometabolic (i.e., nongrowth-linked) biotransformation reactions. This work investigates the abilities of AFFF site relevant bacteria (methanotrophs, propanotrophs, octane, pentane, isobutane, toluene, and ammonia oxidizers), known to express oxygenase enzymes when degrading their primary substrates, to biotransform perfluoroalkyl acid (PFAA) precursors to terminal PFAAs. Microcosms containing AFFF-impacted groundwater, 6:2 fluorotelomer sulfonate (6:2 FTS), or N-ethylperfluorooctane sulfonamidoethanol (EtFOSE) were inoculated with the aerobic cultures above and incubated for 4 and 8 weeks at 22 °C. Bottles were sacrificed, extracted, and subjected to target, nontarget, and suspect screening for PFAS. The PFAA precursors 6:2 FTS, N-sulfopropyldimethyl ammoniopropyl perfluorohexane sulfonamide (SPrAmPr-FHxSA), and EtFOSE transformed up to 99, 71, and 93%, respectively, and relevant daughter products, such as the 6:1 fluorotelomer ketone sulfonate (6:1 FTKS), were identified in quantities previously not observed, implicating oxygenase enzymes. This is the first report of a suite of site relevant PFAA precursors being transformed in AFFF-impacted groundwater by bacteria grown on substrates known to induce specific oxygenase enzymes. The data provide crucial insights into the microbial transformation of these compounds in the subsurface.


Asunto(s)
Biotransformación , Agua Subterránea , Oxigenasas , Contaminantes Químicos del Agua , Agua Subterránea/química , Agua Subterránea/microbiología , Oxigenasas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacterias/metabolismo , Fluorocarburos/metabolismo , Biodegradación Ambiental
9.
BMC Genom Data ; 25(1): 71, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030545

RESUMEN

The coffee industry holds importance, providing livelihoods for millions of farmers globally and playing a vital role in the economies of coffee-producing countries. Environmental conditions such as drought and temperature fluctuations can adversely affect the quality and yield of coffee crops.Carotenoid cleavage oxygenases (CCO) enzymes are essential for coffee plants as they help break down carotenoids contributing to growth and stress resistance. However, knowledge about the CCO gene family in Coffee arabica was limited. In this study identified 21 CCO genes in Coffee arabica (C. arabica) revealing two subfamilies carotenoid cleavage dioxygenases (CCDs) and 9-cis-epoxy carotenoid dioxygenases (NCED) through phylogenic analysis. These subfamilies exhibited distribution patterns in terms of gene structure, domains, and motifs. The 21 CaCCO genes, comprising 5 NCED and 16 CCD genes were found across chromosomes. Promoter sequencing analysis revealed cis-elements that likely interact with plant stress-responsive, growth-related, and phytohormones, like auxin and abscisic acid. A comprehensive genome-wide comparison, between C. arabica and A. thaliana was conducted to understand the characteristics of CCO genes. RTqPCR data indicated that CaNCED5, CaNCED6, CaNCED12, and CaNCED20 are target genes involved in the growth of drought coffee plants leading to increased crop yield, in a conditions, with limited water availability. This reveals the role of coffee CCOs in responding to abiotic stress and identifies potential genes useful for breeding stress-resistant coffee varieties.


Asunto(s)
Coffea , Oxigenasas , Filogenia , Estrés Fisiológico , Estrés Fisiológico/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Coffea/genética , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Genoma de Planta/genética , Café/genética , Regiones Promotoras Genéticas/genética , Carotenoides/metabolismo , Estudio de Asociación del Genoma Completo
10.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891781

RESUMEN

Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and ß, ß-carotene 15, 15'-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro ß-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with ß-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its ß-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the ß-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically ß-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.


Asunto(s)
Braquiuros , Hepatopáncreas , beta Caroteno , beta-Caroteno 15,15'-Monooxigenasa , Animales , beta Caroteno/metabolismo , Braquiuros/metabolismo , Braquiuros/genética , beta-Caroteno 15,15'-Monooxigenasa/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/genética , Hepatopáncreas/metabolismo , Muda/genética , Oxigenasas/metabolismo , Oxigenasas/genética , Filogenia , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
11.
Biochemistry ; 63(13): 1674-1683, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38898603

RESUMEN

N-Acetylnorloline synthase (LolO) is one of several iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases that catalyze sequential reactions of different types in the biosynthesis of valuable natural products. LolO hydroxylates C2 of 1-exo-acetamidopyrrolizidine before coupling the C2-bonded oxygen to C7 to form the tricyclic loline core. Each reaction requires cleavage of a C-H bond by an oxoiron(IV) (ferryl) intermediate; however, different carbons are targeted, and the carbon radicals have different fates. Prior studies indicated that the substrate-cofactor disposition (SCD) controls the site of H· abstraction and can affect the reaction outcome. These indications led us to determine whether a change in SCD from the first to the second LolO reaction might contribute to the observed reactivity switch. Whereas the single ferryl complex in the C2 hydroxylation reaction was previously shown to have typical Mössbauer parameters, one of two ferryl complexes to accumulate during the oxacyclization reaction has the highest isomer shift seen to date for such a complex and abstracts H· from C7 ∼ 20 times faster than does the first ferryl complex in its previously reported off-pathway hydroxylation of C7. The detectable hydroxylation of C7 in competition with cyclization by the second ferryl complex is not enhanced in 2H2O solvent, suggesting that the C2 hydroxyl is deprotonated prior to C7-H cleavage. These observations are consistent with the coordination of the C2 oxygen to the ferryl complex, which may reorient its oxo ligand, the substrate, or both to positions more favorable for C7-H cleavage and oxacyclization.


Asunto(s)
Hierro , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/química , Hierro/metabolismo , Hierro/química , Hidroxilación , Ciclización , Oxigenasas/metabolismo , Oxigenasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
12.
Genes (Basel) ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38927664

RESUMEN

Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Plantones , Oryza/genética , Oryza/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Respuesta al Choque por Frío/genética , Técnicas de Inactivación de Genes , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Fotosíntesis/genética
13.
J Phys Chem B ; 128(24): 5840-5845, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38850249

RESUMEN

Particulate MMO (pMMO) catalyzes the oxidation of methane to methanol and also ammonia to hydroxylamine. Experimental characterization of the active site has been very difficult partly because the enzyme is membrane-bound. However, recently, there has been major progress mainly through the use of cryogenic electron microscopy (cryoEM). Electron paramagnetic resonance (EPR) and X-ray spectroscopy have also been employed. Surprisingly, the active site has only one copper. There are two histidine ligands and one asparagine ligand, and the active site is surrounded by phenyl alanines but no charged amino acids in the close surrounding. The present study is the first quantum chemical study using a model of that active site (CuD). Low barrier mechanisms have been found, where an important part is that there are two initial proton-coupled electron transfer steps to a bound O2 ligand before the substrate enters. Surprisingly, this leads to large radical character for the oxygens even though they are protonated. That result is very important for the ability to accept a proton from the substrates. Methods have been used which have been thoroughly tested for redox enzyme mechanisms.


Asunto(s)
Amoníaco , Metano , Oxidación-Reducción , Oxigenasas , Metano/química , Metano/metabolismo , Oxigenasas/metabolismo , Oxigenasas/química , Amoníaco/química , Amoníaco/metabolismo , Dominio Catalítico , Modelos Moleculares , Espectroscopía de Resonancia por Spin del Electrón
14.
Front Cell Infect Microbiol ; 14: 1413787, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836053

RESUMEN

Background: Trimethylamine-N-oxide (TMAO) is produced by hepatic flavin-containing monooxygenase 3 (FMO3) from trimethylamine (TMA). High TMAO level is a biomarker of cardiovascular diseases and metabolic disorders, and it also affects periodontitis through interactions with the gastrointestinal microbiome. While recent findings indicate that periodontitis may alter systemic TMAO levels, the specific mechanisms linking these changes and particular oral pathogens require further clarification. Methods: In this study, we established a C57BL/6J male mouse model by orally administering Porphyromonas gingivalis (P. gingivalis, Pg), Fusobacterium nucleatum (F. nucleatum, Fn), Streptococcus mutans (S. mutans, Sm) and PBS was used as a control. We conducted LC-MS/MS analysis to quantify the concentrations of TMAO and its precursors in the plasma and cecal contents of mice. The diversity and composition of the gut microbiome were analyzed using 16S rRNA sequencing. TMAO-related lipid metabolism and enzymes in the intestines and liver were assessed by qPCR and ELISA methods. We further explored the effect of Pg on FMO3 expression and lipid molecules in HepG2 cells by stimulating the cells with Pg-LPS in vitro. Results: The three oral pathogenic bacteria were orally administered to the mice for 5 weeks. The Pg group showed a marked increase in plasma TMAO, betaine, and creatinine levels, whereas no significant differences were observed in the gut TMAO level among the four groups. Further analysis showed similar diversity and composition in the gut microbiomes of both the Pg and Fn groups, which were different from the Sm and control groups. The profiles of TMA-TMAO pathway-related genera and gut enzymes were not significantly different among all groups. The Pg group showed significantly higher liver FMO3 levels and elevated lipid factors (IL-6, TG, TC, and NEFA) in contrast to the other groups. In vitro experiments confirmed that stimulation of HepG2 cells with Pg-LPS upregulated the expression of FMO3 and increased the lipid factors TC, TG, and IL-6. Conclusion: This study conclusively demonstrates that Pg, compared to Fn and Sm, plays a critical role in elevating plasma TMAO levels and significantly influences the TMA-TMAO pathway, primarily by modulating the expression of hepatic FMO3 and directly impacting hepatic lipid metabolism.


Asunto(s)
Microbioma Gastrointestinal , Metilaminas , Ratones Endogámicos C57BL , Oxigenasas , Porphyromonas gingivalis , Animales , Masculino , Metilaminas/metabolismo , Metilaminas/sangre , Humanos , Ratones , Oxigenasas/metabolismo , Porphyromonas gingivalis/metabolismo , Fusobacterium nucleatum/metabolismo , Redes y Vías Metabólicas , Células Hep G2 , Metabolismo de los Lípidos , Modelos Animales de Enfermedad , Periodontitis/microbiología , Periodontitis/metabolismo , Hígado/metabolismo , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem , Boca/microbiología
15.
Plant Physiol Biochem ; 211: 108697, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705045

RESUMEN

Dunaliella salina, a microalga that thrives under high-saline conditions, is notable for its high ß-carotene content and the absence of a polysaccharide cell wall. These unique characteristics render it a prime candidate as a cellular platform for astaxanthin production. In this study, our initial tests in an E. coli revealed that ß-ring-4-dehydrogenase (CBFD) and 4-hydroxy-ß-ring-4-dehydrogenase (HBFD) genes from Adonis aestivalis outperformed ß-carotene hydroxylase (BCH) and ß-carotene ketolase (BKT) from Haematococcus pluvialis counterparts by two-fold in terms of astaxanthin biosynthesis efficiency. Subsequently, we utilized electroporation to integrate either the BKT gene or the CBFD and HBFD genes into the genome of D. salina. In comparison to wild-type D. salina, strains transformed with BKT or CBFD and HBFD exhibited inhibited growth, underwent color changes to shades of red and yellow, and saw a nearly 50% decline in cell density. HPLC analysis confirmed astaxanthin synthesis in engineered D. salina strains, with CBFD + HBFD-D. salina yielding 134.88 ± 9.12 µg/g of dry cell weight (DCW), significantly higher than BKT-D. salina (83.58 ± 2.40 µg/g). This represents the largest amount of astaxanthin extracted from transgenic D. salina, as reported to date. These findings have significant implications, opening up new avenues for the development of specialized D. salina-based microcell factories for efficient astaxanthin production.


Asunto(s)
Xantófilas , Xantófilas/metabolismo , Chlorophyceae/metabolismo , Chlorophyceae/genética , Vías Biosintéticas/genética , Chlorophyta/metabolismo , Chlorophyta/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxigenasas de Función Mixta , Oxigenasas
16.
Nat Commun ; 15(1): 4226, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762502

RESUMEN

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.


Asunto(s)
Metano , Óxido Nitroso , Óxido Nitroso/metabolismo , Metano/metabolismo , Concentración de Iones de Hidrógeno , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxígeno/metabolismo , Oxidación-Reducción , Anaerobiosis , Metanol/metabolismo , Hidrógeno/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética
17.
Bioessays ; 46(7): e2400029, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713170

RESUMEN

Flavin-containing monooxygenases (FMOs), traditionally known for detoxifying xenobiotics, are now recognized for their involvement in endogenous metabolism. We recently discovered that an isoform of FMO, fmo-2 in Caenorhabditis elegans, alters endogenous metabolism to impact longevity and stress tolerance. Increased expression of fmo-2 in C. elegans modifies the flux through the key pathway known as One Carbon Metabolism (OCM). This modified flux results in a decrease in the ratio of S-adenosyl-methionine (SAM) to S-adenosyl-homocysteine (SAH), consequently diminishing methylation capacity. Here we discuss how FMO-2-mediated formate production during tryptophan metabolism may serve as a trigger for changing the flux in OCM. We suggest formate bridges tryptophan and OCM, altering metabolic flux away from methylation during fmo-2 overexpression. Additionally, we highlight how these metabolic results intersect with the mTOR and AMPK pathways, in addition to mitochondrial metabolism. In conclusion, the goal of this essay is to bring attention to the central role of FMO enzymes but lack of understanding of their mechanisms. We justify a call for a deeper understanding of FMO enzyme's role in metabolic rewiring through tryptophan/formate or other yet unidentified substrates. Additionally, we emphasize the identification of novel drugs and microbes to induce FMO activity and extend lifespan.


Asunto(s)
Caenorhabditis elegans , Oxigenasas , Xenobióticos , Animales , Xenobióticos/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Oxigenasas/metabolismo , Oxigenasas/genética , Humanos , Triptófano/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Longevidad
18.
Geroscience ; 46(5): 4689-4706, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38787463

RESUMEN

Dietary restriction (DR) and hypoxia (low oxygen) extend lifespan in Caenorhabditis elegans through the induction of a convergent downstream longevity gene, fmo-2. Flavin-containing monooxygenases (FMOs) are highly conserved xenobiotic-metabolizing enzymes with a clear role in promoting longevity in nematodes and a plausible similar role in mammals. This makes them an attractive potential target of small molecule drugs to stimulate the health-promoting effects of longevity pathways. Here, we utilize an fmo-2 fluorescent transcriptional reporter in C. elegans to screen a set of 80 compounds previously shown to improve stress resistance in mouse fibroblasts. Our data show that 19 compounds significantly induce fmo-2, and 10 of the compounds induce fmo-2 more than twofold. Interestingly, 9 of the 10 high fmo-2 inducers also extend lifespan in C. elegans. Two of these drugs, mitochondrial respiration chain complex inhibitors, interact with the hypoxia pathway to induce fmo-2, whereas two dopamine receptor type 2 (DRD2) antagonists interact with the DR pathway to induce fmo-2, indicating that dopamine signaling is involved in DR-mediated fmo-2 induction. Together, our data identify nine drugs that each (1) increase stress resistance in mouse fibroblasts, (2) induce fmo-2 in C. elegans, and (3) extend nematode lifespan, some through known longevity pathways. These results define fmo-2 induction as a viable approach to identifying and understanding mechanisms of putative longevity compounds.


Asunto(s)
Caenorhabditis elegans , Longevidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Longevidad/efectos de los fármacos , Ratones , Oxigenasas/metabolismo , Oxigenasas/genética , Restricción Calórica , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Evaluación Preclínica de Medicamentos/métodos
19.
Drug Metab Dispos ; 52(8): 906-910, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38769015

RESUMEN

Flavin-containing monooxygenases (FMOs) are a family of enzymes that are involved in the oxygenation of heteroatom-containing molecules. In humans, FMO3 is the major hepatic form, whereas FMO1 is predominant in the kidneys. FMO1 and FMO3 have also been identified in monkeys, dogs, and pigs. The predicted contribution of human FMO3 to drug candidate N-oxygenation could be estimated using the classic base dissociation constants of the N-containing moiety. A basic quinuclidine moiety was found in natural quinine and medicinal products. Consequently, N-oxygenation of quinuclidine was evaluated using liver and kidney microsomes from humans, monkeys, dogs, and pigs as well as recombinant FMO1, FMO3, and FMO5 enzymes. Experiments using simple reversed-phase liquid chromatography with fluorescence monitoring revealed that recombinant FMO1 mediated quinuclidine N-oxygenation with a high capacity in humans. Moreover, recombinant FMO1, FMO3, and/or FMO5 in monkeys, dogs, and pigs exhibited relatively broad substrate specificity toward quinuclidine N-oxygenation. Kinetic analysis showed that human FMO1 efficiently, and pig FMO1 moderately, mediated quinuclidine N-oxygenation with high capacity, which is consistent with the reported findings for larger substrates readily accepted by pig FMO1 but excluded by human FMO1. In contrast, human FMO3-mediated quinuclidine N-oxygenation was slower than that of the typical FMO3 substrate trimethylamine. These results suggest that some species differences exist in terms of FMO-mediated quinuclidine N-oxygenation in humans and some animal models (monkeys, dogs, and minipigs); however, the potential for quinuclidine, which has a simple chemical structure, to be inhibited clinically by co-administered drugs should be relatively low, especially in human livers. SIGNIFICANCE STATEMENT: The high capacity of human flavin-containing monooxygenase (FMO) 1 to mediate quinuclidine N-oxygenation, a basic moiety in natural products and medicines, was demonstrated by simple reversed-phase liquid chromatography using fluorescence monitoring. The substrate specificity of FMO1 and FMO3 toward quinuclidine N-oxygenation in monkeys, dogs, and pigs was suggested to be relatively broad. Human FMO3-mediated quinuclidine N-oxygenation was slower than trimethylamine N-oxygenation. The likelihood of quinuclidine, with its simple chemical structure, being clinically inhibited by co-administered drugs is relatively low.


Asunto(s)
Riñón , Microsomas Hepáticos , Oxigenasas , Quinuclidinas , Animales , Oxigenasas/metabolismo , Perros , Humanos , Porcinos , Riñón/metabolismo , Microsomas Hepáticos/metabolismo , Quinuclidinas/metabolismo , Masculino , Especificidad por Sustrato , Femenino , Cinética , Macaca fascicularis , Proteínas Recombinantes/metabolismo
20.
Bioresour Technol ; 404: 130847, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810708

RESUMEN

Carbon dioxide (CO2) poses a significant threat, contributing to global warming and climate change. This study focused on isolating efficient CO2-reducing methanogens and methanotrophs for converting methane into methanol. Samples from diverse regions in India were collected and processed, yielding 82 methanogenic and 48 methylotrophic isolates. Methanogenic isolate M11 produced a higher amount of methane, reaching 2.9 mol L-1 on the sixth day of incubation at 35 °C, pH 7.0, and CO2:H2 (80:20) as feeding rates. Under optimized conditions, isolate M11 effectively converted 8.3 mol CO2 to 7.9 mol methane in 24 h. Methylotrophic isolate M31 demonstrated significant soluble methane monooxygenase activity (450 nmol/ml) and produced 0.4 mol methanol in 24 h. 16S rRNA analysis identified Methanobacterium sp. and Methyloceanibacter sp. among the isolates, elucidating their taxonomic diversity. This study offers valuable insights into methanogens' potential in CO2 sequestration and methane conversion to methanol through methanotrophism, a promising sustainable biofuel production.


Asunto(s)
Dióxido de Carbono , Metano , Metanol , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , ARN Ribosómico 16S/genética , Filogenia , Secuestro de Carbono , Oxigenasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...