Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.429
Filtrar
1.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824265

RESUMEN

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Asunto(s)
Cistatinas , Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Macrófagos , Vibrio , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/metabolismo , Vibrio/patogenicidad , Cistatinas/genética , Cistatinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Vibriosis/inmunología , Vibriosis/veterinaria , Vibriosis/genética , FN-kappa B/metabolismo , Clonación Molecular/métodos , Regulación de la Expresión Génica
2.
Fish Shellfish Immunol ; 151: 109681, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871142

RESUMEN

The EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) is involved in connective tissue development, elastic fiber formation, and tumor growth. In this study, we characterized the cDNA of EFEMP2 (PoEFEMP2), a member of the fibulin family of ECM proteins, in the olive flounder Paralichthys olivaceus. The coding region of PoEFEMP2 encodes a protein that contains six calcium-binding EGF-like (EGF-CA) domains and four complement Clr-like EGF-like (cEGF) domains. PoEFEMP2 shows 67.51-96.77 % similarities to orthologs in a variety of fish species. PoEFEMP2 mRNA was detected in all tissues examined; the highest levels of PoEFEMP2 mRNA expression were observed in the heart, testis, ovary and muscle. The PoEFEMP2 mRNA level increases during early development. In addition, the PoEFEMP2 mRNA level increased at 3 h post-infection (hpi) and decreased from 6 to 48 hpi in flounder Hirame natural embryo (HINAE) cells infected with viral hemorrhagic septicemia virus (VHSV). Disruption of PoEFEMP2 using the clustered regularly interspaced short palindromic repeats/CRISPR-associated-9 (CRISPR/Cas9) system resulted in a significant upregulation of VHSV G mRNA levels and immune-related genes expression in knockout cells. These findings implicate PoEFEMP2 in antiviral responses in P. olivaceus.


Asunto(s)
Secuencia de Aminoácidos , Proteínas de la Matriz Extracelular , Proteínas de Peces , Regulación de la Expresión Génica , Septicemia Hemorrágica Viral , Inmunidad Innata , Novirhabdovirus , Filogenia , Animales , Novirhabdovirus/fisiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/inmunología , Septicemia Hemorrágica Viral/inmunología , Septicemia Hemorrágica Viral/genética , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Alineación de Secuencia/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Perfilación de la Expresión Génica/veterinaria , Peces Planos/inmunología , Peces Planos/genética
3.
Fish Shellfish Immunol ; 151: 109706, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897310

RESUMEN

The complement component 5a/complement component 5 receptor 1 (C5a/C5aR1) pathway plays a crucial role in the onset and development of inflammation, but relevant studies in fish are lacking. In this study, we successfully characterized the relationship between half-smooth tongue sole (Cynoglossus semilaevis) C5aR1 (CsC5aR1) and bacterial inflammation. First, we showed that the overexpression of CsC5aR1 significantly increased bacterial pathological damage in the liver and intestine, whereas inhibition attenuated the damage. The in vitro experiments suggested that CsC5aR1 was able to positively regulate the phagocytic activity and respiratory burst of tongue sole macrophages. In terms of both transcriptional and translational levels, overexpression/inhibition of CsC5aR1 was followed by a highly consistent up-regulation/decrease of its downstream canonical inflammatory factor interleukin-6 (CsIL-6). Furthermore, we stimulated macrophages by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and found a broad-spectrum response to bacterial infections by the C5a/C5aR1 complement pathway together with the downstream inflammatory factor CsIL-6. Subsequently, we directly elucidated that CsIL-6 is an indicator of C5a/C5aR1-mediated inflammation at different infection concentrations, different infectious bacteria (Vibrio anguillarum and Mycobacterium marinum), and different detection levels. These results might provide a new inflammation bio-marker for early warning of bacteria-induced hyperinflammation leading to fish mortality and a promising target for the treatment of bacterial inflammation in teleost.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Interleucina-6 , Receptor de Anafilatoxina C5a , Animales , Peces Planos/inmunología , Peces Planos/genética , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Interleucina-6/metabolismo , Vibriosis/veterinaria , Vibriosis/inmunología , Vibrio/fisiología , Inflamación/inmunología , Inflamación/veterinaria , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética
4.
Fish Shellfish Immunol ; 151: 109711, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901685

RESUMEN

Aeromonas salmonicida is one of the most prevalent pathogens that causes huge economic losses to aquaculture. Effective vaccination is the first choice for preventing infection. Bacterial ghost (BG), an empty bacterial shell devoid of cytoplasm, is a promising vaccine antigen with distinct advantages. Herein, we established strategies for producing a substantial yield of A. salmonicida ghost (ASG) and investigated the immune-protective properties of it. As a result, 2.84 mg/ml NaOH was discovered to be capable of inducing considerable amounts of ASG. Furthermore, the ASG vaccine elicited adaptive immunity in turbots after rapid activation of innate immunity. Even though formalin-killed cells (FKC) produced a few more antibodies than ASG, ASG ultimately provided a much stronger immune protection effect because it strengthened cellular immunity, with a relative percentage survival (RPS) of 50.1 % compared to FKC. These findings demonstrated that ASG effectively activated cell-mediated immunity, which helped get rid of microorganisms inside cells. Therefore, this study presented novel perspectives for future research on furunculosis vaccine products based on ASG as an antigen.


Asunto(s)
Aeromonas salmonicida , Vacunas Bacterianas , Enfermedades de los Peces , Peces Planos , Infecciones por Bacterias Gramnegativas , Aeromonas salmonicida/inmunología , Animales , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Peces Planos/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Forunculosis/prevención & control , Forunculosis/inmunología , Forunculosis/microbiología , Inmunidad Innata , Inmunidad Adaptativa , Inmunidad Celular , Vacunación/veterinaria
5.
Sci Total Environ ; 942: 173427, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38797400

RESUMEN

The recurring appearance of Ulva prolifera green tides has become a pressing environmental issue, especially for marine transportation, tourism, and aquaculture in the stage of decomposition. An abundance of decaying U. prolifera leads to water acidification, hypoxia and pathogenic microorganism proliferation, threatening marine germplasm resources, particularly benthic organisms with weak escape ability. Epigenetic modification is considered to be one of the molecular mechanisms involved in the plastic adaptive response to environmental changes. However, few studies concerning the specific impact of decaying green tide on benthic animals at the epigenetic level. In this study, decomposing algal effluents of U. prolifera, sediments containing uncorrupted U. prolifera, pathogenic microorganism were considered as impact factors, to reveal the effect of decaying U. prolifera on marine economic benthic species, Paralichthys olivaceus, using both field and laboratory simulation experiments. Field simulation experiment showed higher mortality rates and serious histopathological damage than the laboratory simulation experiment. And both the decaying U. prolifera and the sediment containing U. prolifera were harmful to P. olivaceus. Genome-wide DNA methylation and transcription correlation analyses showed that the response of P. olivaceus to green tide stress and bacterial infection was mainly mediated by immune signaling pathways such as PI3K-Akt signaling pathway. DNA methylation regulates the expression of immune-related genes involved in the PI3K-Akt signaling pathway, which enables P. olivaceus to adapt to the adverse environmental stresses by resisting apoptosis. In summary, this research analyzed the potential role of P. olivaceus in decaying U. prolifera, which is of great significance for understanding the impact of decaying green tide on marine commercial fish and also provides some theoretical guidance for the proliferation and release of fish seedlings.


Asunto(s)
Metilación de ADN , Ulva , Animales , Peces Planos/genética , Expresión Génica , Enfermedades de los Peces/microbiología
6.
Gen Comp Endocrinol ; 354: 114546, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719062

RESUMEN

The reproductive failure of Senegalese sole (Solea senegalensis) cultured males (reared entirely in captivity from egg through to adult) that do not participate in reproductive behaviours to fertilise spawns, results in a problem to achieve reproductive control in captivity. However, cohabitation with wild males has led to an increase in the involvement of cultured males in reproductive behaviour, although their contribution to fertilised spawning is still lower than that of wild breeders. This study aimed to examine the effect of different social conditions, on the reproductive behaviour and spawning success of cultured breeders over three reproductive seasons. Before starting this study, different social learning opportunities were provided to the breeders from the juvenile to the pubertal stages of the individuals. Behaviour and spawning were evaluated in four experimental groups of cultured breeders: two groups (W1 and W2) that prior to this study were reared during the juvenile stage with wild breeders that fertilized spawns, a Culture breeder group (CB) that was previously reared with cultured breeders that spawned unfertile eggs, and a negative control group (CN) that was reared in isolation from adult fish. During the three reproductive seasons, spawning was obtained from all groups. Generally, the first year had the highest egg production and the third year the lowest. However, fertilised eggs were only obtained from W1 in the first year. A total of eight fertilised spawns were collected with a fertilisation rate of 28.02 ± 13.80 % and a hatching rate of 15.04 ± 10.40 %. The mean number of larvae obtained per spawn was 7,683 ± 5,947 and the total number of larvae from all eight spawns was 61,468. The paternity analysis assigned 64.3 % of larvae to a single couple of breeders, while 34.3 % of larvae were not assigned to any single family, but inconclusively to more than three parents. The highest locomotor activity was observed in W1, while no significant differences were observed in the number of movements within W2, CB and CN. In all groups, during the peak of locomotor activity (19h00-20h00), the main reproductive behaviours observed were Rest the Head and Follow, while the Guardian behaviour was low and Coupled behaviour was only observed in W1. Over time, the reproductive behaviours decreased, except for Follow. The social learning opportunities provided by cohabitation with wild fish during juvenile stages prior to spawning in W1, increased activity and fertilised spawning. However, the number of successful spawns was low and over time stopped in association with a decrease in reproductive behaviour. This suggests that other mechanisms of behavioural learning could be involved in reproductive success, such as reproductive dominance, environmental conditions or hormonal interactions that could affect physiological processes in the reproduction of captive breeders.


Asunto(s)
Peces Planos , Reproducción , Animales , Masculino , Peces Planos/fisiología , Peces Planos/crecimiento & desarrollo , Reproducción/fisiología , Femenino , Conducta Reproductiva
7.
Viruses ; 16(5)2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38793587

RESUMEN

A massive mortality event concerning farmed Chinese tongue soles occurred in Tianjin, China, and the causative agent remains unknown. Here, a novel Cynoglossus semilaevis papillomavirus (CsPaV) and parvovirus (CsPV) were simultaneously isolated and identified from diseased fish via electron microscopy, virus isolation, genome sequencing, experimental challenges, and fluorescence in situ hybridization (FISH). Electron microscopy showed large numbers of virus particles present in the tissues of diseased fish. Viruses that were isolated and propagated in flounder gill cells (FG) induced typical cytopathic effects (CPE). The cumulative mortality of fish given intraperitoneal injections reached 100% at 7 dpi. The complete genomes of CsPaV and CsPV comprised 5939 bp and 3663 bp, respectively, and the genomes shared no nucleotide sequence similarities with other viruses. Phylogenetic analysis based on the L1 and NS1 protein sequences revealed that CsPaV and CsPV were novel members of the Papillomaviridae and Parvoviridae families. The FISH results showed positive signals in the spleen tissues of infected fish, and both viruses could co-infect single cells. This study represents the first report where novel papillomavirus and parvovirus are identified in farmed marine cultured fish, and it provides a basis for further studies on the prevention and treatment of emerging viral diseases.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Genoma Viral , Papillomaviridae , Infecciones por Parvoviridae , Parvovirus , Filogenia , Animales , Enfermedades de los Peces/virología , Enfermedades de los Peces/mortalidad , China , Peces Planos/virología , Infecciones por Parvoviridae/veterinaria , Infecciones por Parvoviridae/virología , Parvovirus/genética , Parvovirus/aislamiento & purificación , Parvovirus/clasificación , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Papillomaviridae/clasificación , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/veterinaria , Hibridación Fluorescente in Situ
8.
Front Immunol ; 15: 1352469, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711504

RESUMEN

Vibriosis, caused by Vibrio, seriously affects the health of fish, shellfish, and shrimps, causing large economic losses. Teleosts are represent the first bony vertebrates with both innate and adaptive immune responses against pathogens. Aquatic animals encounter hydraulic pressure and more pathogens, compared to terrestrial animals. The skin is the first line of defense in fish, constituting the skin-associated lymphoid tissue (SALT), which belongs to the main mucosa-associated lymphoid tissues (MALT). However, little is known about the function of immunity related proteins in fish. Therefore, this study used iTRAQ (isobaric tags for relative and absolute quantitation) to compare the skin proteome between the resistant and susceptible families of Cynoglossus semilaevis. The protein integrin beta-2, the alpha-enolase isoform X1, subunit B of V-type proton ATPase, eukaryotic translation initiation factor 6, and ubiquitin-like protein ISG15, were highly expressed in the resistant family. The 16S sequencing of the skin tissues of the resistant and susceptible families showed significant differences in the microbial communities of the two families. The protein-microbial interaction identified ten proteins associated with skin microbes, including immunoglobulin heavy chain gene (IGH), B-cell lymphoma/leukemia 10 (BCL10) and pre-B-cell leukemia transcription factor 1 isoform X2 (PBX2). This study highlights the interaction between skin proteins and the microbial compositions of C. semilaevis and provides new insights into understanding aquaculture breeding research.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Microbiota , Piel , Vibriosis , Vibrio , Animales , Piel/inmunología , Piel/microbiología , Piel/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Resistencia a la Enfermedad/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria , Peces Planos/inmunología , Peces Planos/microbiología , Microbiota/inmunología , Vibrio/inmunología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Proteoma , Proteómica/métodos
9.
J Fish Biol ; 105(1): 141-152, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653715

RESUMEN

Ocean acidification could modify the bioavailability and chemical properties of trace elements in seawater, which could affect their incorporation into the calcareous structures of marine organisms. Fish otoliths, biomineralized ear stones made by aragonite, are suspended within the endolymph fluid of teleosts, indicating that the elemental incorporation of otoliths might also be susceptible to ocean acidification. In this study, we evaluated the combined effects of CO2-induced ocean acidification (pH 8.10, 7.70, and 7.30, corresponding to ocean acidification scenarios under the representative concentration pathway 8.5 model as projected by the Intergovernmental Panel on Climate Change) and water elemental concentrations of strontium (Sr) and barium (Ba; low, medium, and high) on elemental incorporation into otoliths of the flounder Paralichthys olivaceus at early life stages. Our results revealed that the elemental incorporation of Sr and Ba into otoliths was principally dependent on the corresponding water elemental concentrations rather than on ocean acidification. Moreover, the partition coefficients (DMe) of Sr and Ba may stabilize after dynamic equilibrium is reached as the water elemental concentration increases, but are not affected by ocean acidification. Therefore, the incorporation of Sr and Ba into otoliths of the flounder at early life stages may not serve as an effective indicator of ocean acidification. In other words, the findings suggest that ocean acidification does not impact the incorporation of Sr and Ba incorporation into otoliths when tracing the temperature or salinity experiences of the flounder. Our findings will provide new knowledge for understanding the potential ecological effects of ocean acidification on the recruitment dynamics of fish species.


Asunto(s)
Bario , Lenguado , Membrana Otolítica , Agua de Mar , Estroncio , Animales , Estroncio/análisis , Membrana Otolítica/química , Membrana Otolítica/crecimiento & desarrollo , Bario/análisis , Agua de Mar/química , Lenguado/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Dióxido de Carbono , Peces Planos/crecimiento & desarrollo , Peces Planos/metabolismo , Cambio Climático , Acidificación de los Océanos
10.
Fish Shellfish Immunol ; 149: 109578, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670413

RESUMEN

MicroRNAs are increasingly recognized for their pivotal role in the immune system, yet the specific regulatory functions of fish-derived microRNAs remain largely unexplored. In this research, we discovered a novel miRNA, Cse-miR-144, in the Chinese tongue sole (Cynoglossus semilaevis), characterized by a 73-base pair precursor and a 21-nucleotide mature sequence. Our findings revealed that the expression of Cse-miR-144 was notably inhibited by various Vibrio species. Utilizing bioinformatics and dual-luciferase assay techniques, we established that the pro-inflammatory cytokine gene CsMAPK6 is a direct target of Cse-miR-144. Subsequent in vitro and in vivo western blotting analyses confirmed that Cse-miR-144 can effectively reduce the protein levels of CsMAPK6 post-transcriptionally. Moreover, CsMAPK6 is known to be involved in the activation of the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB). Additional investigations using qPCR and ELISA demonstrated that suppression of Cse-miR-144 leads to an upsurge in the liver mRNA levels of various immune genes (including MYD88, TRAF6, NF-κB, TRAF2, TRAF3, and TNF), alongside a marked increase in the production and secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and IL-8) in the bloodstream of C. semilaevis. These findings collectively underscore the potential of Cse-miR-144 as a key inhibitor of CsMAPK and its crucial role in modulating the immune and inflammatory responses in teleost fish. Compared to the siRNA, miRNA is a better tool in controlling the expression of target gene with a lower cost.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Regulación de la Expresión Génica , Inmunidad Innata , MicroARNs , Vibriosis , Vibrio , Animales , MicroARNs/genética , MicroARNs/inmunología , Peces Planos/inmunología , Peces Planos/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Vibrio/fisiología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria , Inflamación/inmunología , Inflamación/veterinaria , Inflamación/genética , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo
11.
J Fish Dis ; 47(7): e13945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523313

RESUMEN

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Nodaviridae , Infecciones por Virus ARN , Vacunas de Productos Inactivados , Vacunas Virales , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Peces Planos/inmunología , Peces Planos/virología , Nodaviridae/inmunología , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunación/veterinaria , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas/administración & dosificación
12.
J Fish Biol ; 104(6): 1800-1812, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38476052

RESUMEN

Senegalese sole, Solea senegalensis, is a flatfish of high commercial value in the world. It has been identified as an interesting and promising species for marine commercial aquaculture diversification in Europe for at least four decades and was introduced to China in 2003. Early ontogenesis from embryo to juvenile stages in S. senegalensis was analysed under controlled laboratory conditions to provide morphological information for aquaculture. From 0 to 59 days post hatching (dph), 10-20 larvae were sampled and measured each day (0-17 dph) or every 2-6 days (17-59 dph). Morphological characteristics from the egg to the juvenile stage were described. The eggs were separate and spherical with multiple oil globules. After 3 dph, the yolk sac was completely absorbed, mouth and anus were open, a swim bladder appeared, and larvae began feeding on rotifers (Brachionus plicatilis). The larvae began metamorphosis as the notochord flexed upward and the left eye migrated upward after 10 dph. The left eye migrated to the dorsal midline at 15 dph. At 19 dph, the left eye was translocated to the right-ocular side, and the juveniles adopted a benthic lifestyle. The swim bladder degenerated, and the juveniles completed metamorphosis at 23 dph. The growth patterns of some parameters (TL, SL, BH, BW) during larval and juvenile development stages were identified. The inflection points, which are slopes of growth changes, were calculated in growth curves. Three inflection points occurring in the growth curves of larvae and juveniles were found to be associated with metamorphosis, weaning, and transitions in feeding habits. The basic information of embryo development and ontogenesis in this study represents a valuable contribution to the S. senegalensis industry, especially in artificial breeding and rearing techniques.


Asunto(s)
Peces Planos , Larva , Animales , Peces Planos/embriología , Peces Planos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Embrión no Mamífero , Acuicultura , Metamorfosis Biológica , Desarrollo Embrionario
13.
J Fish Biol ; 104(6): 2090-2093, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488332

RESUMEN

Diverse and extensive macrofouling of the left-hand (eyed) side has been observed in multiple films and photographs of different specimens of Eckström's topknot Zeugopterus regius. Identified foulers include macroalgae and tunicates. Photographs of unfouled specimens and preserved juveniles have also been inspected. Macrofouling is not universal in this species; unfouled fish were observed around the strongly tidal British Isles, whereas the worst-fouled topknots were seen in the eutrophic, microtidal northern Adriatic.


Asunto(s)
Incrustaciones Biológicas , Animales , Peces Planos , Algas Marinas , Urocordados/anatomía & histología
14.
J Aquat Anim Health ; 36(2): 151-163, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467576

RESUMEN

OBJECTIVE: The waterless transport of live fish has changed the present situation of live-fish transport. However, the waterless transport environment may cause stress in fish. This research evaluated the effect of tea polyphenol-trehalose (TPT) coating solutions on Turbot Scophthalmus maximus during waterless transport. METHODS: After cold acclimation, Turbot were coated and subsequently transported in a waterless environment for 18 h. Physiological and biochemical parameters were measured, including lysozyme (LZM) and immunoglobulin M (IgM) activities, serum creatinine (Cr) and uric acid (UA) concentrations, and nutritional flavor. RESULT: The results showed that the nonspecific immunity of Turbot was inhibited during the waterless transport; the LZM activity first increased and then decreased, and the serum Cr and UA concentrations significantly increased. In addition, the waterless transport promoted the breakdown of Turbot flesh proteins, leading to changes in nucleotides and free amino acids (FAAs). After waterless transport, the LZM and IgM activities in the TPT-treated Turbot were higher than those in the control group (CK), and the changes in FAA content and nucleotides were smaller than those observed in the CK group. CONCLUSION: This study shows that the use of TPT coating solution can reduce the impact of waterless transportation stress on the immune and metabolic functions of Turbot and can maintain the meat quality and flavor of Turbot.


Asunto(s)
Peces Planos , Polifenoles , Estrés Fisiológico , Animales , Polifenoles/farmacología , Polifenoles/química , Estrés Fisiológico/efectos de los fármacos , Transportes , Acuicultura/métodos
15.
Fish Shellfish Immunol ; 148: 109492, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467321

RESUMEN

Annexin A2 (AnxA2), belonging to the annexin family, plays a crucial role in immune responses. In this study, the cDNA of the AnxA2 gene was identified in half-smooth tongue sole, Cynoglossus semilaevis. The transcript of AnxA2 gene in C. semilaevis (CsAnxA2) showed broad tissue distribution, with the highest expression level observed in the gut. CsAnxA2 expression was significantly up-regulated in the intestine, spleen, and kidney tissues following exposure to Shewanella algae. Immunohistochemical staining revealed that CsAnxA2 was predominantly expressed in epithelial cells and significantly elevated after S. algae challenge. Subcellular localization showed that CsAnxA2 was primarily localized in the cytoplasmic compartment. Moreover, proinflammatory cytokines (IL-6, IL-8 and IL-1ß) exhibited significant upregulation after CsAnxA2 was overexpressed in vivo. One hundred and fifty-eight CsAnxA2-interacting proteins were captured in the intestinal tissue, showing the top two normalized abundance observed for actin beta (ACTB) and protein S100-A10 (p11). Fifty-four high abundance CsAnxA2-interacting proteins (HIPs) were primary enriched in ten pathways, with the top three significantly enriched pathways being Salmonella infection, glycolysis/gluconeogenesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. These results provide valuable information for further investigation into the functional mechanism of AnxA2 in C. semilaevis.


Asunto(s)
Anexina A2 , Peces Planos , Lenguado , Animales , Anexina A2/genética , Anexina A2/metabolismo , Lenguado/metabolismo , Proteínas de Peces/química
16.
BMC Genomics ; 25(1): 297, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509481

RESUMEN

Black flounder (Paralichthys orbignyanus, Pleuronectiformes) is a commercially significant marine fish with promising aquaculture potential in Argentina. Despite extensive studies on Black flounder aquaculture, its limited genetic information available hampers the crucial role genetics plays in the development of this activity. In this study, we first employed Illumina sequencing technology to sequence the entire genome of Black flounder. Utilizing two independent libraries-one from a female and another from a male-with 150 bp paired-end reads, a mean insert length of 350 bp, and over 35 X-fold coverage, we achieved assemblies resulting in a genome size of ~ 538 Mbp. Analysis of the assemblies revealed that more than 98% of the core genes were present, with more than 78% of them having more than 50% coverage. This indicates a somehow complete and accurate genome at the coding sequence level. This genome contains 25,231 protein-coding genes, 445 tRNAs, 3 rRNAs, and more than 1,500 non-coding RNAs of other types. Black flounder, along with pufferfishes, seahorses, pipefishes, and anabantid fish, displays a smaller genome compared to most other teleost groups. In vertebrates, the number of transposable elements (TEs) is often correlated with genome size. However, it remains unclear whether the sizes of introns and exons also play a role in determining genome size. Hence, to elucidate the potential factors contributing to this reduced genome size, we conducted a comparative genomic analysis between Black flounder and other teleost orders to determine if the small genomic size could be explained by repetitive elements or gene features, including the whole genome genes and introns sizes. We show that the smaller genome size of flounders can be attributed to several factors, including changes in the number of repetitive elements, and decreased gene size, particularly due to lower amount of very large and small introns. Thus, these components appear to be involved in the genome reduction in Black flounder. Despite these insights, the full implications and potential benefits of genome reduction in Black flounder for reproduction and aquaculture remain incompletely understood, necessitating further research.


Asunto(s)
Peces Planos , Lenguado , Animales , Masculino , Femenino , Lenguado/genética , Peces Planos/genética , Tamaño del Genoma , Mapeo Cromosómico , Genómica
17.
Mar Biotechnol (NY) ; 26(2): 230-242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38502428

RESUMEN

Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1ß), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.


Asunto(s)
Peces Planos , Microalgas , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/microbiología , Administración Oral , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Microbioma Gastrointestinal/efectos de los fármacos , Acuicultura , Chlorophyta , Vibrio/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Hígado/metabolismo , Hígado/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
18.
Commun Biol ; 7(1): 253, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429383

RESUMEN

Flatfish undergo a remarkable metamorphosis from symmetrical pelagic larvae to fully asymmetrical benthic juveniles. The most distinctive features of this transformation is the migration of one eye. The molecular role of thyroid hormone in the metamorphosis process in flatfishes is well established. However, the regulatory network that facilitates eye movement remains enigmatic. This paper presents a morphological investigation of the metamorphic process in turbot eyes, using advanced imaging techniques and a global view of gene expression. The study covers migrant and non-migrant eyes and aims to identify the genes that are active during ocular migration. Our transcriptomic analysis shows a significant up-regulation of immune-related genes. The analysis of eye-specific genes reveals distinct patterns during the metamorphic process. Myosin is highlighted in the non-migrant eye, while ependymin is highlighted in the migrant eye, possibly involved in optic nerve regeneration. Furthermore, a potential association between the alx3 gene and cranial restructuring has been identified. Additionally, it confirmed simultaneous adaptation to low light in both eyes, as described by changes in opsins expression during the metamorphic process. The study also revealed that ocular migration activates systems asynchronously in both eyes, providing insight into multifaceted reorganization processes during metamorphosis of flatfish.


Asunto(s)
Peces Planos , Animales , Peces Planos/genética , Metamorfosis Biológica/genética , Ojo , Hormonas Tiroideas/genética , Perfilación de la Expresión Génica
19.
Artículo en Inglés | MEDLINE | ID: mdl-38387739

RESUMEN

Fish physiological health is often negatively impacted by high-temperature environments and there are few studies on how dietary lipids affect fish growth and physiology when exposed to heat stress. The main objective of this research was to examine the impact of dietary lipid levels on growth and physiological status of juvenile turbot (Scophthalmus maximus L.) and determine if dietary lipid concentration could alleviate the possible adverse effects of heat stress. Five diets containing 6.81%, 9.35%, 12.03%, 14.74%, and 17.08% lipid, respectively, were formulated and fed to turbot (initial weight 5.13 ± 0.02 g) under high-temperature conditions (24.0-25.0 °C). Meanwhile, the diet with 12.03% lipid (considered by prior work to be an optimal dietary lipid level) was fed to turbot of the same size at normal temperature. Results suggested that, among the different dietary lipid levels under high-temperature conditions, fish fed the optimal lipid (12.03%) exhibited better growth compared to non-optimal lipid groups, as evidenced by higher weight gain and specific growth rate. Simultaneously, the optimal lipid diet may better maintain lipid homeostasis, as attested by lower liver and serum lipid, along with higher liver mRNA levels of lipolysis-related genes (pgc1α, lipin1, pparα, lpl and hl) and lower levels of synthesis-related genes (lxr, fas, scd1, pparγ, dgat1 and dgat2). Also, the optimal lipid diet might mitigate oxidative damage by improving antioxidant enzyme activity, decreasing malondialdehyde levels, and up-regulating oxidation-related genes (sod1, sod2, cat, gpx and ho-1). Furthermore, the optimal lipid may enhance fish immunity, as suggested by the decrease in serum glutamic-oxalacetic/pyruvic transaminase activities, down-regulation of pro-inflammatory genes and up-regulation of anti-inflammation genes. Correspondingly, the optimal lipid level suppressed MAPK signaling pathway via decreased phosphorylation levels of p38, JNK and ERK proteins in liver. In summary, the optimal dietary lipid level facilitated better growth and physiological status in turbot under thermal stress.


Asunto(s)
Antioxidantes , Peces Planos , Animales , Antioxidantes/metabolismo , Metabolismo de los Lípidos , Peces Planos/fisiología , Temperatura , Dieta , Grasas de la Dieta , Inmunidad , Suplementos Dietéticos/análisis , Alimentación Animal/análisis
20.
Artículo en Inglés | MEDLINE | ID: mdl-38387740

RESUMEN

The maturation of the intestinal digestive and absorptive functions might limit the amount of absorbed nutrients to fulfil the high requirements of the fast-growing marine fish larva. Glutamine (Gln) has been described to improve intestinal epithelium functions, due to its involvement in energy metabolism and protein synthesis. The purpose of this study was to evaluate dietary 0.2% Gln supplementation on aspects of intestinal physiology, protein metabolism and growth-related genes expression in Senegalese sole larvae. Experiment was carried out between 12 and 33 days post hatching (DPH) and fish were divided into two experimental groups, one fed Artemia spp. (CTRL) and the other fed Artemia spp. supplemented with Gln (GLN). GLN diet had two times more Gln than the CTRL diet. Samples were collected at 15, 19, 26 and 33 DPH for biometry, histology, and digestive enzymes activity, and at 33 DPH for gene expression, protein metabolism and AA content determination. Growth was significantly higher for Senegalese sole fed GLN diet, supported by differences on protein metabolism and growth-related gene expression. Slight differences were observed between treatments regarding the intestinal physiology. Overall, GLN diet seems to be directed to enhance protein metabolism leading to higher larval growth.


Asunto(s)
Peces Planos , Glutamina , Animales , Glutamina/farmacología , Glutamina/metabolismo , Suplementos Dietéticos , Intestinos , Dieta/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...