Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.481
Filtrar
1.
Methods Mol Biol ; 2827: 109-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985266

RESUMEN

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Técnicas de Cultivo de Tejidos/métodos , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Plantas/metabolismo , Plantas/efectos de los fármacos , Lactonas/farmacología , Lactonas/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Acetatos/farmacología , Acetatos/metabolismo
2.
Physiol Plant ; 176(4): e14419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973451

RESUMEN

Abiotic stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. Increasing studies reported that strigolactones (SL) are plant hormones that enhance plant stress resistance by regulating plant physiological processes and gene expressions. In this review, we introduce the response and regulatory role of SL in salt, drought, light, heat, cold and cadmium stresses in plants. This review also discusses how SL alleviate the damage of abiotic stress in plants, furthermore, introducing the mechanisms of SL enhancing plant stress resistance at the genetic level. Under abiotic stress, the exogenous SL analog GR24 can induce the biosynthesis of SL in plants, and endogenous SL can alleviate the damage caused by abiotic stress. SL enhanced the stress resistance of plants by protecting photosynthesis, enhancing the antioxidant capacity of plants and promoting the symbiosis between plants and arbuscular mycorrhiza (AM). SL interact with abscisic acid (ABA), salicylic acid (SA), auxin, cytokinin (CK), jasmonic acid (JA), hydrogen peroxide (H2O2) and other signal molecules to jointly regulate plant stress resistance. Lastly, both the importance of SL and their challenges for future work are outlined in order to further elucidate the specific mechanisms underlying the roles of SL in plant responses to abiotic stress.


Asunto(s)
Lactonas , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
3.
Plant Physiol Biochem ; 213: 108808, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865805

RESUMEN

The development of the mining industry and the overuse of inorganic fertilizers have led to an excess of manganese (Mn) in the soil, thereby, contaminating the soil environment and people's health. On heavy metal-contaminated soils, the combined arbuscular mycorrhizal fungi (AMF)-phytoremediation technique becomes a hotspot because of its environmentally friendly, in situ remediation. AMF inoculation often leads to a decrease in host Mn acquisition, which provides a basis for its application in phytoremediation of contaminated soils. Moreover, the utilization value of native AMF is greater than that of exotic AMF, because native AMF can adapt better to Mn-contaminated soils. In addition to the fact that AMF enhance plant Mn tolerance responses such as regionalization, organic matter chelation, limiting uptake and efflux, and so on, AMF also develop plant-independent fungal pathways such as direct biosorption of Mn by mycorrhizal hyphae, fungal Mn transporter genes, and sequestration of Mn by mycorrhizal hyphae, glomalin, and arbuscule-containing root cortical cells, which together mitigate excessive Mn toxicity to plants. Clarifying AMF-plant interactions under Mn stress will provide support for utilizing AMF as a phytoremediation in Mn-contaminated soils. The review reveals in detail how AMF develop its own mechanisms for responding to excess Mn and how AMF enhance plant Mn tolerance, accompanied by perspectives for future research.


Asunto(s)
Biodegradación Ambiental , Manganeso , Micorrizas , Plantas , Micorrizas/metabolismo , Micorrizas/fisiología , Manganeso/metabolismo , Manganeso/toxicidad , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/microbiología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos
4.
Plant Physiol Biochem ; 213: 108811, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870680

RESUMEN

Arsenic (As) is a metalloid pollutant that is extensively distributed in the biosphere. As is among the most prevalent and toxic elements in the environment; it induces adverse effects even at low concentrations. Due to its toxic nature and bioavailability, the presence of As in soil and water has prompted numerous agricultural, environmental, and health concerns. As accumulation is detrimental to plant growth, development, and productivity. Toxicity of As to plants is a function of As speciation, plant species, and soil properties. As inhibits root proliferation and reduces leaf number. It is associated with defoliation, reduced biomass, nutrient uptake, and photosynthesis, chlorophyll degradation, generation of reactive oxygen species, membrane damage, electrolyte leakage, lipid peroxidation and genotoxicity. Plants respond to As stress by upregulating genes involved in detoxification. Different species have adopted avoidance and tolerance responses for As detoxification. Plants also activate phytohormonal signaling to mitigate the stressful impacts of As. This review addresses As speciation, uptake, and accumulation by plants. It describes plant morpho-physiological, biochemical, and molecular changes and how phytohormones respond to As stress. The review closes with a discussion of omic approaches for alleviating As toxicity in plants.


Asunto(s)
Arsénico , Plantas , Estrés Fisiológico , Arsénico/toxicidad , Arsénico/metabolismo , Estrés Fisiológico/efectos de los fármacos , Plantas/metabolismo , Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
5.
Plant Physiol Biochem ; 213: 108795, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878390

RESUMEN

Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.


Asunto(s)
Microplásticos , Plantas , Microplásticos/toxicidad , Plantas/metabolismo , Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Nanopartículas/toxicidad , Restauración y Remediación Ambiental/métodos , Plásticos/metabolismo , Plásticos/toxicidad , Contaminación Ambiental
6.
Plant Physiol Biochem ; 213: 108847, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889532

RESUMEN

Nanotechnology is advancing rapidly in this century and the industrial use of nanoparticles for new applications in the modernization of different industries such as agriculture, electronic, food, energy, environment, healthcare and medicine is growing exponentially. Despite applications of several nanoparticles in different industries, they show harmful effects on biological systems, especially in plants. Various mechanisms for the toxic effects of nanoparticles have already been proposed; however, elevated levels of reactive oxygen species (ROS) molecules including radicals [(e.g., superoxide (O2•‒), peroxyl (HOO•), and hydroxyl (HO•) and non-radicals [(e.g., hydrogen peroxide (H2O2) and singlet oxygen (1O2) is more important. Excessive production/and accumulation of ROS in cells and subsequent induction of oxidative stress disrupts the normal functioning of physiological processes and cellular redox reactions. Some of the consequences of ROS overproduction include peroxidation of lipids, changes in protein structure, DNA strand breaks, mitochondrial damage, and cell death. Key enzymatic antioxidants with ROS scavenging ability comprised of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and glutathione reductase (GR), and non-enzymatic antioxidant systems including alpha-tocopherol, flavonoids, phenolic compounds, carotenoids, ascorbate, and glutathione play vital role in detoxification and maintaining plant health by balancing redox reactions and reducing the level of ROS. This review provides compelling evidence that phytotoxicity of nanoparticles, is mainly caused by overproduction of ROS after exposure. In addition, the present review also summarizes the intrinsic detoxification mechanisms in plants in response to nanoparticles accumulation within plant cells.


Asunto(s)
Nanopartículas del Metal , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Células Vegetales/metabolismo , Células Vegetales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Plantas/metabolismo , Plantas/efectos de los fármacos , Óxidos/toxicidad , Antioxidantes/metabolismo
7.
Cells ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891039

RESUMEN

Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.


Asunto(s)
Biodegradación Ambiental , Cadmio , Plantas , Cadmio/toxicidad , Cadmio/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Inactivación Metabólica , Transporte Biológico , Humanos
8.
Plant Sci ; 346: 112148, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38838991

RESUMEN

Global climate change and high population growth rates lead to problems of food security and environmental pollution, which require new effective methods to increase yields and stress tolerance of important crops. Nowadays the question of using artificial chemicals is very relevant in theoretical and practical terms. It is important that such substances in low concentrations protect plants under stress conditions, but at the same time inflict minimal damage on the environment and human health. Nanotechnology, which allows the production of a wide range of nanomaterials (NM), provides novel techniques in this direction. NM include structures less than 100 nm. The review presents data on the methods of NM production, their properties, pathways for arrival in plants and their use in human life. It is shown that NM, due to their unique physical and chemical properties, can cross biological barriers and accumulate in cells of live organisms. The influence of NM on plant organism can be both positive and negative, depending on the NM chemical nature, their size and dose, the object of study, and the environmental conditions. This review provides a comparative analysis of the effect of artificial metal nanoparticles (NPm), the commonly employed NMs in plant physiology, on two important aspects of plant life: photosynthetic apparatus activity and antioxidant system function. According to studies, NM affect not only the functional activity of photosynthetic apparatus, but also structural organization of chloroplats. In addition, the literature analysis reflects the dual action of NM on oxidative processes, and antioxidant status of plants. These facts considerably complicate the ideas about possible mechanisms and further use of NPm in biology. In this regard, data on the effects of NM on plants under abiotic stressors are of great interest. Separate section is devoted to the use of NM as adaptogens that increase plant stress tolerance to unfavorable temperatures. Possible mechanisms of NM effects on plants are discussed, as well as the strategies for their further use in basic science and sustainable agriculture.


Asunto(s)
Nanoestructuras , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico , Fotosíntesis , Nanopartículas del Metal , Plantas/efectos de los fármacos , Plantas/metabolismo , Temperatura , Antioxidantes/metabolismo
9.
Plant Physiol Biochem ; 213: 108848, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908350

RESUMEN

Arsenic (As) is an acute toxic metalloid that affects plant growth and development. As is found in the environment in organic and inorganic forms, but arsenite As(III) and arsenate As(V) are the most prevalent forms that negatively impact the plants. Roots exposed to As can easily absorb it mainly through transporters that carry vital mineral nutrients. As reach the food chain via crops irrigated with As-polluted water and exerts a negative impact. Even at low levels, As exposure disrupts the regular functioning of plants by generating a high level of reactive oxygen species (ROS) results into oxidative damage, and disruption of redox system. Plants have built-in defence mechanisms to combat this oxidative damage. The development of a food crop with lower As levels is dependent upon understanding the molecular process of As detoxification in plants, which will help reduce the consumption of As-contaminated food. Numerous genes in plants that may provide tolerance under hazardous conditions have been examined using genetic engineering techniques. The suppression of genes by RNA interference (RNAi) and CRISPR-Cas 9 (CRISPR associated protein 9) technology revealed an intriguing approach for developing a crop that has minimal As levels in consumable portions. This study aims to present current information on the biochemical and molecular networks associated with As uptake, as well as recent advances in the field of As mitigation using exogenous salicylic acid (SA), Serendipita indica and biotechnological tools in terms of generating As-tolerant plants with low As accumulation.


Asunto(s)
Arsénico , Arsénico/metabolismo , Arsénico/toxicidad , Transporte Biológico , Productos Agrícolas/metabolismo , Productos Agrícolas/efectos de los fármacos , Inactivación Metabólica , Plantas/metabolismo , Plantas/efectos de los fármacos
10.
Plant Signal Behav ; 19(1): 2365576, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38899525

RESUMEN

Soil toxicity is a major environmental issue that leads to numerous harmful effects on plants and human beings. Every year a huge amount of Pb is dumped into the environment either from natural sources or anthropogenically. Being a heavy metal it is highly toxic and non-biodegradable but remains in the environment for a long time. It is considered a neurotoxic and exerts harmful effects on living beings. In the present review article, investigators have emphasized the side effects of Pb on the plants. Further, the authors have focused on the various sources of Pb in the environment. Investigators have emphasized the various responses including molecular, biochemical, and morphological of plants to the toxic levels of Pb. Further emphasis was given to the effect of elevated levels of Pb on the microbial population in the rhizospheres. Further, emphasized the various remediation strategies for the Pb removal from the soil and water sources.


Asunto(s)
Plomo , Plantas , Plomo/toxicidad , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/microbiología , Contaminantes del Suelo/toxicidad
11.
Plant Physiol Biochem ; 212: 108753, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781637

RESUMEN

Biocompounds are metabolites synthesized by plants, with clinically proven capacity in preventing and treating degenerative diseases in humans. Carbon-based nanomaterials (CNMs) are atomic structures that assume different hybridization and shape. Due to the reactive property, CNMs can induce the synthesis of metabolites, such as biocompounds in cells and various plant species, by generating reactive oxygen species (ROS). In response, plants positively or negatively regulate the expression of various families of genes and enzymes involved in physiological and metabolomic pathways of plants, such as carbon and nitrogen metabolism, which are directly involved in plant development and growth. Likewise, ROS can modulate the expression of enzymes and genes related to the adaptation of plants to stress, such as the glutathione ascorbate cycle, the shikimic acid, and phenylpropanoid pathways, from which the largest amount of biocompounds in plants are derived. This document exposes the ability of three CNMs (fullerene, graphene, and carbon nanotubes) to positively or negatively regulate the activity of enzymes and genes involved in various plant species' primary and secondary metabolism. The mechanism of action of CNMs on the production of biocompounds and the effect of the translocation of CNMs on the growth and content of primary metabolites in plants are described. Adverse effects of CNMs on plants, prospects, and possible risks involved are also discussed. The use of CNMs as inducers of biocompounds in plants could have implications and relevance for human health, crop quality, and plant adaptation and resistance to biotic and abiotic stress.


Asunto(s)
Nanoestructuras , Plantas , Nanoestructuras/química , Plantas/metabolismo , Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Carbono/metabolismo , Nanotubos de Carbono , Fulerenos/farmacología , Fulerenos/metabolismo , Grafito
12.
Plant Physiol Biochem ; 212: 108730, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763004

RESUMEN

Over the past decade, a plethora of research has illuminated the multifaceted roles of hydrogen sulfide (H2S) in plant physiology. This gaseous molecule, endowed with signaling properties, plays a pivotal role in mitigating metal-induced oxidative stress and strengthening the plant's ability to withstand harsh environmental conditions. It fulfils several functions in regulating plant development while ameliorating the adverse impacts of environmental stressors. The intricate connections among nitric oxide (NO), hydrogen peroxide (H2O2), and hydrogen sulfide in plant signaling, along with their involvement in direct chemical processes, are contributory in facilitating post-translational modifications (PTMs) of proteins that target cysteine residues. Therefore, the present review offers a comprehensive overview of sulfur metabolic pathways regulated by hydrogen sulfide, alongside the advancements in understanding its biological activities in plant growth and development. Specifically, it centres on the physiological roles of H2S in responding to environmental stressors to explore the crucial significance of different exogenously administered hydrogen sulfide donors in mitigating the toxicity associated with heavy metals (HMs). These donors are of utmost importance in facilitating the plant development, stabilization of physiological and biochemical processes, and augmentation of anti-oxidative metabolic pathways. Furthermore, the review delves into the interaction between different growth regulators and endogenous hydrogen sulfide and their contributions to mitigating metal-induced phytotoxicity.


Asunto(s)
Sulfuro de Hidrógeno , Desarrollo de la Planta , Transducción de Señal , Sulfuro de Hidrógeno/metabolismo , Transducción de Señal/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Estrés Fisiológico , Plantas/metabolismo , Plantas/efectos de los fármacos
13.
J Hazard Mater ; 474: 134768, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38820749

RESUMEN

Cadmium (Cd) and microplastics (MPs) gradually increased to be prevalent contaminants in soil, it is important to understand their combined effects on different soil-plant systems. We studied how different doses of polylactic acid (PLA) and polyethylene (PE) affected Cd accumulation, pakchoi growth, soil chemical and microbial properties, and metabolomics in two soil types. We found that high-dose MPs decreased Cd accumulation in plants in red soil, while all MPs decreased Cd bioaccumulation in fluvo-aquic soil. This difference was primarily attributed to the increase in dissolved organic carbon (DOC) and pH in red soil by high-dose MPs, which inhibited Cd uptake by plant roots. In contrast, MPs reduced soil nitrate nitrogen and available phosphorus, and weakened Cd mobilization in fluvo-aquic soil. In addition, high-dose PLA proved detrimental to plant health, manifesting in shortened shoot and root lengths. Co-exposure of Cd and MPs induced the shifts in bacterial populations and metabolites, with specific taxa and metabolites closely linked to Cd accumulation. Overall, co-exposure of Cd and MPs regulated plant growth and Cd accumulation by driving changes in soil bacterial community and metabolic pathways caused by soil chemical properties. Our findings could provide insights into the Cd migration in different soil-plant systems under MPs exposure. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) and cadmium (Cd) are common pollutants in farmland soil. Co-exposure of MPs and Cd can alter Cd accumulation in plants, and pose a potential threat to human health through the food chain. Here, we investigated the effects of different types and doses of MPs on Cd accumulation, plant growth, soil microorganisms, and metabolic pathways in different soil-plant systems. Our results can contribute to our understanding of the migration and transport of Cd by MPs in different soil-plant systems and provide a reference for the control of combined pollution in the future research.


Asunto(s)
Cadmio , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Cadmio/metabolismo , Cadmio/toxicidad , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Microplásticos/metabolismo , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Poliésteres/metabolismo , Poliésteres/química , Polietileno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Suelo/química , Plantas/metabolismo , Plantas/efectos de los fármacos
14.
PeerJ ; 12: e17286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708356

RESUMEN

Drought and salinity are the major abiotic stress factors negatively affecting the morphophysiological, biochemical, and anatomical characteristics of numerous plant species worldwide. The detrimental effects of these environmental factors can be seen in leaf and stem anatomical structures including the decrease in thickness of cell walls, palisade and spongy tissue, phloem and xylem tissue. Also, the disintegration of grana staking, and an increase in the size of mitochondria were observed under salinity and drought conditions. Drought and salt stresses can significantly decrease plant height, number of leaves and branches, leaf area, fresh and dry weight, or plant relative water content (RWC%) and concentration of photosynthetic pigments. On the other hand, stress-induced lipid peroxidation and malondialdehyde (MDA) production, electrolyte leakage (EL%), and production of reactive oxygen species (ROS) can increase under salinity and drought conditions. Antioxidant defense systems such as catalase, peroxidase, glutathione reductase, ascorbic acid, and gamma-aminobutyric acid are essential components under drought and salt stresses to protect the plant organelles from oxidative damage caused by ROS. The application of safe and eco-friendly treatments is a very important strategy to overcome the adverse effects of drought and salinity on the growth characteristics and yield of plants. It is shown that treatments with plant growth-promoting bacteria (PGPB) can improve morphoanatomical characteristics under salinity and drought stress. It is also shown that yeast extract, mannitol, proline, melatonin, silicon, chitosan, α-Tocopherols (vitamin E), and biochar alleviate the negative effects of drought and salinity stresses through the ROS scavenging resulting in the improvement of plant attributes and yield of the stressed plants. This review discusses the role of safety and eco-friendly treatments in alleviating the harmful effects of salinity and drought associated with the improvement of the anatomical, morphophysiological, and biochemical features in plants.


Asunto(s)
Estrés Fisiológico , Estrés Fisiológico/efectos de los fármacos , Sequías , Desarrollo de la Planta/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Salinidad , Plantas/metabolismo , Plantas/efectos de los fármacos
15.
Ecotoxicol Environ Saf ; 279: 116490, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795417

RESUMEN

With increasing plastic manufacture and consumption, microplastics/nanoplastics (MP/NP) pollution has become one of the world's pressing global environmental issues, which poses significant threats to ecosystems and human health. In recent years, sharp increasing researches have confirmed that MP/NP had direct or indirect effects on vegetative growth and sexual process of vascular plant. But the potential mechanisms remain ambiguous. MP/NP particles can be adsorbed and/or absorbed by plant roots or leaves and thus cause diverse effects on plant. This holistic review aims to discuss the direct effects of MP/NP on vascular plant, with special emphasis on the changes of metabolic and molecular levels. MP/NP can alter substance and energy metabolism, as well as shifts in gene expression patterns. Key aspects affected by MP/NP stress include carbon and nitrogen metabolism, amino acids biosynthesis and plant hormone signal transduction, expression of stress related genes, carbon and nitrogen metabolism related genes, as well as those involved in pathogen defense. Additionally, the review provides updated insights into the growth and physiological responses of plants exposed to MP/NP, encompassing phenomena such as seed/spore germination, photosynthesis, oxidative stress, cytotoxicity, and genotoxicity. By examining the direct impact of MP/NP from both physiological and molecular perspectives, this review sets the stage for future investigations into the complex interactions between plants and plastic pollutants.


Asunto(s)
Microplásticos , Transcriptoma , Microplásticos/toxicidad , Transcriptoma/efectos de los fármacos , Plantas/efectos de los fármacos , Metabolómica , Nanopartículas/toxicidad
16.
Chemosphere ; 360: 142414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789054

RESUMEN

Bismuth (Bi) is a minor metal whose abundance on Earth is estimated at 0.025 ppm. Known since ancient times for its medical properties, its use in many industrial applications has increased significantly in recent years due to its physical and chemical properties. Considered less toxic than other metals, Bi has been defined as a "green metal" and has been suggested as a replacement for lead in many industrial processes. Although the occurrence of Bi in the environment is predicted to increase, there is still a lack of information on its interaction with biota. Even though it is absorbed by many organisms, Bi has not been directly implicated in the regulation of fundamental metabolic processes. This review summarises the fragmentary knowledge on the interaction between Bi and plants. Toxic effects at the growth, physiological and biochemical levels have been described in Bi-treated plants, with varying degrees and consequences for plant vitality, mostly depending on the chemical formulation of Bi, the concentration of Bi, the growth medium, the time of exposure, and the experimental conditions (laboratory or outdoor conditions). Bismuth has been shown to be readily absorbed and translocated in plants, interfering with plant growth and development, photosynthetic processes, nutrient uptake and accumulation, and metal (especially iron) homeostasis. Like other metals, Bi can induce an oxidative stress state in plant cells, and genotoxic effects have been reported in Bi-treated plants. Tolerance responses to the excess presence of Bi have been poorly described and are mostly referred to as the activation of antioxidant defences involving enzymatic and non-enzymatic molecules. The goal of this review is to offer an overview of the present knowledge on the interaction of Bi and plants, highlighting the gaps to be filled to better understand the role of Bi in affecting key physiological processes in plants. This will help to assess the potential harm of this metal in the environment, where its occurrence is predicted to increase due to the growing demand for medicinal and industrial applications.


Asunto(s)
Bismuto , Plantas , Bismuto/toxicidad , Plantas/efectos de los fármacos , Plantas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transporte Biológico , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Fotosíntesis/efectos de los fármacos
17.
J Environ Manage ; 359: 120761, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703641

RESUMEN

Plants are arguably the most visible components of stormwater bioretention basins and play key roles in stabilizing soils and removing water through transpiration. In regions with cold winters, bioretention basins along roadways can receive considerable quantities of deicing salt, much of which migrates out of the systems prior to the onset of plant growth but the rest remains in the soil. The resulting effects on plants presumably vary with time (due to annual weather patterns), space (because stormwater exposure is location-dependent), and biology (because plant taxa differ in their salt tolerance). The goal of this study was to investigate the magnitude of deicing salt's effects on bioretention plants and how it varies with spatial, temporal, and biological factors. The study took place in a set of five bioretention basins in Philadelphia, USA that receive runoff from a major highway. Over a five-year period, the electrical conductivity (EC) of influent stormwater frequently exceeded 1 mS cm-1 in winter, and occasionally surpassed that of seawater (∼50 mS cm-1). In both of the years when soil EC was measured as well, it remained elevated through all spring months, especially near basin inlets and centers. Mortality of nine plant taxa ranged widely after three years (0-90%), with rankings largely corresponding to salt tolerances. Moreover, leaf areas and/or crown volumes were strongly reduced in proportion to stormwater exposure in seven of these taxa. In the three taxa evaluated for tissue concentrations of 14 potentially toxic elements (Hemerocallis 'Happy Returns', Iris 'Caesar's Brother', and Cornus sericea 'Cardinal'), only sodium consistently exceeded the toxicity limit for salt intolerant plants (500 mg kg-1). However, exceedance of the sodium toxicity limit was associated with plants' topographic positions, with median concentrations greatest in the bottom of basins and least on basin rims. This study demonstrates that deicing salts can have detrimental effects on plants in bioretention basins, with the strongest effects likely to occur in years with the greatest snowfall (and therefore deicing salt use), in portions of basins with greatest stormwater exposure (typically around inlets and centers), and in plants with minimal salinity tolerance. Our results therefore underscore the value of installing salt-tolerant taxa in basins likely to experience any frequency of deicing salt exposure.


Asunto(s)
Suelo , Suelo/química , Plantas/efectos de los fármacos
18.
J Environ Manage ; 361: 121289, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820797

RESUMEN

In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.


Asunto(s)
Cobre , Nanoestructuras , Plantas , Contaminantes del Suelo , Suelo , Nanoestructuras/toxicidad , Cobre/toxicidad , Cobre/química , Plantas/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/toxicidad , Ecosistema , Microbiología del Suelo , Agricultura
19.
Environ Sci Pollut Res Int ; 31(21): 30273-30287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613761

RESUMEN

Reducing the accumulation of cadmium (Cd) and mitigating its toxicity are pivotal strategies for addressing Cd pollution's threats to agriculture and human health. Hydrogen sulfide (H2S) serves as a signaling molecule, playing a crucial role in plant stress defense mechanisms. Nevertheless, a comprehensive assessment of the impact of exogenous H2S on plant growth, antioxidant properties, and gene expression under Cd stress remains lacking. In this meta-analysis, we synthesized 575 observations from 27 articles, revealing that exogenous H2S significantly alleviates Cd-induced growth inhibition in plants. Specifically, it enhances root length (by 8.71%), plant height (by 15.67%), fresh weight (by 15.15%), dry weight (by 22.54%), and chlorophyll content (by 27.99%) under Cd stress conditions. H2S boosts antioxidant enzyme activity, particularly catalase (CAT), by 39.51%, thereby reducing Cd-induced reactive oxygen species (ROS) accumulation. Moreover, it impedes Cd translocation from roots to shoots, resulting in a substantial 40.19% reduction in stem Cd content. Additionally, H2S influences gene expression in pathways associated with antioxidant enzymes, metal transport, heavy metal tolerance, H2S biosynthesis, and energy metabolism. However, the efficacy of exogenous H2S in alleviating Cd toxicity varies depending on factors such as plant species, concentration of the H2S donor sodium hydrosulfide (NaHS), application method, and cultivation techniques. Notably, NaHS concentrations exceeding 200 µM may adversely affect plants. Overall, our study underscores the role of exogenous H2S in mitigating Cd toxicity and elucidates its mechanism, providing insights for utilizing H2S to combat Cd pollution in agriculture.


Asunto(s)
Cadmio , Sulfuro de Hidrógeno , Plantas , Cadmio/toxicidad , Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad
20.
Plant Cell Environ ; 47(8): 2793-2810, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38650576

RESUMEN

Due to their stationary nature, plants are exposed to a diverse range of biotic and abiotic stresses, of which heavy metal (HM) stress poses one of the most detrimental abiotic stresses, targeting diverse plant processes. HMs instigate the overproduction of reactive oxygen species (ROS), and to mitigate the adverse effects of ROS, plants induce multiple defence mechanisms. Besides the negative implications of overproduction of ROS, these molecules play a multitude of signalling roles in plants, acting as a central player in the complex signalling network of cells. One of the ROS-associated signalling mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signalling pathway which transduces extracellular stimuli into intracellular responses. Plant MAPKs have been implicated in signalling involved in stress response, phytohormone regulation, and cell cycle cues. However, the influence of various HMs on MAPK activation has not been well documented. In this review, we address and summarise several aspects related to various HM-induced ROS signalling. Additionally, we touch on how these signals activate the MAPK cascade and the downstream transcription factors that influence plant responses to HMs. Moreover, we propose a workflow that could characterise genes associated with MAPKs and their roles during plant HM stress responses.


Asunto(s)
Metales Pesados , Proteínas Quinasas Activadas por Mitógenos , Plantas , Especies Reactivas de Oxígeno , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción , Metales Pesados/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/genética , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...