Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.107
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000048

RESUMEN

Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic industry is bisphenol A (BPA), which also has negative effects on the nervous, immune, endocrine, and cardiovascular systems. A popular analogue of BPA-bisphenol S (BPS) also seems to have harmful effects similar to BPA on living organisms. Therefore, with the use of double immunofluorescence labelling, this study aimed to compare the effect of BPA and BPS on the enteric nervous system (ENS) in mouse jejunum. The study showed that both studied toxins impact the number of nerve cells immunoreactive to substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), the neuronal isoform of nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VAChT). The observed changes were similar in the case of both tested bisphenols. However, the influence of BPA showed stronger changes in neurochemical coding. The results also showed that long-term exposure to BPS significantly affects the ENS.


Asunto(s)
Compuestos de Bencidrilo , Sistema Nervioso Entérico , Yeyuno , Fenoles , Sulfonas , Animales , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Ratones , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/metabolismo , Sulfonas/farmacología , Sulfonas/toxicidad , Sustancia P/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Masculino , Galanina/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo
2.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984720

RESUMEN

Vasoactive-intestinal peptide (Vip) is a pleiotropic peptide with a wide range of distribution and functions. Zebrafish possess 2 isoforms of Vip (a and b), in which Vipa is most homologous to the mammalian form. In female zebrafish, Vipa can stimulate LH secretion from the pituitary but is not essential for female reproduction, as vipa-/- females display normal reproduction. In contrast, we have found that vipa-/- males are severely subfertile and sex ratio of offspring is female-biased. By analyzing all aspects of male reproduction with wild-type (WT) males, we show that the testes of vipa-/- are underdeveloped and contain ∼70% less spermatids compared to WT counterparts. The sperm of vipa-/- males displayed reduced potency in terms of fertilization (by ∼80%) and motility span and duration (by ∼50%). In addition, vipa-/- male attraction to WT females was largely nonexistent, indicating decreased sexual motivation. We show that vipa mRNA and protein is present in Leydig cells and in developing germ cells in the testis of WT, raising the possibility that endogenous Vipa contributes to testicular function. Absence of Vipa in vipa-/- males resulted in downregulation of 3 key genes in the androgen synthesis chain in the testis, 3ß-hsd, 17ß-hsd1, and cyp11c1 (11ß-hydrogenase), associated with a pronounced decrease in 11-ketotestosterone production and, in turn, compromised reproductive fitness. Altogether, this study establishes a crucial role for Vipa in the regulation of male reproduction in zebrafish, like in mammals, with the exception that Vipa is also expressed in zebrafish testis.


Asunto(s)
Reproducción , Razón de Masculinidad , Testículo , Péptido Intestinal Vasoactivo , Pez Cebra , Animales , Masculino , Femenino , Testículo/metabolismo , Reproducción/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Testosterona/análogos & derivados , Testosterona/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Espermatozoides/metabolismo , Espermatozoides/fisiología , Espermatozoides/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Aptitud Genética
3.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2699-2709, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812170

RESUMEN

A systematic evaluation of the differences in the chemical composition and efficacy of the different forms of Galli Gigerii Endothelium Corneum(GGEC) was conducted based on modern analytical techniques and a functional dyspepsia(FD) rat model, which clarifies the material basis of the digestive efficacy of GGEC. Proteins, enzymes, polysaccharides, amino acids, and flavonoids in GGEC powder and decoction were determined respectively. The total protein of the powder and decoction was 0.06% and 0.65%, respectively, and the pepsin and amylase potency of the powder was 27.03 and 44.05 U·mg~(-1) respectively. The polysaccharide of the decoction was 0.03%, and there was no polysaccharide detected in the powder. The total L-type amino acids in the powder and decoction were 279.81 and 8.27 mg·g~(-1) respectively, and the total flavonoid content was 59.51 µg·g~(-1). Enzymes and flavonoids were not detected in the decoction. The powder significantly reduced nutrient paste viscosity, while the decoction and control group showed no significant reduction in nutrient paste viscosity. FD rat models were prepared by iodoacetamide gavage and irregular diet. The results showed that both powder and decoction significantly increased the gastric emptying effect, small intestinal propulsion rate, digestive enzymes activity, gastrin(GAS), motilin(MTL), ghrelin(GHRL) and reduced vasoactive intestinal peptide(VIP), 3-(2-ammo-nioethyl)-5-hydroxy-1H-indolium maleate(5-HT), and somatostatin(SST) content in rats(P<0.05, P<0.01). Comparison of GGEC decoction and powder administration between groups of the same dosage level showed that gastrointestinal propulsion and serum levels of GAS, GHRL, VIP, and SST in the powder group were significantly superior to those in the decoction and that the gastrointestinal propulsion, as well as serum levels of MTL, GAS, and GHRL were slightly higher than those of the decoction with two times its raw dose, and the serum levels of SST, 5-HT, and VIP in the powder group were slightly lower than those of the decoction with two times its raw dose. In conclusion, both decoction and powder have therapeutic effects on FD, but there is a significant difference between the two effects. Under the same dosage, the digestive efficacy of the powder is significantly better than that of the decoction, and the decoction needs to increase the dosage to compensate for the efficacy. It is hypothesized that the digestive efficacy of the GGEC has a duality, and the digestive active ingredients of the powder may include enzymes and L-type amino acids, while the decoction mainly relies on L-type amino acids to exert its efficacy. This study provides new evidence to investigate the digestive active substances of the GGEC and to improve the effectiveness of the drug in the clinic.


Asunto(s)
Dispepsia , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Dispepsia/tratamiento farmacológico , Dispepsia/fisiopatología , Dispepsia/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Humanos , Flavonoides/química , Flavonoides/farmacología , Motilina , Péptido Intestinal Vasoactivo/metabolismo , Ghrelina , Somatostatina
4.
Exp Eye Res ; 244: 109943, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797259

RESUMEN

Orexin A and B (OXA and OXB) and their receptors are expressed in the majority of retinal neurons in humans, rats, and mice. Orexins modulate signal transmission between the different layers of the retina. The suprachiasmatic nucleus (SCN) and the retina are central and peripheral components of the body's biological clocks; respectively. The SCN receives photic information from the retina through the retinohypothalamic tract (RHT) to synchronize bodily functions with environmental changes. In present study, we aimed to investigate the impact of inhibiting retinal orexin receptors on the expression of retinal Bmal1 and c-fos, as well as hypothalamic c-fos, Bmal1, Vip, and PACAP at four different time-points (Zeitgeber time; ZT 3, 6, 11, and ZT-0). The intravitreal injection (IVI) of OX1R antagonist (SB-334867) and OX2R antagonist (JNJ-10397049) significantly up-regulated c-fos expression in the retina. Additionally, compared to the control group, the combined injection of SB-334867 and JNJ-10397049 showed a greater increase in retinal expression of this gene. Moreover, the expression of hypothalamic Vip and PACAP was significantly up-regulated in both the SB-334867 and JNJ-10397049 groups. In contrast, the expression of Bmal1 was down-regulated. Furthermore, the expression of hypothalamic c-fos was down-regulated in all groups treated with SB-334867 and JNJ-10397049. Additionally, the study demonstrated that blocking these receptors in the retina resulted in alterations in circadian rhythm parameters such as mesor, amplitude, and acrophase. Finally, it affected the phase of gene expression rhythms in both the retina and hypothalamus, as identified through cosinor analysis and the zero-amplitude test. This study represents the initial exploration of how retinal orexin receptors influence expression of rhythmic genes in the retina and hypothalamus. These findings could provide new insights into how the retina regulates the circadian rhythm in both regions and illuminate the role of the orexinergic system expression within the retina.


Asunto(s)
Hipotálamo , Receptores de Orexina , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Proteínas Proto-Oncogénicas c-fos , Retina , Péptido Intestinal Vasoactivo , Animales , Masculino , Ratas , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Benzoxazoles/farmacología , Ritmo Circadiano/fisiología , Dioxanos , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Isoquinolinas , Naftiridinas , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Compuestos de Fenilurea , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Piridinas , Ratas Wistar , Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Urea/análogos & derivados , Urea/farmacología , Péptido Intestinal Vasoactivo/metabolismo
5.
J Neurophysiol ; 132(1): 34-44, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38774975

RESUMEN

When adult mice are repeatedly exposed to a particular visual stimulus for as little as 1 h per day for several days while their visual cortex (V1) is in the high-gain state produced by locomotion, that specific stimulus elicits much stronger responses in V1 neurons for the following several weeks, even when measured in anesthetized animals. Such stimulus-specific enhancement (SSE) is not seen if locomotion is prevented. The effect of locomotion on cortical responses is mediated by vasoactive intestinal peptide (VIP) positive interneurons, which can release both the peptide and the inhibitory neurotransmitter GABA. Previous studies have examined the role of VIP-ergic interneurons, but none have distinguished the individual roles of peptide from GABA release. Here, we used genetic ablation to determine which of those molecules secreted by VIP-ergic neurons is responsible for SSE. SSE was not impaired by VIP deletion but was prevented by compromising release of GABA from VIP cells. This finding suggests that SSE may result from Hebbian mechanisms that remain present in adult V1.NEW & NOTEWORTHY Many neurons package and release a peptide along with a conventional neurotransmitter. The conventional view is that such peptides exert late, slow effects on plasticity. We studied a form of cortical plasticity that depends on the activity of neurons that express both vasoactive intestinal peptide (VIP) and the inhibitory neurotransmitter GABA. GABA release accounted for their action on plasticity, with no effect of deleting the peptide on this phenomenon.


Asunto(s)
Interneuronas , Péptido Intestinal Vasoactivo , Corteza Visual , Ácido gamma-Aminobutírico , Animales , Péptido Intestinal Vasoactivo/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ratones , Corteza Visual/metabolismo , Corteza Visual/fisiología , Ratones Endogámicos C57BL , Masculino , Estimulación Luminosa , Femenino
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 455-459, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38790102

RESUMEN

Ulcerative colitis (UC) is an autoimmune disease based on the persistent damage of colonic mucosal barrier. It has been found that the abnormal expression of follicular helper T (Tfh) cells and follicular regulatory T (Tfr) cells is closely related to the occurrence and development of UC. Tfh cells can secrete pro-inflammatory factors and assist B cells to produce antibodies, which can promote the development of UC, while Tfr cells can inhibit the activity of Tfh cells and secrete anti-inflammatory factors. How to regulate the balance between them has become one of the potential therapeutic targets of UC. Vasoactive intestinal peptide (VIP) has preventive and therapeutic effect on UC, and its mechanism is closely related to the regulation of Tfh/Tfr cell balance, which can provide help for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Células T Auxiliares Foliculares , Linfocitos T Reguladores , Péptido Intestinal Vasoactivo , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/terapia , Humanos , Péptido Intestinal Vasoactivo/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Animales , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo
7.
J Tradit Chin Med ; 44(3): 537-544, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767638

RESUMEN

OBJECTIVE: To explore the early hemostatic mechanism of Jianpi Yiqi Shexue decoction (, JYSD) in treating immune thrombocytopathy (ITP), based on the functional homeostasis of brain-intestine axis and blood neurotransmitter METHODS: Non-drug treatment cases: Healthy volunteers were selected as normal control group and compared with patients with dysfunctional uterine bleeding, gastrointestinal tumors with bleeding and ITP, to detect the changes of blood 5-hydroxytryptamine (5-HT), ß-endorphin (ß-EP), vasoactive intestinal peptide (VIP) and compare the changes of blood neuro-transmitters in patients with different disease symptoms. Drug treatment cases: According to the randomized controlled multicenter clinical trial, 272 ITP patients were randomly divided into three groups: treatment group (JYSD) combined group (JYSD + Prednisone) control group (Prednisone). The changes of blood neuro-transmitter (5-HT, ß-EP, VIP) before and after treatment were detected on the basis of peripheral blood platelet (PLT) and grade score. RESULTS: Non-drug treatment cases: compared with the normal control group, the 5-HT level was higher, and the VIP and ß-EP levels were both lower in the ITP group (P < 0.001), and the 5-HT, VIP and ß-EP levels in the Gastrointestinal tumors with bleeding group were also lower compared with the normal control group (P < 0.05, 0.001). Drug treatment cases: The PLT grading scores of the combination group and the control group after treatment were lower than that before treatment (P < 0.05, 0.001). The PLT grading score of the 3 groups were compared in pairs after treatment: the combination group was the lowest among the 3 groups, which was better than the treatment group, but no better than the control group (vs the treatment group, P = 0.005, vs the control group, P = 0.709). The statistical results of full analysis set (FAS) and per protocol set (PPS) were consistent. The bleeding symptom scores of the treatment and combination groups began to drop 7 d after treatment, and kept dropping 14 d after treatment until the end of the study (P < 0.05). On the other hand, the control group started to show favorable results 14 d after treatment (P < 0.05). The FAS and PPS analysis results were consistent. In the control group, the 5-HT level was higher and VIP level was lower after treatment, compared with those before treatment (P < 0.05, 0.001). The ß-EP levels were both increased in the treatment and combination group after treatment, compared with those before treatment (P < 0.05). After treatment, the ß-EP levels in the treatment and control groups were significantly lower compared with the combination groups (P < 0.05). After treatment, compared with the control group, the VIP levels in the treatment and combination groups were up-regulated, and the differences were statistically significant by rank sum test (P < 0.01), and by t-test (P = 0.0002, 0.0001). CONCLUSIONS: The prednisone tablet is better than the JYSD in increasing the level of PLT, while prednisone tablet combined with JYSD has more advantages in improving patients' peripheral blood PLT levels. However, in improving the bleeding time of ITP patients, the combination of the two drugs was significantly delayed compared with the single usage, showing the characteristics and advantages of traditional Chinese medicine. JYSD can regulate the neurotransmitter level of ITP patients through the function of the brain-gut axis, mobilize 5-HT in the blood of ITP patients to promote the contraction of blood vessels and smooth muscles, and activate the coagulation mechanism are the early hemostatic mechanisms of JYSD. Up-regulate the levels of ß-EP and balancing VIP levels may be an important part of the immune mechanism of JYSD for regulating ITP patients.


Asunto(s)
Medicamentos Herbarios Chinos , Serotonina , Humanos , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Persona de Mediana Edad , Adulto , Masculino , Serotonina/sangre , Anciano , Adulto Joven , Péptido Intestinal Vasoactivo/sangre , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/sangre , betaendorfina/sangre , Adolescente , Hemostáticos/administración & dosificación , Hemostasis/efectos de los fármacos
8.
Ann Anat ; 255: 152291, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821428

RESUMEN

BACKGROUND: What textbooks usually call the sublingual gland in humans is in reality a tissue mass of two types of salivary glands, the anteriorly located consisting of a cluster of minor sublingual glands and the posteriorly located major sublingual gland with its outlet via Bartholin's duct. Only recently, the adrenergic and cholinergic innervations of the major sublingual gland was reported, while information regarding the neuropeptidergic and nitrergic innervations is still lacking. METHODS: Bioptic and autoptic specimens of the human major sublingual gland were examined by means of immunohistochemistry for the presence of vasoactive intestinal peptide (VIP)-, neuropeptide Y (NPY)-, substance P (SP)-, calcitonin gene related-peptide (CGRP)-, and neuronal nitric oxide synthase (nNOS)-labeled neuronal structures. RESULTS: As to the neuropeptidergic innervation of secretory cells (here in the form of mucous tubular and seromucous cells), the findings showed many VIP-containing nerves, few NPY- and SP-containing nerves and a lack of CGRP-labeled nerves. As to the neuropeptidergic innervation of vessels, the number of VIP-containing nerves was modest, while, of the other neuropeptide-containing nerves under study, only few (SP and CGRP) to very few (NPY) nerves were observed. As to the nitrergic innervation, nNOS-containing nerves were very few close to secretory cells and even absent around vessels. CONCLUSION: The various innervation patterns may suggest potential transmission mechanisms involved in secretory and vascular responses of the major sublingual gland.


Asunto(s)
Neuropéptidos , Glándula Sublingual , Sustancia P , Humanos , Glándula Sublingual/inervación , Glándula Sublingual/metabolismo , Masculino , Neuropéptidos/metabolismo , Femenino , Sustancia P/metabolismo , Neuropéptido Y/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Inmunohistoquímica , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo I/metabolismo , Anciano , Adulto , Anciano de 80 o más Años
9.
Front Endocrinol (Lausanne) ; 15: 1331282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774232

RESUMEN

Introduction: Polycystic ovary syndrome (PCOS) is a common multifactorial and polygenic disorder of the endocrine system, affecting up to 20% of women in reproductive age with a still unknown etiology. Follicular fluid (FF) represents an environment for the normal development of follicles rich in metabolites, hormones and neurotransmitters, but in some instances of PCOS the composition can be different. Vasoactive intestinal peptide (VIP) is an endogenous autonomic neuropeptide involved in follicular atresia, granulosa cell physiology and steroidogenesis. Methods: ELISA assays were performed to measure VIP and estradiol levels in human follicular fluids, while AMH, FSH, LH, estradiol and progesterone in the plasma were quantified by chemiluminescence. UHPLC/QTOF was used to perform the untargeted metabolomic analysis. Results: Our ELISA and metabolomic results show: i) an increased concentration of VIP in follicular fluid of PCOS patients (n=9) of about 30% with respect to control group (n=10) (132 ± 28 pg/ml versus 103 ± 26 pg/ml, p=0,03) in women undergoing in vitro fertilization (IVF), ii) a linear positive correlation (p=0.05, r=0.45) between VIP concentration and serum Anti-Müllerian Hormone (AMH) concentration and iii) a linear negative correlation between VIP and noradrenaline metabolism. No correlation between VIP and estradiol (E2) concentration in follicular fluid was found. A negative correlation was found between VIP and noradrenaline metabolite 3,4-dihydroxyphenylglycolaldehyde (DOPGAL) in follicular fluids. Conclusion: VIP concentration in follicular fluids was increased in PCOS patients and a correlation was found with noradrenaline metabolism indicating a possible dysregulation of the sympathetic reflex in the ovarian follicles. The functional role of VIP as noradrenergic modulator in ovarian physiology and PCOS pathophysiology was discussed.


Asunto(s)
Fertilización In Vitro , Líquido Folicular , Síndrome del Ovario Poliquístico , Péptido Intestinal Vasoactivo , Humanos , Femenino , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/sangre , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/sangre , Líquido Folicular/metabolismo , Adulto , Estradiol/sangre , Estradiol/metabolismo , Hormona Antimülleriana/sangre , Hormona Antimülleriana/metabolismo , Estudios de Casos y Controles
10.
Cell Rep ; 43(5): 114197, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38733587

RESUMEN

Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.


Asunto(s)
Interneuronas , Somatostatina , Péptido Intestinal Vasoactivo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Somatostatina/metabolismo , Ratones , Péptido Intestinal Vasoactivo/metabolismo , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/metabolismo , Masculino , Ratones Endogámicos C57BL , Locomoción/fisiología , Conducta Animal/fisiología , Corteza Visual/fisiología , Corteza Visual/metabolismo , Tálamo/fisiología , Tálamo/metabolismo
11.
Cell Rep ; 43(5): 114220, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38735047

RESUMEN

The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of Vip+Nms+ SCN neurons at night. Although nocturnal and typically showing a peak of activity at lights off, mice lacking PiT2 (PiT2-/-) do not reach the activity level seen in wild-type mice during the light/dark transition. PiT2 loss leads to increased SCN neuronal firing and broad changes in SCN protein phosphorylation. PiT2-/- mice display a deficit in seasonal entrainment when moving from a simulated short summer to longer winter nights. This suggests that PiT2 is responsible for timing activity and is a driver of SCN plasticity allowing seasonal entrainment.


Asunto(s)
Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/metabolismo , Ratones , Neuronas/metabolismo , Locomoción , Ratones Endogámicos C57BL , Péptido Intestinal Vasoactivo/metabolismo , Masculino , Ritmo Circadiano/fisiología , Fotoperiodo , Ratones Noqueados , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética
12.
Cell Rep ; 43(5): 114212, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743567

RESUMEN

Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.


Asunto(s)
Interneuronas , Interneuronas/metabolismo , Animales , Ratones , Neuropéptido Y/metabolismo , Neocórtex/metabolismo , Neocórtex/citología , Neocórtex/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Masculino , Parvalbúminas/metabolismo
13.
Front Neural Circuits ; 18: 1385908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590628

RESUMEN

Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.


Asunto(s)
Hipotálamo , Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/metabolismo , Hipotálamo/metabolismo , Ritmo Circadiano/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Sueño , Arginina Vasopresina/metabolismo
14.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38656435

RESUMEN

This study evaluated if vasoactive intestinal polypeptide (VIP) influences growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Sixteen wether lambs (69.6 ±â€…1.9 kg) were housed in individual pens, adapted to a corn grain-based diet, and randomly assigned to 2 treatment groups. Lambs were injected intraperitoneally every other day for 28 d with saline (0.9% NaCl) containing no VIP (n = 8; control) or containing VIP (n = 8; 1.3 nmol/kg body weight [BW]). All lambs were transferred to individual metabolic crates for the final 7 d of the experiment to measure nitrogen balance and nutrient digestibility. At the end of the treatment period, lambs were slaughtered, and pancreatic tissue, small intestinal tissue, and rumen fluid were collected for protein, digestive enzymes, ruminal pH, and volatile fatty acid (VFA) analyses. Lambs treated with VIP had greater final BW, average daily gain, and gain:feed (P = 0.01, 0.05, 0.03, respectively). No differences between treatment groups were observed (P ≥ 0.25) for nutrient intake, digestibility, nitrogen retention, ruminal pH, and VFA concentrations. Moreover, VIP treatment did not influence (P ≥ 0.19) plasma glucose, urea N, and insulin concentrations. Treatment with VIP increased (P = 0.03) relative cecum weight (g/kg BW) and decreased (P = 0.05) relative brain weight. Pancreatic and intestinal digestive enzyme activities, except for duodenal maltase (P = 0.02), were not influenced (P ≥ 0.09) by VIP treatment. These data suggest that the administration of VIP may have potential to improve average daily gain and gain:feed in lambs fed grain-based diets.


This research explored the influence of vasoactive intestinal polypeptide (VIP), an anti-inflammatory mediator, in lambs fed a high-concentrate finishing diet on growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Wether lambs were fed a whole corn grain-based diet containing no added forage and randomly assigned to either the VIP or control group. Lambs received intraperitoneal saline injections with or without VIP every second day over a 28-d treatment period. Average daily gain and gain:feed ratio was positively influenced by VIP. However, treatment did not affect dry matter intake, nitrogen balance, nutrient digestibility, and digestive enzyme activity. These data indicate exogenous VIP treatment may influence growth in lambs fed a high-concentrate diet.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Digestión , Nitrógeno , Péptido Intestinal Vasoactivo , Animales , Alimentación Animal/análisis , Dieta/veterinaria , Digestión/efectos de los fármacos , Nitrógeno/metabolismo , Nutrientes/metabolismo , Distribución Aleatoria , Rumen , Ovinos/crecimiento & desarrollo , Ovinos/fisiología , Péptido Intestinal Vasoactivo/metabolismo
15.
Benef Microbes ; 15(3): 311-329, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688519

RESUMEN

Probiotics exert beneficial effects by regulating the intestinal microbiota, metabolism, immune function and other ways of their host. Patients with constipation, a common gastrointestinal disorder, experience disturbances in their intestinal microbiota. In the present study, we investigated the effectiveness of two microbial ecological agents (postbiotic extract PE0401 and a combination of postbiotic extract PE0401 and Lacticaseibacillus paracasei CCFM 2711) in regulating the makeup of the intestinal microbiota and alleviating loperamide hydrochloride-induced constipation in mice. We also preliminarily explored the mechanism underlying their effects. Both microbial ecological agents increased the abundance of the beneficial bacteria Lactobacilli and Bifidobacterium after administration and were able to relieve constipation. However, the degree of improvement in constipation symptoms varied depending on the makeup of the supplement. The postbiotic extract PE0401 increased peristalsis time and improved faecal properties throughout the intestinal tract of the host. PE0401 relieved constipation, possibly by modulating the levels of the constipation-related gastrointestinal regulatory transmitters mouse motilin, mouse vasoactive intestinal peptide, and 5-hydoxytryptamine in the intestinal tract of the host and by increasing the levels of the short-chain fatty acids (SCFAs) acetic acid, propionic acid, and isovaleric acid. It also increased the relative abundance of Lactobacillus and Bifidobacterium and reduced that of Faecalibaculum, Mucispirillum, Staphylococcus, and Lachnoclostridium, which are among the beneficial microbiota in the host intestine. Furthermore, PE0401 decreased the levels of constipation-induced host inflammatory factors. Therefore, the two microbial ecological agents can regulate the intestinal microbiota of constipation mice, and PE0401 has a stronger ability to relieve constipation.


Asunto(s)
Estreñimiento , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Loperamida , Probióticos , Animales , Loperamida/efectos adversos , Estreñimiento/tratamiento farmacológico , Estreñimiento/inducido químicamente , Estreñimiento/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Ratones , Probióticos/administración & dosificación , Probióticos/farmacología , Probióticos/uso terapéutico , Masculino , Bifidobacterium , Lacticaseibacillus paracasei , Modelos Animales de Enfermedad , Lactobacillus , Motilina/metabolismo , Heces/microbiología , Heces/química , Péptido Intestinal Vasoactivo/metabolismo
16.
Br J Pharmacol ; 181(15): 2655-2675, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616050

RESUMEN

BACKGROUND AND PURPOSE: The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH: Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS: PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Médula Espinal , Péptido Intestinal Vasoactivo , Animales , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/agonistas , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Ratones , Ratas , Transducción de Señal/efectos de los fármacos , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Células Cultivadas , Ratas Sprague-Dawley , Masculino , Ratones Endogámicos C57BL , AMP Cíclico/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/agonistas
17.
Medicina (Kaunas) ; 60(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674298

RESUMEN

Background and Objectives: The neuroendocrine system plays a crucial role in regulating various bodily functions, including reproduction, with evidence suggesting its significant involvement in male fertility and sperm development. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are expressed in both male and female reproductive tissues, influencing penile erection and regulating steroidogenesis in males. Therefore, our study aimed to compare the protein levels of VIP and PACAP in seminal plasma between healthy controls and sub-fertile patients. Additionally, we sought to correlate the levels of these biomarkers with clinical, functional, and laboratory findings in the participants. Materials and Methods: The study included a total of 163 male participants for analysis. The participants were further stratified into subgroups of fertile and sub-fertile men of four subgroups according to the 2021 WHO guidelines. Seminal plasma concentrations of the neuropeptides VIP and PACAP were measured using human enzyme-linked immunosorbent assay technique. Results: The findings showed statistically significant differences in total sperm count, sperm concentration, total motility, and vitality (p < 0.001) between the fertile group and the sub-fertile group. Specifically, significant differences found between healthy males and oligoasthenospermic patients (p = 0.002), and between asthenospermic and oligoasthenospermic patients (p = 0.039). An ROC analysis showed associated sensitivity and specificity values of 62.2% and 55.6%, respectively, to PACAP seminal levels differentiated between sub-fertile patients from fertile males (p = 0.028). No significant difference in seminal levels of VIP was found between the sub-fertile and fertile groups. Conclusions: Previous research leads to the point of PACAP active involvement in spermatogenesis. In accordance to our study, in human semen samples, we have seen a significance change in PACAP levels amongst patients with low sperm count or with both low sperm count and low motility, hinting at its contribution and acting as a possible factor in this complex process. Thus, alterations in the levels or actions of these neuropeptides have been associated with certain reproductive disorders in males.


Asunto(s)
Fertilidad , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Semen , Péptido Intestinal Vasoactivo , Humanos , Masculino , Péptido Intestinal Vasoactivo/sangre , Péptido Intestinal Vasoactivo/análisis , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/análisis , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/sangre , Adulto , Semen/química , Semen/metabolismo , Fertilidad/fisiología , Biomarcadores/sangre , Biomarcadores/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Infertilidad Masculina/sangre
18.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607918

RESUMEN

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Asunto(s)
Región CA1 Hipocampal , Interneuronas , Reconocimiento en Psicología , Péptido Intestinal Vasoactivo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/citología , Ratones , Masculino , Reconocimiento en Psicología/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Ratones Endogámicos C57BL , Memoria/fisiología , Parvalbúminas/metabolismo , Conducta Exploratoria/fisiología , Somatostatina/metabolismo
19.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656542

RESUMEN

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Asunto(s)
Conducta Exploratoria , Hipocampo , Plasticidad Neuronal , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , Péptido Intestinal Vasoactivo , Animales , Masculino , Ratas , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Conducta Exploratoria/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Ratas Wistar , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
20.
Neuron ; 112(11): 1876-1890.e4, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447579

RESUMEN

In complex environments, animals can adopt diverse strategies to find rewards. How distinct strategies differentially engage brain circuits is not well understood. Here, we investigate this question, focusing on the cortical Vip-Sst disinhibitory circuit between vasoactive intestinal peptide-postive (Vip) interneurons and somatostatin-positive (Sst) interneurons. We characterize the behavioral strategies used by mice during a visual change detection task. Using a dynamic logistic regression model, we find that individual mice use mixtures of a visual comparison strategy and a statistical timing strategy. Separately, mice also have periods of task engagement and disengagement. Two-photon calcium imaging shows large strategy-dependent differences in neural activity in excitatory, Sst inhibitory, and Vip inhibitory cells in response to both image changes and image omissions. In contrast, task engagement has limited effects on neural population activity. We find that the diversity of neural correlates of strategy can be understood parsimoniously as the increased activation of the Vip-Sst disinhibitory circuit during the visual comparison strategy, which facilitates task-appropriate responses.


Asunto(s)
Interneuronas , Somatostatina , Péptido Intestinal Vasoactivo , Corteza Visual , Animales , Péptido Intestinal Vasoactivo/metabolismo , Corteza Visual/fisiología , Ratones , Somatostatina/metabolismo , Interneuronas/fisiología , Inhibición Neural/fisiología , Masculino , Ratones Endogámicos C57BL , Estimulación Luminosa/métodos , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...