Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.362
Filtrar
1.
ACS Appl Bio Mater ; 7(7): 4690-4701, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38952293

RESUMEN

Dopamine, alongside norepinephrine and epinephrine, belongs to the catecholamine group, widely distributed across both plant and animal kingdoms. In mammals, these compounds serve as neurotransmitters with roles in glycogen mobilization. In plants, their synthesis is modulated in response to stress conditions aiding plant survival by emitting these chemicals, especially dopamine that relieves their resilience against stress caused by both abiotic and biotic factors. In present studies, there is a lack of robust methods to monitor the operations of dopamine under stress conditions or any adverse situations across the plant's developmental stages from cell to cell. In our study, we have introduced a groundbreaking approach to track dopamine generation and activity in various metabolic pathways by using the simple nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs). These CQDs exhibit dominant biocompatibility, negligible toxicity, and environmentally friendly characteristics using a quenching process for fluorometric dopamine detection. This innovative nanomarker can detect even small amounts of dopamine within plant cells, providing insights into plant responses to strain and anxiety. Confocal microscopy has been used to corroborate this occurrence and to provide visual proof of the process of binding dopamine with these N, S-CQDs inside the cells.


Asunto(s)
Dopamina , Puntos Cuánticos , Dopamina/metabolismo , Puntos Cuánticos/química , Tamaño de la Partícula , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Plantas/metabolismo , Plantas/química , Carbono/química
2.
PeerJ ; 12: e17735, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035155

RESUMEN

Insect-plant interactions are shaped by the exchange of chemical cues called semiochemicals, which play a vital role in communication between organisms. Plants release a variety of volatile organic compounds in response to environmental cues, such as herbivore attacks. These compounds play a crucial role in mediating the interactions between plants and insects. This review provides an in-depth analysis of plant semiochemicals, encompassing their classification, current understanding of extraction, identification, and characterization using various analytical techniques, including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. The article also delves into the manner in which insects perceive and respond to plant semiochemicals, as well as the impact of environmental factors on plant odor emission and insect orientation. Furthermore, it explores the underlying mechanisms by which insects perceive and interpret these chemical cues, and how this impacts their behavioral responses, including feeding habits, oviposition patterns, and mating behaviors. Additionally, the potential applications of plant semiochemicals in integrated pest management strategies are explored. This review provides insight into the intricate relationships between plants and insects mediated by semiochemicals, highlighting the significance of continued research in this field to better understand and leverage these interactions for effective pest control.


Asunto(s)
Insectos , Feromonas , Plantas , Compuestos Orgánicos Volátiles , Animales , Insectos/fisiología , Plantas/química , Plantas/metabolismo , Feromonas/metabolismo , Feromonas/química , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología
3.
Annu Rev Plant Biol ; 75(1): 153-183, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038250

RESUMEN

Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.


Asunto(s)
Fitocromo , Fitocromo/química , Fitocromo/metabolismo , Fitocromo/fisiología , Plantas/metabolismo , Plantas/química , Luz
4.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999006

RESUMEN

Arsenic (As) speciation analysis is scientifically relevant due to the pivotal role the As chemical form plays in toxicity, which, in turn, directly influences the effect it has on the environment. The objective of this study was to develop and optimize a method tailored for studying As compounds in plant samples. Different extraction procedures and HPLC methods were explored to assess their efficiency, determine mass balance, and improve the resolution of compounds in the chromatograms. Conventionally applied anion-exchange chromatography facilitated the separation of well-documented As compounds in the extracts corresponding to 19 to 82% of As present in extracts. To gain insight into compounds which remain undetectable by anion chromatography (18 to 81% of As in the extracts), but still possibly metabolically relevant, we explored an alternative chromatographic approach. The procedure of sample purification and preconcentration through solid-phase extraction, facilitating the detection of those minor As compounds, was developed. The system was further refined to achieve an online 2D-RP-HPLC system, which was employed to analyze the extracts more comprehensively with ICP and ESI MS. Using this newly developed method, As(III)-phytochelatins, along with other arseno-thio-compounds, were detected and identified in extracts derived from the tree roots of seedlings grown in the presence of As(III) and As(V), and a group of arseno lipids was detected in the roots of plants exposed to As(V).


Asunto(s)
Arsénico , Espectrometría de Masa por Ionización de Electrospray , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Arsénico/análisis , Arsénico/aislamiento & purificación , Extracción en Fase Sólida/métodos , Arsenicales/análisis , Arsenicales/química , Arsenicales/aislamiento & purificación , Extractos Vegetales/química , Raíces de Plantas/química , Plantas/química , Fitoquelatinas/química , Fitoquelatinas/metabolismo
5.
Molecules ; 29(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999125

RESUMEN

Interest in measuring major and trace elements in plants has increased in recent years because of growing concerns about the elements' contribution to daily intakes or the health risks posed by ingesting vegetables contaminated by potentially toxic elements. The recent advances in using inductively coupled plasma atomic emission spectrometry (ICP-OES) to measure major and trace elements in plant samples are reviewed in the present work. The sample preparation before instrumental determination and the main advantages and limitations of ICP-OES are described. New trends in element extraction in liquid solutions using fewer toxic solvents and microextractions are observed in recently published literature. Even though ICP-OES is a well-established and routine technique, recent innovations to increase its performance have been found. Validated methods are needed to ensure the obtaining of reliable results. Much research has focused on assessing principal figures of merit, such as limits of detection, quantification, selectivity, working ranges, precision in terms of repeatability and reproducibility, and accuracy through spiked samples or certified reference materials analysis. According to the published literature, the ICP-OES technique, 50 years after the release of the first commercially available equipment, remains a powerful and highly recommended tool for element determination on a wide range of concentrations.


Asunto(s)
Plantas , Espectrofotometría Atómica , Oligoelementos , Oligoelementos/análisis , Espectrofotometría Atómica/métodos , Plantas/química , Reproducibilidad de los Resultados
6.
Anal Chem ; 96(29): 11809-11822, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38975729

RESUMEN

Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.


Asunto(s)
Campos Electromagnéticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Congelación , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Plantas/metabolismo , Plantas/química , Flores/metabolismo , Flores/química
7.
Compr Rev Food Sci Food Saf ; 23(4): e13361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031723

RESUMEN

The development of future food is devoted not only to obtaining a sustainable food supply but also to providing high-quality foods for humans. Plant-derived non-starch polysaccharides (PNPs) are widely available, biocompatible, and nontoxic and have been largely applied to the food industry owing to their mechanical properties and biological activities. PNPs are considered excellent biomaterials and food ingredients contributing to future food development. However, a comprehensive review of the potential applications of PNPs in future food has not been reported. This review summarized the physicochemical and biological activities of PNPs and then discussed the structure-activity relationships of PNPs. Latest studies of PNPs on future foods including cell-cultured meat, food for special medical purposes (FSMPs), and three-dimensional-printed foods were reviewed. The challenges and prospects of PNPs applied to future food were critically proposed. PNPs with strong thermal stability are considered good thickeners, emulsifiers, and gelatinizers that greatly improve the processing adaptability of foods. The mechanical properties of PNPs and decellularized plant-based PNPs make them desirable scaffolds for cultured meat manufacturing. In addition, the biological activities of PNPs exhibit multiple health-promoting effects; therefore, PNPs can act as food ingredients producing FSMP to promote human health. Three-dimensional printing technology enhances food structures and biological activities of functional foods, which is in favor of expanding the application scopes of PNPs in future food. PNPs are promising in future food manufacturing, and more efforts need to be made to realize their commercial applications.


Asunto(s)
Polisacáridos , Polisacáridos/química , Humanos , Plantas/química
8.
Trop Anim Health Prod ; 56(6): 197, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965123

RESUMEN

The soil-plant-animal continuum represents an evolving realm in biological research that's why this study was undertaken in the middle Gangetic plain region of India. Trace and ultra-trace elements were analyzed in 100 soil samples, 147 feed and fodder samples, as well as 69 blood and 127 hair samples with the help of inductively coupled plasma optical emission spectroscopy (ICP-OES). The levels of trace and ultra-trace elements in the soil were significantly higher than those in the feed, and similarly, the concentrations in the feed were notably higher than those in the blood of dairy cattle. Blood and hair samples from the cattle showed deficiencies in copper (Cu) and manganese (Mn), with reaching approximately 20% and 50%, respectively. Correlation analysis indicated significant (P < 0.05) associations between the trace and ultra-trace elements in plants and the corresponding elements found in cattle's hair, specifically for iron (Fe) and molybdenum (Mo). Conversely, a significant (P < 0.05) negative correlation was observed between soil composition and cattle's blood, while a positive correlation was evident only in the case of silver content between plant and cattle's hair. Regression analyses revealed positive linear relationships between minerals in soils and plants, as well as between plants and cattle. However, the correlation coefficients were statistically insignificant. The regression equations established to predict mineral concentrations in cattle based on soil and plant mineral contents indicated a positive relationship for both trace and ultra-trace elements, suggesting the potential to measure the mineral status in dairy cattle through this approach.


Asunto(s)
Alimentación Animal , Cabello , Suelo , Oligoelementos , Animales , India , Oligoelementos/análisis , Oligoelementos/sangre , Suelo/química , Bovinos , Cabello/química , Alimentación Animal/análisis , Plantas/química
9.
PLoS One ; 19(7): e0306531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954696

RESUMEN

This paper presents research on the assessment of the radioecological state of plant cover surrounding two research reactor facilities located within the Semipalatinsk Test Site (STS) as examples of nuclear fuel cycle facilities (NFC). Source data on the concentrations of artificial radionuclides in the plant cover were obtained. Quantitative values for 137Cs, 241Am, and 239+240Pu activity concentrations were determined in plants across the perimeters of the facilities, indicating that these compounds may be present in the associated media from the perspective of accumulative bioindication. The values determined for artificial radionuclides in the 'soil‒plant' system around the researched NFC facilities were attributed to radioactive contamination of the STS territory.


Asunto(s)
Monitoreo de Radiación , Radioisótopos , Monitoreo de Radiación/métodos , Radioisótopos/análisis , Plantas/química , Plantas/metabolismo , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos de Cesio/análisis , Reactores Nucleares , Plantas de Energía Nuclear
11.
Molecules ; 29(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38893491

RESUMEN

This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.


Asunto(s)
Disolventes Eutécticos Profundos , Taninos , Taninos/química , Taninos/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/farmacología , Plantas/química , Plantas/metabolismo , Solventes/química
12.
J Food Sci ; 89(7): 3917-3934, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38829741

RESUMEN

Extrusion-based three-dimensional (3D) printing has been extensively studied in the food manufacturing industry. This technology places particular emphasis on the rheological properties of the printing ink. Gel system is the most suitable ink system and benefits from the composition of plant raw materials and gel properties of multiple components; green, healthy aspects of the advantages of the development of plant-based gel system has achieved a great deal of attention. However, the relevant treatment technologies are still only at the laboratory stage. With a view toward encouraging further optimization of ink printing performance and advances in this field, in this review, we present a comprehensive overview of the application of diverse plant-based gel systems in 3D food printing and emphasize the utilization of different treatment methods to enhance the printability of these gel systems. The treatment technologies described in this review are categorized into three distinct groups, physical, chemical, and physicochemical synergistic treatments. We comprehensively assess the specific application of these technologies in various plant-based gel 3D printing systems and present valuable insights regarding the challenges and opportunities for further advances in this field.


Asunto(s)
Geles , Impresión Tridimensional , Reología , Geles/química , Tinta , Plantas/química , Manipulación de Alimentos/métodos
13.
J Synchrotron Radiat ; 31(Pt 4): 936-947, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917018

RESUMEN

X-ray and neutron scattering have long been used for structural characterization of cellulose in plants. Due to averaging over the illuminated sample volume, these measurements traditionally overlooked the compositional and morphological heterogeneity within the sample. Here, a scanning tomographic imaging method is described, using contrast derived from the X-ray scattering intensity, for virtually sectioning the sample to reveal its internal structure at a resolution of a few micrometres. This method provides a means for retrieving the local scattering signal that corresponds to any voxel within the virtual section, enabling characterization of the local structure using traditional data-analysis methods. This is accomplished through tomographic reconstruction of the spatial distribution of a handful of mathematical components identified by non-negative matrix factorization from the large dataset of X-ray scattering intensity. Joint analysis of multiple datasets, to find similarity between voxels by clustering of the decomposed data, could help elucidate systematic differences between samples, such as those expected from genetic modifications, chemical treatments or fungal decay. The spatial distribution of the microfibril angle can also be analyzed, based on the tomographically reconstructed scattering intensity as a function of the azimuthal angle.


Asunto(s)
Celulosa , Celulosa/química , Dispersión de Radiación , Difracción de Rayos X/métodos , Plantas/química
14.
PLoS One ; 19(6): e0305053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38924033

RESUMEN

This study aims to assess the level of metal contamination and the ecological risk index at the abandoned Zaida Pb/Zn mining site in eastern Morocco and identify native plant species found on the site that can be used in site rehabilitation through phytoremediation strategies. Samples from seven native and abundant plant species at the site, along with their rhizospheric soils, were collected and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the concentrations of various metal(loid)s, including As, Cu, Ni, Cd, Sb, Zn, and Pb. Indicators of soil pollution and ecological risks were also assessed, including the enrichment factor (EF), pollution index (PI), and ecological risk index (ERI). The Biological Accumulation Coefficient (BAC), Translocation Factor (TF), and Biological Concentration Factor (BCF) of plant samples were calculated. The results reveal polymetallic soil contamination, with notably higher concentrations of Pb, Cu and Zn, reaching respectively 5568 mg kg-1 DW, 152 mg kg-1 DW, and 148 mg kg-1 DW, indicating a significant potential ecological risk. The enrichment factor (EF) was also assessed for each metal(loid)s, and the results indicated that the metal contamination was of anthropogenic origin and linked to intensive mining activities in Zaida. These findings are supported by the pollution index (PI) ranging from 1.6 to 10.01, which reveals an extremely high metal(loid)s pollution level. None of the plant species exhibited a hyperaccumulation of metal(loid)s. However, Artemisia herba alba demonstrated a strong capacity to accumulate Pb in its aboveground parts, with a concentration of 468 mg kg-1 DW. Stipa tenacissima, Retama spherocarpa, and Astragalus armatus, showed a significant Pb accumulation in their roots reaching 280, 260, and 256 mg kg-1 DW.respectively. Based on BAC, TF, and BCF, Stipa tenacissima exhibited potential for Ni and Cd phytostabilization, as well as the ability for Zn phytoextraction. Additionally, Artemisia herba alba displayed the capability to phytoextract Cd and had a high propensity to translocate all the studied metal(loid)s. Astragalus armatus has the potential to be used in the phytostabilization of Zn and Ni, as well as for the phytoextraction of As and Sb. These native species from the Zaida site, although not hyperaccumulators, have the potential to contribute significantly to the phytoextraction or phytostabilization of potentially toxic elements (PTEs). Moreover, they can serve as vegetative cover to mitigate the erosion and dispersion of metal(loid)s.


Asunto(s)
Biodegradación Ambiental , Plomo , Minería , Plantas , Contaminantes del Suelo , Zinc , Marruecos , Zinc/análisis , Zinc/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Plomo/metabolismo , Plomo/análisis , Plantas/metabolismo , Plantas/química , Monitoreo del Ambiente/métodos , Monitoreo Biológico/métodos , Suelo/química
15.
Methods Mol Biol ; 2820: 41-47, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941013

RESUMEN

The proteomic approach plays a key role to characterize a biological system at any given time. In recent years, advances in proteomics have led to an increasing application in all biological fields, including plant matrices and associated microbiome studies. However, extracting adequate protein samples remains the most critical step for any plant proteomics study. The protein extraction protocols proposed for the phyllosphere involve an initial leaf washing step; however, this is an approach only applicable if interest is restricted to epiphytes. A metaproteomic approach is required to obtain an overall picture and consequently an extraction that considers proteins derived from the plant, epiphytic and endophytic microorganisms. The most commonly used extractions for plant tissue involve the use of phenol or TCA-acetone. However, for efficient protein recovery is essential to remove interfering components abundant in plant tissues, such as polysaccharides, lipids, and phenolic compounds. A well-proven protocol on the basis of a combination of TCA-acetone and phenol extraction is presented here, obtaining some cleaned protein pellets, suitable for electrophoresis and subsequent proteomics studies. Important points for the success of this protocol are (i) a proper sampling and sample preparation, (ii) maintaining samples at a low temperature during extraction and using protease inhibitors, (iii) an initial step in TCA-acetone to remove part of the interfering substances, and (iv) careful recovery of the phenolic phase. Furthermore, the protocol is timesaving and can be completed in one working day.


Asunto(s)
Hojas de la Planta , Proteínas de Plantas , Proteómica , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteómica/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Acetona/química , Fenol/química , Plantas/metabolismo , Plantas/química , Ácido Tricloroacético/química
16.
Chem Soc Rev ; 53(13): 6992-7090, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38841828

RESUMEN

Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.


Asunto(s)
Agricultura , Colorantes Fluorescentes , Plantas , Colorantes Fluorescentes/química , Plantas/química , Plantas/metabolismo , Imagen Óptica
17.
Pol J Microbiol ; 73(2): 207-215, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905281

RESUMEN

Chikungunya virus (CHIKV) causes a debilitating fever and joint pain, with no specific antiviral treatment available. Halogenated secondary metabolites from plants are a promising new class of drug candidates against chikungunya, with unique properties that make them effective against the virus. Plants produce these compounds to defend themselves against pests and pathogens, and they are effective against a wide range of viruses, including chikungunya. This study investigated the interactions of halogenated secondary metabolites with nsP2pro, a therapeutic target for CHIKV. A library of sixty-six halogenated plant metabolites screened previously for ADME properties was used. Metabolites without violation of Lipinski's rule were docked with nsP2pro using AutoDock Vina. To find the stability of the pipoxide chlorohydrin-nsP2pro complex, the GROMACS suite was used for MD simulation. The binding free energy of the ligand-protein complex was computed using MMPBSA. Molecular docking studies revealed that halogenated metabolites interact with nsP2pro, suggesting they are possible inhibitors. Pipoxide chlorohydrin showed the greatest affinity to the target. This was further confirmed by the MD simulations, surface accessible area, and MMPBSA studies. Pipoxide chlorohydrin, a halogenated metabolite, was the most potent against nsP2pro in the survey.


Asunto(s)
Antivirales , Virus Chikungunya , Simulación del Acoplamiento Molecular , Virus Chikungunya/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Fiebre Chikungunya/virología , Fiebre Chikungunya/tratamiento farmacológico , Metabolismo Secundario , Simulación de Dinámica Molecular , Halogenación , Plantas/química , Simulación por Computador , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química
18.
Int J Biol Macromol ; 271(Pt 1): 132720, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38845257

RESUMEN

Chitosan has been considered an eco-friendly biopolymer. Chitosan is a natural polycationic linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine linked by ß-1,4-glycosidic bonds. Chitosan has been used as an eco-friendly biopolymer for so many agricultural applications. Unfortunately, the relatively poor solubility and poor antimicrobial properties limit its widespread applications in agriculture sciences. Hence, chitosan derivatives are produced via various chemical approaches such as cross-linking, carboxylation, ionic binding, and so on. As an alternative to chemical fertilizers, chitosan derivatives, chitosan conjugates, nanostructures, semisynthetic derivatives, oligo mixes, chitosan nanoparticles, and chitosan nano-carriers are synthesized for various agricultural applications. Its several chemical and physical properties such as biocompatibility, biodegradability, permeability, cost-effectiveness, low toxicity, and environmental friendliness make it useful for many agricultural applications. Hence, popularizing its use as an elicitor molecule for different host-pathogen interaction studies. Thus, the versatile and plethora of chitosan derivatives are gaining momentum in agricultural sciences. Bio-stimulant properties and multifunctional benefits are associated with further prospective research. Therefore, in the present review, we decipher the potential pros and cons of chitosan derivatives in plants.


Asunto(s)
Quitosano , Plantas , Quitosano/química , Quitosano/farmacología , Plantas/química
19.
Nature ; 631(8019): 199-206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898276

RESUMEN

The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms1 to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities2. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally. These enzymes not only break glycosidic linkages of both α and ß stereochemistry and multiple connectivities, but also cleave substrates that are not hydrolysed by standard glycosidases. These include thioglycosides, such as the glucosinolates from plants, and pseudoglycosidic bonds of pharmaceuticals such as acarbose. This is achieved through a distinct mechanism of hydrolysis that involves oxidation/reduction and elimination/hydration steps, each catalysed by enzyme modules that are in many cases interchangeable between organisms and substrate classes. Homologues of these enzymes occur in both Gram-positive and Gram-negative bacteria associated with the gut microbiome and other body parts, as well as other environments, such as soil and sea. Such alternative step-wise mechanisms appear to constitute largely unrecognized but abundant pathways for glycan degradation as part of the metabolism of carbohydrates in bacteria.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Glicósido Hidrolasas , Polisacáridos , Humanos , Acarbosa/química , Acarbosa/metabolismo , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biocatálisis , Glucosinolatos/metabolismo , Glucosinolatos/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Hidrólisis , Metagenoma , Oxidación-Reducción , Plantas/química , Polisacáridos/metabolismo , Polisacáridos/química , Agua de Mar/microbiología , Microbiología del Suelo , Especificidad por Sustrato , Masculino
20.
Environ Geochem Health ; 46(7): 223, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849582

RESUMEN

Heavy metal contamination in the soil and phytoremediation potential of the plants cultivated around the Gosa dumpsite were evaluated using pollution indices. The concentrations of heavy metals in the soil and plant samples were determined using an atomic absorption spectrophotometer (Agilent 280FS AA). The mean heavy metal contents in the upper and lower soil layers ranged from 0.37 to 1662.61 mg/kg and 0.32 to 1608.61 mg/kg, respectively, in ascending order of Cd < Cr < Cu < Ni < Pb < Co < Zn < Fe. The results revealed a steady depthwise decrease in heavy metal contents from the upper to lower soil layers. Co, Pb, Zn and Fe were introduced through geogenic and anthropogenic pathways, while Cr, Ni, Cu and Cd were derived mainly from anthropogenic sources. The mean soil enrichment in the heavy metals ranged from 0.96 to 237.04 in the ascending order of Fe > Co > Pb > Zn > Cu > Cd > Cr > Ni. The soil was moderately polluted with Co, Cu, Pb, Zn, Fe and Cd but heavily polluted with Cr and Ni. The results revealed that 37.5% of the sites studied had pollution load indices greater than 1.0, indicating gradual deterioration in overall soil quality. The concentrations of Pb, Cd and Fe exceeded the recommended limits for the five plant species assessed. The transfer factor (TF) values of okra plant 1 (0.7536), water hyacinth (1.3768), and Amaranthus hybridus (0.9783) indicated excellent Cd phytoremediation potential. Okra Plant, water hyacinth and Amaranthus hybridus had excellent potential for phytoremediation of Cu, Fe and Pb, respectively. The study area was strongly enriched in Fe, Cd, Cr, and Ni, suggesting some degree of soil pollution, while the plants demonstrated an excellent capacity to accumulate Cd, Cu, Fe and Pb. This dumpsite should be adequately monitored while proper remediation measures are adopted by government authorities.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Nigeria , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Monitoreo del Ambiente , Suelo/química , Plantas/metabolismo , Plantas/química , Espectrofotometría Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...