RESUMEN
The value of birds' ability to move the upper beak relative to the braincase has been shown in vital tasks like feeding and singing. In woodpeckers, such cranial kinesis has been thought to hinder pecking as delivering forceful blows calls for a head functioning as a rigid unit. Here, we tested whether cranial kinesis is constrained in woodpeckers by comparing upper beak rotation during their daily activities such as food handling, calling and gaping with those from closely related species that also have a largely insectivorous diet but do not peck at wood. Both woodpeckers and non-woodpecker insectivores displayed upper beak rotations of up to 8 degrees. However, the direction of upper beak rotation differed significantly between the two groups, with woodpeckers displaying primarily depressions and non-woodpeckers displaying elevations. The divergent upper beak rotation of woodpeckers may be caused either by anatomical modifications to the craniofacial hinge that reduce elevation, by the caudal orientation of the mandible depressor muscle forcing beak depressions, or by both. Our results suggest that pecking does not result in plain rigidification at the upper beak's basis of woodpeckers, but it nevertheless significantly influences the way cranial kinesis is manifested.
Asunto(s)
Pico , Cinesis , Animales , Pico/fisiología , Depresión , Aves/fisiología , CráneoRESUMEN
The aim of this study was to evaluate the daily variations in the thermoregulatory behavior of 4- to 6-week-old naked neck broilers (Label Rouge) in an equatorial semi-arid environment. A total of 220 birds were monitored for 5 days starting at 0600 hours and ending at 1800 hours. The period of observation was divided into classes of hours (C H). The observed behaviors were as follows: feed and water intake, wing-spreading, sitting or lying, and beak-opening. A total of 14,300 behavioral data values were registered. In C H 2 (0900 hours to 1100 hours) and 3 (1200 hours to 1500 hours), the greatest average body surface temperature was recorded (34.67 ± 0.25 °C and 35.12 ± 0.22 °C, respectively). The C H had an effect on the exhibition of all behaviors with the exception of the water intake behavior. Feed intake was more frequent in C H 1 (0600 hours to 0800 hours) and 4 (1600 hours to 1800 hours). In C H 2 and 3, the highest frequency of sitting or lying behavior was observed. Beak-opening and wing-spreading behaviors occurred more frequently in C H 3 where the body surface temperature (35.12 ± 0.22 °C), radiant heat load (519.38 ± 2.22 W m(-2)), and enthalpy (82.74 ± 0.36 kJ kg(-1) of dry air) reached maximum recorded averages. Thus, it can be concluded that naked neck broilers adjust their behavior in response to daily variations in the thermal environment. Wing-spreading and beak-opening behaviors are important adaptive responses to the thermal challenges posed by the equatorial semi-arid environment.
Asunto(s)
Conducta Animal , Regulación de la Temperatura Corporal , Pollos/fisiología , Animales , Pico/fisiología , Brasil , Clima , Ingestión de Alimentos , Femenino , Masculino , Alas de Animales/fisiologíaRESUMEN
Populations with multiple morphological or behavioural types provide unique opportunities for studying the causes and consequences of evolutionary diversification. A population of the medium ground finch (Geospiza fortis) at El Garrapatero on Santa Cruz Island, Galápagos, features two beak size morphs. These morphs produce acoustically distinctive songs, are subject to disruptive selection and mate assortatively by morph. The main goal of the present study was to assess whether finches from this population are able to use song as a cue for morph discrimination. A secondary goal of this study was to evaluate whether birds from this population discriminate songs of their own locality versus another St Cruz locality, Borrero Bay, approximately 24 km to the NW. I presented territorial males with playback of songs of their own morph, of the other morph, and of males from Borrero Bay. Males responded more strongly to same-morph than to other-morph playbacks, showing significantly shorter latencies to flight, higher flight rates and closer approaches to the playback speaker. By contrast, I found only minor effects of locality on responsiveness. Evidence for morph discrimination via acoustic cues supports the hypothesis that song can serve as a behavioural mechanism for assortative mating and sympatric evolutionary divergence.
Asunto(s)
Pico/fisiología , Evolución Biológica , Pinzones/fisiología , Conducta Sexual Animal/fisiología , Vocalización Animal/fisiología , Animales , Pico/anatomía & histología , Ecuador , Femenino , Pinzones/anatomía & histología , Masculino , Grabación en CintaRESUMEN
1. Investigating the foraging patterns of free-ranging species is essential to estimate energy/time budgets for assessing their real reproductive strategy. Leatherback turtles Dermochelys coriacea (Vandelli 1761), commonly considered as capital breeders, have been reported recently to prospect actively during the breeding season in French Guiana, Atlantic Ocean. In this study we investigate the possibility of this active behaviour being associated with foraging, by studying concurrently diving and beak movement patterns in gravid females equipped with IMASEN (Inter-MAndibular Angle SENsor). 2. Four turtles provided data for periods varying from 7.3 to 56.1 h while exhibiting continuous short and shallow benthic dives. Beak movement ('b-m') events occurred in 34% of the dives, on average 1.8 +/- 1.4 times per dive. These b-m events lasted between 1.5 and 20 s and occurred as isolated or grouped (two to five consecutive beak movements) events in 96.0 +/- 4.0% of the recorded cases, and to a lesser extent in series (> five consecutive beak movements). 3. Most b-m events occurred during wiggles at the bottom of U- and W-shaped dives and at the beginning and end of the bottom phase of the dives. W-shaped dives were associated most frequently with beak movements (65% of such dives) and in particular with grouped beak movements. 4. Previous studies proposed wiggles to be indicator of predatory activity, U- and W-shaped dives being putative foraging dives. Beak movements recorded in leatherbacks during the first hours of their internesting interval in French Guiana may be related to feeding attempts. 5. In French Guiana, leatherbacks show different mouth-opening patterns for different dive patterns, suggesting that they forage opportunistically on occasional prey, with up to 17% of the dives appearing to be successful feeding dives. 6. This study highlights the contrasted strategies adopted by gravid leatherbacks nesting on the Pacific coasts of Costa Rica, in the deep-water Caribbean Sea and in the French Guianan shallow continental shelf, and may be related to different local prey accessibility among sites. Our results may help to explain recently reported site-specific individual body size and population dynamics.
Asunto(s)
Pico/fisiología , Buceo/fisiología , Conducta Alimentaria/fisiología , Oviposición/fisiología , Tortugas/fisiología , Animales , Océano Atlántico , Costa Rica , Femenino , Guyana Francesa , Comportamiento de Nidificación/fisiología , Dinámica Poblacional , Embarazo , NataciónRESUMEN
Studies of Darwin's finches of the Galapagos Islands have provided pivotal insights into the interplay of ecological variation, natural selection, and morphological evolution. Here we document, across nine Darwin's finch species, correlations between morphological variation and bite force capacity. We find that bite force correlates strongly with beak depth and width but only weakly or not at all with beak length, a result that is consistent with prior demonstrations of natural selection on finch beak morphology. We also find that bite force is predicted even more strongly by head width, which exceeds all beak dimensions in predictive strength. To explain this result we suggest that head width determines the maximum size, and thus maximum force generation capacity of finch jaw adductor muscles. We suggest that head width is functionally relevant and may be a previously unrecognized locus of natural selection in these birds, because of its close relationship to bite force capacity.
Asunto(s)
Pico/fisiología , Pinzones/fisiología , Cabeza/anatomía & histología , Animales , Pico/anatomía & histología , Fenómenos Biomecánicos , Pesos y Medidas Corporales , Ecuador , Pinzones/anatomía & histología , Filogenia , Análisis de Regresión , Selección Genética , Especificidad de la EspecieRESUMEN
Recent studies of vocal mechanics in songbirds have identified a functional role for the beak in sound production. The vocal tract (trachea and beak) filters harmonic overtones from sounds produced by the syrinx, and birds can fine-tune vocal tract resonance properties through changes in beak gape. In this study, we examine patterns of beak gape during song production in seven species of Darwin's finches of the Galápagos Islands. Our principal goals were to characterize the relationship between beak gape and vocal frequency during song production and to explore the possible influence therein of diversity in beak morphology and body size. Birds were audio and video recorded (at 30 frames s(-1)) as they sang in the field, and 164 song sequences were analyzed. We found that song frequency regressed significantly and positively on beak gape for 38 of 56 individuals and for all seven species examined. This finding provides broad support for a resonance model of vocal tract function in Darwin's finches. Comparison among species revealed significant variation in regression y-intercept values. Body size correlated negatively with y-intercept values, although not at a statistically significant level. We failed to detect variation in regression slopes among finch species, although the regression slopes of Darwin's finch and two North American sparrow species were found to differ. Analysis within one species (Geospiza fortis) revealed significant inter-individual variation in regression parameters; these parameters did not correlate with song frequency features or plumage scores. Our results suggest that patterns of beak use during song production were conserved during the Darwin's finch adaptive radiation, despite the evolution of substantial variation in beak morphology and body size.