Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(1): 206-220, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33330942

RESUMEN

Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.


Asunto(s)
Chaperonas Moleculares/fisiología , Complejos Multiproteicos/fisiología , Extensión de la Cadena Peptídica de Translación/fisiología , Pliegue de Proteína , Proteostasis/fisiología , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Alelos , Mutación con Pérdida de Función , Chaperonas Moleculares/genética , Mutación Missense , Peptidil Transferasas/fisiología , Mutación Puntual , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/fisiología , Ribosomas/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Mol Microbiol ; 90(5): 939-55, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118410

RESUMEN

Bacterial cell shapes are manifestations of programs carried out by multi-protein machines that synthesize and remodel the resilient peptidoglycan (PG) mesh and other polymers surrounding cells. GpsB protein is conserved in low-GC Gram-positive bacteria and is not essential in rod-shaped Bacillus subtilis, where it plays a role in shuttling penicillin-binding proteins (PBPs) between septal and side-wall sites of PG synthesis. In contrast, we report here that GpsB is essential in ellipsoid-shaped, ovococcal Streptococcus pneumoniae (pneumococcus), and depletion of GpsB leads to formation of elongated, enlarged cells containing unsegregated nucleoids and multiple, unconstricted rings of fluorescent-vancomycin staining, and eventual lysis. These phenotypes are similar to those caused by selective inhibition of Pbp2x by methicillin that prevents septal PG synthesis. Dual-protein 2D and 3D-SIM (structured illumination) immunofluorescence microscopy (IFM) showed that GpsB and FtsZ have overlapping, but not identical, patterns of localization during cell division and that multiple, unconstricted rings of division proteins FtsZ, Pbp2x, Pbp1a and MreC are in elongated cells depleted of GpsB. These patterns suggest that GpsB, like Pbp2x, mediates septal ring closure. This first dual-protein 3D-SIM IFM analysis also revealed separate positioning of Pbp2x and Pbp1a in constricting septa, consistent with two separable PG synthesis machines.


Asunto(s)
Proteínas Bacterianas/fisiología , Peptidoglicano/metabolismo , Streptococcus pneumoniae/citología , Streptococcus pneumoniae/metabolismo , Factores de Virulencia/fisiología , Proteínas Bacterianas/metabolismo , División Celular , Proteínas del Citoesqueleto/metabolismo , Eliminación de Gen , Imagenología Tridimensional , Meticilina/farmacología , Microscopía Fluorescente , Proteínas de Unión a las Penicilinas/fisiología , Peptidil Transferasas/fisiología , Fenotipo , Transporte de Proteínas , Streptococcus pneumoniae/genética , Factores de Virulencia/metabolismo
3.
EMBO J ; 32(6): 805-15, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23417015

RESUMEN

In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Helicasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Telómero/metabolismo , ADN Helicasas/metabolismo , Regulación hacia Abajo , Organismos Modificados Genéticamente , Peptidil Transferasas/metabolismo , Peptidil Transferasas/fisiología , Unión Proteica , Multimerización de Proteína/fisiología , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Proteínas de Unión al GTP rap1/metabolismo
4.
Cold Spring Harb Perspect Biol ; 3(11): a003780, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21068149

RESUMEN

The crystal structures of ribosomes that have been obtained since 2000 have transformed our understanding of protein synthesis. In addition to proving that RNA is responsible for catalyzing peptide bond formation, these structures have provided important insights into the mechanistic details of how the ribosome functions. This review emphasizes what has been learned about the mechanism of peptide bond formation, the antibiotics that inhibit ribosome function, and the fidelity of decoding.


Asunto(s)
Biosíntesis de Proteínas/genética , ARN/fisiología , Ribosomas/fisiología , Antibacterianos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Peptidil Transferasas/antagonistas & inhibidores , Peptidil Transferasas/fisiología , ARN/química , ARN Ribosómico/química , ARN Ribosómico/fisiología , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/química
5.
Proc Natl Acad Sci U S A ; 103(36): 13327-32, 2006 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16938893

RESUMEN

Using quantum mechanics and exploiting known crystallographic coordinates of tRNA substrate located in the ribosome peptidyl transferase center around the 2-fold axis, we have investigated the mechanism for peptide-bond formation. The calculation is based on a choice of 50 atoms assumed to be important in the mechanism. We used density functional theory to optimize the geometry and energy of the transition state (TS) for peptide-bond formation. The TS is formed simultaneously with the rotatory motion enabling the translocation of the A-site tRNA 3' end into the P site, and we estimated the magnitude of rotation angle between the A-site starting position and the place at which the TS occurs. The calculated TS activation energy, E(a), is 35.5 kcal (1 kcal = 4.18 kJ)/mol, and the increase in hydrogen bonding between the rotating A-site tRNA and ribosome nucleotides as the TS forms appears to stabilize it to a value qualitatively estimated to be approximately 18 kcal/mol. The optimized geometry corresponds to a structure in which the peptide bond is being formed as other bonds are being broken, in such a manner as to release the P-site tRNA so that it may exit as a free molecule and be replaced by the translocating A-site tRNA. At TS formation the 2' OH group of the P-site tRNA A76 forms a hydrogen bond with the oxygen atom of the carboxyl group of the amino acid attached to the A-site tRNA, which may be indicative of its catalytic role, consistent with recent biochemical experiments.


Asunto(s)
Péptidos/química , Péptidos/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Químicos , Modelos Moleculares , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Peptidil Transferasas/fisiología , Unión Proteica , Conformación Proteica , Teoría Cuántica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Rotación
6.
Crit Rev Biochem Mol Biol ; 40(5): 285-311, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16257828

RESUMEN

The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring ribozymes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.


Asunto(s)
Evolución Molecular , Peptidil Transferasas/química , Peptidil Transferasas/fisiología , Proteínas Ribosómicas/fisiología , Ribosomas/enzimología , Antibacterianos/farmacología , Catálisis , Modelos Moleculares , Peptidil Transferasas/antagonistas & inhibidores , ARN Catalítico/fisiología , Proteínas Ribosómicas/química
7.
FEBS Lett ; 579(4): 948-54, 2005 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-15680980

RESUMEN

Ribosomes are ribozymes exerting substrate positioning and promoting substrate-mediated catalysis. Peptide-bonds are formed within a symmetrical region, thus suggesting that ribosomes evolved by gene-fusion. Remote interactions dominate substrate positioning at stereochemistry suitable for peptide-bond formation and elaborate architectural-design guides the processivity of the reaction by rotatory motion. Nascent proteins are directed into the exit tunnel at extended conformation, complying with the tunnel's narrow entrance. Tunnel dynamics facilitate its interactive participation in elongation, discrimination, cellular signaling and nascent-protein trafficking into the chaperon-aided folding site. Conformational alterations, induced by ribosomal-recycling factor, facilitate subunit dissociation. Remarkably, although antibiotics discrimination is determined by the identity of a single nucleotide, involved also in resistance, additional nucleotides dictate antibiotics effectiveness.


Asunto(s)
Peptidil Transferasas/química , Biosíntesis de Proteínas , Pliegue de Proteína , Ribosomas/química , Evolución Molecular , Estructura Molecular , Extensión de la Cadena Peptídica de Translación , Peptidil Transferasas/fisiología , Conformación Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/fisiología
8.
FEBS Lett ; 579(4): 955-8, 2005 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-15680981

RESUMEN

The atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with substrates and antibiotics have provided insights into the way the 3000 nucleotide 23S rRNA folds into a compact, specific structure and interacts with 27 ribosomal proteins as well as the structural basis of the peptidyl transferase reaction and its inhibition by antibiotics. The structure shows that the ribosome is indeed a ribozyme.


Asunto(s)
Antibacterianos/química , Farmacorresistencia Microbiana , Biosíntesis de Proteínas , Ribosomas/química , Ribosomas/efectos de los fármacos , Antibacterianos/farmacología , Haloarcula marismortui/fisiología , Estructura Molecular , Conformación de Ácido Nucleico , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Extensión de la Cadena Peptídica de Translación/fisiología , Peptidil Transferasas/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico 23S/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/fisiología
9.
Cell Mol Life Sci ; 61(17): 2200-23, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15338052

RESUMEN

beta-lactams have a long history in the treatment of infectious diseases, though their use has been and continues to be confounded by the development of resistance in target organisms. beta-lactamases, particularly in Gram-negative pathogens, are a major determinant of this resistance, although alterations in the beta-lactam targets, the penicillin-binding proteins (PBPs), are also important, especially in Gram-positive pathogens. Mechanisms for the efflux and/or exclusion of these agents also contribute, though often in conjunction these other two. Approaches for overcoming these resistance mechanisms include the development of novel beta-lactamase-stable beta-lactams, beta-lactamase inhibitors to be employed with existing beta-lactams, beta-lactam compounds that bind strongly to low-affinity PBPs and agents that potentiate the activity of existing beta-lactams against low-affinity PBP-producing organisms.


Asunto(s)
Resistencia betalactámica , Antibacterianos/metabolismo , Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Resistencia a Múltiples Medicamentos , Hexosiltransferasas/fisiología , Muramoilpentapéptido Carboxipeptidasa/fisiología , Proteínas de Unión a las Penicilinas , Peptidil Transferasas/fisiología , Permeabilidad , Plásmidos , beta-Lactamasas/metabolismo
10.
Antimicrob Agents Chemother ; 48(8): 3028-32, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15273117

RESUMEN

We tested the impact of individual PBP 5 mutations on expression of ampicillin resistance in Enterococcus faecium using a shuttle plasmid designed to facilitate expression of cloned pbp5 in ampicillin-susceptible E. faecium D344SRF. Substitutions that had been implicated in contributing to the resistance of clinical strains conferred only modest levels of resistance when they were present as single point mutations. The levels of resistance were amplified when some mutations were present in combination. In particular, a methionine-to-alanine change at position 485 (in close proximity to the active site) combined with the insertion of a serine at position 466 (located in a loop that forms the outer edge of the active site) was associated with the highest levels of resistance to all beta-lactams. Affinity for penicillin generally correlated with beta-lactam MICs for the mutants, but these associations were not strictly proportional.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/genética , Hexosiltransferasas/genética , Hexosiltransferasas/fisiología , Muramoilpentapéptido Carboxipeptidasa/genética , Muramoilpentapéptido Carboxipeptidasa/fisiología , Mutación/genética , Mutación/fisiología , Peptidil Transferasas/genética , Peptidil Transferasas/fisiología , Resistencia betalactámica/genética , Resistencia a la Ampicilina/genética , Cristalografía por Rayos X , Vectores Genéticos/genética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Proteínas de Unión a las Penicilinas , Penicilinas/metabolismo , Plásmidos/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA