Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.914
Filtrar
1.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952675

RESUMEN

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Escherichia coli , Osteogénesis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Antibacterianos/química , Osteogénesis/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratones , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Prótesis e Implantes , Aleaciones/farmacología , Aleaciones/química , Ratas , Titanio/química , Titanio/farmacología , Plata/química , Plata/farmacología , Proliferación Celular/efectos de los fármacos , Cobre/química , Cobre/farmacología , Masculino , Microtomografía por Rayos X , Línea Celular , Nanopartículas del Metal/química
2.
Sci Rep ; 14(1): 15211, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956076

RESUMEN

Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.


Asunto(s)
Nanopartículas del Metal , Plata , Microbiología del Suelo , Plata/química , Plata/farmacología , Arabia Saudita , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Clima Desértico , Hongos/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química
3.
Microb Cell Fact ; 23(1): 189, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956629

RESUMEN

Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients' clothes.


Asunto(s)
Antineoplásicos , Colorantes , Plata , Textiles , Textiles/microbiología , Colorantes/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Plata/farmacología , Plata/química , Fusarium/efectos de los fármacos , Streptomyces/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/química , Nanopartículas del Metal/química , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/biosíntesis , Pruebas de Sensibilidad Microbiana , Línea Celular Tumoral
4.
PLoS One ; 19(7): e0303808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959277

RESUMEN

Calcium Hydroxide-based endodontic sealer loaded with antimicrobial agents have been commonly employed in conventional root canal treatment. These sealers are not effective against E. faecalis due to the persistent nature of this bacterium and its ability to evade the antibacterial action of calcium hydroxide. Therefore, endodontic sealer containing Carbon nanodots stabilized silver nanoparticles (CD-AgNPs) was proposed to combat E. faecalis. The therapeutic effect of CD-AgNPs was investigated and a new cytocompatible Calcium Hydroxide-based endodontic sealer enriched with CD-AgNPs was synthesized that exhibited a steady release of Ag+ ions and lower water solubility at 24 hours, and enhanced antibacterial potential against E. faecalis. CD-AgNPs was synthesized and characterized morphologically and compositionally by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy (FTIR), and UV-Vis Spectroscopy, followed by optimization via minimum inhibitory concentration (MIC) determination against E. faecalis by broth microdilution technique and Cytotoxicity analysis against NIH3T3 cell lines via Alamar Blue assay. Calcium hydroxide in distilled water was taken as control (C), Calcium hydroxide with to CD-AgNPs (5mg/ml and 10mg/ml) yielded novel endodontic sealers (E1 and E2). Morphological and chemical analysis of the novel sealers were done by SEM and FTIR; followed by in vitro assessment for antibacterial potential against E. faecalis via agar disc diffusion method, release of Ag+ ions for 21 days by Atomic Absorption Spectrophotometry and water solubility by weight change for 21 days. CD-AgNPs were 15-20 nm spherical-shaped particles in uniformly distributed clusters and revealed presence of constituent elements in nano-assembly. FTIR spectra revealed absorption peaks that correspond to various functional groups. UV-Vis absorption spectra showed prominent peaks that correspond to Carbon nanodots and Silver nanoparticles. CD-AgNPs exhibited MIC value of 5mg/ml and cytocompatibility of 84.47% with NIH3T3 cell lines. Novel endodontic sealer cut-discs revealed irregular, hexagonal particles (100-120 nm) with aggregation and rough structure with the presence of constituent elements. FTIR spectra of novel endodontic sealers revealed absorption peaks that correspond to various functional groups. Novel endodontic sealers exhibited enhanced antibacterial potential where E-2 showed greatest inhibition zone against E. faecalis (6.3±2 mm), a steady but highest release of Ag+ ions was exhibited by E-1 (0.043±0.0001 mg/mL) and showed water solubility of <3% at 24 hours where E-2 showed minimal weight loss at all time intervals. Novel endodontic sealers were cytocompatible and showed enhanced antibacterial potential against E. faecalis, however, E2 outperformed in this study in all aspects.


Asunto(s)
Antibacterianos , Hidróxido de Calcio , Carbono , Enterococcus faecalis , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Materiales de Obturación del Conducto Radicular , Plata , Plata/química , Plata/farmacología , Hidróxido de Calcio/química , Hidróxido de Calcio/farmacología , Animales , Ratones , Nanopartículas del Metal/química , Materiales de Obturación del Conducto Radicular/química , Materiales de Obturación del Conducto Radicular/farmacología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/crecimiento & desarrollo , Células 3T3 NIH , Antibacterianos/farmacología , Antibacterianos/química , Carbono/química , Espectroscopía Infrarroja por Transformada de Fourier
5.
Antonie Van Leeuwenhoek ; 117(1): 95, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967683

RESUMEN

The decline of new antibiotics and the emergence of multidrug resistance in pathogens necessitates a revisit of strategies used for lead compound discovery. This study proposes to induce the production of bioactive compounds with sub-lethal concentrations of silver nanoparticles (Ag-NPs). A total of Forty-two Actinobacteria isolates from four Saudi soil samples were grown with and without sub-lethal concentration of Ag-NPs (50 µg ml-1). The spent broth grown with Ag-NPs, or without Ag-NPs were screened for antimicrobial activity against four bacteria. Interestingly, out of 42 strains, broths of three strains grown with sub-lethal concentration of Ag-NPs exhibit antimicrobial activity against Staphylococcus aureus and Micrococcus luteus. Among these, two strains S4-4 and S4-21 identified as Streptomyces labedae and Streptomyces tirandamycinicus based on 16S rRNA gene sequence were selected for detailed study. The change in the secondary metabolites profile in the presence of Ag-NPs was evaluated using GC-MS and LC-MS analyses. Butanol extracts of spent broth grown with Ag-NPs exhibit strong antimicrobial activity against M. luteus and S. aureus. While the extracts of the controls with the same concentration of Ag-NPs do not show any activity. GC-analysis revealed a clear change in the secondary metabolite profile when grown with Ag-NPs. Similarly, the LC-MS patterns also differ significantly. Results of this study, strongly suggest that sub-lethal concentrations of Ag-NPs influence the production of secondary metabolites by Streptomyces. Besides, LC-MS results identified possible secondary metabolites, associated with oxidative stress and antimicrobial activities. This strategy can be used to possibly induce cryptic biosynthetic gene clusters for the discovery of new lead compounds.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S , Plata , Staphylococcus aureus , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Plata/farmacología , Plata/química , Plata/metabolismo , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , ARN Ribosómico 16S/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Microbiología del Suelo , Metabolismo Secundario , Micrococcus luteus/efectos de los fármacos , Micrococcus luteus/crecimiento & desarrollo , Descubrimiento de Drogas
6.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955823

RESUMEN

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos , Oro , Espectrometría Raman , Ácidos Borónicos/química , Técnicas Biosensibles/métodos , Oro/química , Humanos , Espectrometría Raman/métodos , Plata/química , Nanopartículas del Metal/química , Límite de Detección , Transferrina/análisis , Transferrina/química , Impresión Molecular , Polímeros Impresos Molecularmente/química , Glicoproteínas/sangre , Glicoproteínas/química , Materiales Biomiméticos/química , Dopamina/sangre , Dopamina/análisis , Compuestos de Sulfhidrilo
7.
PLoS One ; 19(7): e0303521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985793

RESUMEN

Microbes maneuver strategies to become incessant and biofilms perfectly play a role in scaling up virulence to cause long-lasting infections. The present study was designed to assess the use of an eco-friendly formulation of functionalized silver nanoparticles generated from Mentha longifolia leaf extract (MℓE) for the treatment of biofilm-producing microbes. Nanoparticles synthesized using MℓE as a reducing agent were optimized at different strengths of AgNO3 (1 mM, 2 mM, 3 mM, and 4 mM). Synthesis of M. longifolia silver nanoparticles (MℓAgNPs) was observed spectrophotometrically (450 nm) showing that MℓAgNPs (4 mM) had the highest absorbance. Various techniques e.g., Fourier transforms Infrared spectroscopy (FTIR), Dynamic light scattering (DLS), zeta potential (ZP), X-ray Diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) were used to characterize MℓAgNPs. In the present study, the Kirby-Bauer method revealed 4mM was the most detrimental conc. of MℓAgNPs with MIC and MBC values of 0.62 µg/mL and 1.25 µg/mL, 0.03 µg/mL and 0.078 µg/mL, and 0.07 µg/mL and 0.15 µg/mL against previously isolated and identified clinical strains of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, respectively. Moreover, the MℓAgNP antibiofilm activity was examined via tissue culture plate (TCP) assay that revealed biofilm inhibition of up to 87.09%, 85.6%, 83.11%, and 75.09% against E. coli, P. aeruginosa, K. pneumonia, and S. aureus, respectively. Herbal synthesized silver nanoparticles (MℓAgNPs) tend to have excellent antibacterial and antibiofilm properties and are promising for other biomedical applications involving the extrication of irksome biofilms. For our best knowledge, it is the first study on the use of the green-synthesized silver nanoparticle MℓAgNP as an antibiofilm agent, suggesting that this material has antibiotic, therapeutic, and industrial applications.


Asunto(s)
Antibacterianos , Biopelículas , Mentha , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Mentha/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Hojas de la Planta/microbiología , Escherichia coli/efectos de los fármacos , Difracción de Rayos X , Nanoestructuras/química
8.
BMC Complement Med Ther ; 24(1): 259, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987719

RESUMEN

BACKGROUND: Silver nanoparticles (AgNPs) are receiving a lot of attention as a prospective antibacterial agent for use in caries prevention. The objective of this study was to investigate the bioactivity and antibacterial effect of silver nanoparticles biosynthesized using Star Anise against Streptococcus mutans (S.mutans). METHODS: The bioactive components of the Star Anise were assessed by employing the gas chromatography-mass spectrometry technique. The antibacterial activities of Star Anise Biosynthesized Silver Nanoparticles against S.mutans bacteria were evaluated using Bauer and Kirby's disc diffusion mechanism and the minimum inhibitory concentration. RESULTS: Silver nanoparticles biosynthesized using Star Anise revealed high antioxidant activity. AgNPs inhibited S. mutans with a 16 mm inhibition zone diameter and demonstrated an 80 µg/ml minimum inhibitory concentration. CONCLUSIONS: Biologically synthesized AgNPs made from aqueous extract of Star anise appear to be a potential and effective bactericidal agent against S.mutans that can be used to prevent dental caries.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Antibacterianos/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
Microb Cell Fact ; 23(1): 195, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971787

RESUMEN

This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.


Asunto(s)
Pruebas de Sensibilidad Microbiana , Nanocompuestos , Plata , Suero Lácteo , Nanocompuestos/química , Plata/química , Plata/farmacología , Suero Lácteo/química , Suero Lácteo/metabolismo , Lactobacillus acidophilus/efectos de los fármacos , Lactobacillus acidophilus/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Nanopartículas del Metal/química , Lactobacillus/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/química , Espectroscopía Infrarroja por Transformada de Fourier
10.
J Environ Manage ; 365: 121715, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968898

RESUMEN

Treating hazardous landfill leachate poses significant environmental challenges due to its complex nature. In this study, we propose a novel approach for enhancing the anaerobic digestion of landfill leachate using silver nanoparticles (Ag NPs) conjugated with eco-friendly green silica nanoparticles (Si NPs). The synthesized Si NPs and Ag@Si NPs were characterized using various analytical techniques, including transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The anaerobic digestion performance of Si NPs and Ag@Si NPs was tested by treating landfill leachate samples with 50 mg/L of each NP. The results demonstrated an enhancement in the biogas production rate compared to the control phase without the nanocomposite, as the biogas production increased by 14% and 37% using Si NPs and Ag@Si NPs. Ag@Si NPs effectively promoted the degradation of organic pollutants in the leachate, regarding chemical oxygen demand (COD) and volatile solids (VS) by 58% and 65%. Furthermore, microbial analysis revealed that Ag@Si NPs enhanced the activity of microbial species responsible for the methanogenic process. Overall, incorporating AgNPs conjugated with eco-friendly green Si NPs represents a sustainable and efficient approach for enhancing the anaerobic digestion of landfill leachate.


Asunto(s)
Biocombustibles , Nanopartículas del Metal , Oryza , Dióxido de Silicio , Plata , Contaminantes Químicos del Agua , Plata/química , Dióxido de Silicio/química , Nanopartículas del Metal/química , Anaerobiosis , Contaminantes Químicos del Agua/química , Nanopartículas/química
11.
Bull Exp Biol Med ; 177(1): 68-73, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38955855

RESUMEN

Substances of silver nanoparticles dialyzed through a 13 kDa membrane, synthesized in a medium of humic ligands modified with hydroquinone and 2-hydroxynaphthoquinone from PowHumus brown coal, specifically enhance the M2 properties of peritoneal macrophages due to inhibition of NO synthase and significant activation of arginase, thus enhancing anti-inflammatory properties of cells. In small, but effective concentrations, they do not have cytotoxic properties and do not contain pyrogenic impurities. The studied humates are able to influence the mechanisms of immune response formation and are an effective means for correcting inflammation and regeneration.


Asunto(s)
Arginasa , Arginina , Sustancias Húmicas , Macrófagos Peritoneales , Plata , Animales , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Arginina/farmacología , Arginina/química , Arginasa/metabolismo , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Hidroquinonas/farmacología , Hidroquinonas/química , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Naftoquinonas/farmacología , Naftoquinonas/química
12.
BMC Plant Biol ; 24(1): 695, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044125

RESUMEN

The bacterial blight of wheat is an important global disease causing a significant decline in crop yield. Nanotechnology offers a potential solution for managing plant diseases. Therefore, this research aimed to investigate the effectiveness of silver nanoparticles (AgNPs) in controlling bacterial blight in 27 locally grown wheat cultivars. The study examined the impact of AgNPs at three distinct time points: 1, 3, and 5 days after the onset of the disease. Biochemical assay revealed that one day after applying the disease stress, the Inia cultivar had the highest amount of soluble protein (55.60 µg.g-1FW) content in the treatment without AgNPs. The Azadi cultivar, without AgNPs treatment, had the lowest amount of soluble protein content (15.71 µg.g-1FW). The Tabasi cultivar had the highest activity of the superoxide dismutase (SOD) (61.62 mM.g-1FW) with the combination treatment of AgNPs. On the other hand, the Karchia cultivar had the lowest SOD activity (0.6 mM.g-1FW) in the treatment of disease without AgNPs. Furthermore, three days after the application of stress, the Mahdavi cultivar had the highest amount of soluble protein content (54.16 µg.g-1FW) in the treatment of disease without AgNPs. The Niknejad cultivar had the highest activity of the SOD (74.15 mM.g-1FW) with the combined treatment of the disease without AgNPs. The Kavir cultivar had the lowest SOD activity (1.95 mM.g-1FW) and the lowest peroxidase (POX) activity (0.241 mM g-1FW min-1) in the treatment of the disease with AgNPs. Five days after exposure to stress, the Mahooti cultivar had the highest SOD activity (88.12 mM.g-1FW) with the combined treatment of the disease with AgNPs, and the Karchia cultivar had the lowest SOD activity (2.39 mM.g-1FW) in the treatment of the disease with AgNPs. Further, the results indicated that exposure to AgNPs could improve the antioxidant properties of wheat seeds in blight-infected and disease-free conditions in some cultivars.


Asunto(s)
Nanopartículas del Metal , Enfermedades de las Plantas , Plata , Triticum , Triticum/microbiología , Triticum/efectos de los fármacos , Plata/farmacología , Enfermedades de las Plantas/microbiología , Superóxido Dismutasa/metabolismo , Proteínas de Plantas/metabolismo
13.
Int J Immunopathol Pharmacol ; 38: 3946320241263352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046434

RESUMEN

Objective: Gemcitabine (GEM) is a deoxycytidine analog chemotherapeutic drug widely used to treat many cancers. Silver nanoparticles (AgNPs) are important nanomaterials used to treat many diseases. Using gamma radiation in nanoparticle preparation is a new eco-friendly method. This study aims to evaluate the efficiency of co-treating gemcitabine and silver nanoparticles in treating hepatocellular carcinoma. Method: The AgNPs were characterized using UV-visible spectroscopy, XRD, TEM, and EDX. The MTT cytotoxicity in vitro assay of gemcitabine, doxorubicin, and cyclophosphamide was assessed against Wi38 normal fibroblast and HepG2 HCC cell lines. After HCC development, rats received (10 µg/g b.wt.) of AgNPs three times a week for 4 weeks and/or GEM (5 mg/kg b.wt.) twice weekly for 4 weeks. Liver function enzymes were investigated. Cytochrome P450 and miR-21 genes were studied. Apoptosis was determined by using flow cytometry, and apoptotic modifications in signaling pathways were evaluated via Bcl-2, Bax, Caspase-9, and SMAD-4. Results: The co-treatment of GEM and AgNPs increased apoptosis by upregulating Bax and caspase 9 while diminishing Bcl2 and SMAD4. It also improved cytochrome P450 m-RNA relative expression. The results also proved the cooperation between GEM and AgNPs in deactivating miR21. The impact of AgNPs as an adjuvant treatment with GEM was recognized. Conclusions: The study showed that co-treating AgNPs and GEM can improve the efficiency of GEM alone in treating HCC. This is achieved by enhancing intrinsic and extrinsic apoptotic pathways while diminishing some drawbacks of using GEM alone.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Desoxicitidina , Gemcitabina , Nanopartículas del Metal , Plata , Animales , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Plata/farmacología , Masculino , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Humanos , Ratas , Apoptosis/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/inducido químicamente , Células Hep G2 , Ratas Wistar
14.
Bioprocess Biosyst Eng ; 47(8): 1409-1431, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38995363

RESUMEN

This research describes the eco-friendly green synthesis of silver nanoparticles employing Pongamia pinnata seed extracts loaded with nanogel formulations (AgNPs CUD NG) to improve the retention, accumulation, and the penetration of AgNPs into the epidermal layer of psoriasis. AgNPs were synthesized using the Box-Behnken design. Optimized AgNPs and AgNPs CUD NG were physico-chemically evaluated using UV-vis spectroscopy, SEM, FT-IR, PXRD, viscosity, spreadability, and retention studies. It was also functionally assessed using an imiquimod-induced rat model. The entrapment efficiency of AgNPs revealed ~ 79.35%. Physico-chemical parameters announced the formation of AgNPs via surface plasmon resonance and interaction between O-H, C = O, and amide I carbonyl group of protein extract and AgNO3. Optimized AgNPs showed spherical NPs ~ 116 nm with better physical stability and suitability for transdermal applications. AgNPs CUD NG revealed non-Newtonian, higher spreadability, and better extrudability, indicating its suitability for a transdermal route. AgNPs CUD NG enhanced the retention of AgNPs on the psoriatic skin compared to normal skin. Optimized formulations exhibit no irritation by the end of 72 h, indicating formulation safety. AgNPs CUD NG at a dose of 1 FTU showed significant recovery from psoriasis with a PASI score of ~ 0.8 compared to NG base and marketed formulations. Results indicated that seed extract-assisted AgNPs in association with CUD-based NG formulations could be a promising nanocarrier for psoriasis and other skin disorders.


Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal , Millettia , Nanogeles , Extractos Vegetales , Psoriasis , Semillas , Plata , Plata/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Animales , Semillas/química , Ratas , Psoriasis/tratamiento farmacológico , Millettia/química , Nanogeles/química , Ratas Wistar , Polietilenglicoles , Polietileneimina
15.
Cardiovasc Hematol Agents Med Chem ; 22(2): 230-239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975619

RESUMEN

BACKGROUND: Plants have been used for ages in traditional medicine, and it is exciting to perceive how recent research has recognized the bioactive compounds liable for their beneficial effects. Green synthesis of metal nanoparticles is a hastily emergent research area in nanotechnology. This study describes the synthesis of silver nanoparticles (AgNPs) using Coriandrum sativum and Murraya koenigii leaf extract and its thrombolytic activity. OBJECTIVE: The aim of the study was to determine the clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles. METHODS: Leaves of Coriandrum sativum and Murraya koenigii were collected. Methanolic extraction of the plant sample was done through a Soxhlet extractor. The methanolic extract obtained from both the leaves was subjected to GC-MS analysis. The synthesized NPs from leaf extracts were monitored for analysis, where the typical X-ray diffraction pattern and its diffraction peaks were identified. 3D image of the NPs was analysed by Atomic Force Microscopy. The surface charge of nanoparticles was identified by Zeta potential. The Clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles were analysed by the modified Holmstorm method. RESULTS: The thrombolytic property of the methanolic extract of plants Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 45.99% activity, and Murraya koenigii extract with 66.56% activity. The nanoparticles (Nps) from Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 58.29% activity, and NPs from Murraya koenigii with 54.04% activity. Coriandrum sativum in GC-MS exhibited 3 peaks, whereas Murraya koenigii extract showed five peaks with notable bioactive compounds. CONCLUSION: These NPs were further used for biomedical applications after being fixed by an organic encapsulation agent. The present research reveals the usefulness of Coriandrum sativum and Murraya koenigii for the environmentally friendly manufacture of silver nanoparticles.


Asunto(s)
Coriandrum , Fibrinolíticos , Tecnología Química Verde , Nanopartículas del Metal , Murraya , Extractos Vegetales , Hojas de la Planta , Plata , Nanopartículas del Metal/química , Murraya/química , Plata/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Coriandrum/química , Hojas de la Planta/química , Fibrinolíticos/química , Fibrinolíticos/farmacología
16.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998976

RESUMEN

AgCu bimetallic· nanoparticles (NPs) represent a novel class of inorganic, broad-spectrum antimicrobial agents that offer enhanced antimicrobial effectiveness and reduced cytotoxicity compared to conventional Ag NP antibacterial materials. This study examines the antimicrobial performance and structural characteristics of AgCu nanoparticles (NPs) synthesized via two distinct chemical reduction processes using PVP-PVA as stabilizers. Despite identical chemical elements and sphere-like shapes in both synthesis methods, the resulting AgCu nanoparticles exhibited significant differences in size and antimicrobial properties. Notably, AgCu NPs with smaller average particle sizes demonstrated weaker antimicrobial activity, as assessed by the minimum inhibitory concentration (MIC) measurement, contrary to conventional expectations. However, larger average particle-sized AgCu NPs showed superior antimicrobial effectiveness. High-resolution transmission electron microscopy analysis revealed that nearly all larger particle-sized nanoparticles were AgCu nanoalloys. In contrast, the smaller particle-sized samples consisted of both AgCu alloys and monometallic Ag and Cu NPs. The fraction of Ag ions (relative to the total silver amount) in the larger AgCu NPs was found to be around 9%, compared to only 5% in that of the smaller AgCu NPs. This indicates that the AgCu alloy content significantly contributes to enhanced antibacterial efficacy, as a higher AgCu content results in the increased release of Ag ions. These findings suggest that the enhanced antimicrobial efficacy of AgCu NPs is primarily attributed to their chemical composition and phase structures, rather than the size of the nanoparticles.


Asunto(s)
Aleaciones , Cobre , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata , Cobre/química , Nanopartículas del Metal/química , Aleaciones/química , Aleaciones/farmacología , Plata/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química
17.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999050

RESUMEN

Recently, nanoparticles have received considerable attention owing to their efficiency in overcoming the limitations of traditional chemotherapeutic drugs. In our study, we synthesized a vanillic acid nanocomposite using both chitosan and silver nanoparticles, tested its efficacy against lung cancer cells, and analyzed its antimicrobial effects. We used several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to determine the stability, morphological characteristics, and properties of the biosynthesized vanillic acid nanocomposites. Furthermore, the vanillic acid nanocomposites were tested for their antimicrobial effects against Escherichia coli and Staphylococcus aureus, and Candida albicans. The data showed that the nanocomposite effectively inhibited microbes, but its efficacy was less than that of the individual silver and chitosan nanoparticles. Moreover, the vanillic acid nanocomposite exhibited anticancer effects by increasing the expression of pro-apoptotic proteins (BAX, Casp3, Casp7, cyt C, and p53) and decreasing the gene expression of Bcl-2. Overall, vanillic acid nanocomposites possess promising potential against microbes, exhibit anticancer effects, and can be effectively used for treating diseases such as cancers and infectious diseases.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Nanocompuestos , Ácido Vanílico , Ácido Vanílico/química , Ácido Vanílico/farmacología , Nanocompuestos/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Plata/química , Plata/farmacología , Quitosano/química , Quitosano/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/química , Línea Celular Tumoral
18.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999964

RESUMEN

Keeping wounds clean in small animals is a big challenge, which is why they often become infected, creating a risk of transmission to animal owners. Therefore, it is crucial to search for new biocompatible materials that have the potential to be used in smart wound dressings with both wound healing and bacteriostatic properties to prevent infection. In our previous work, we obtained innovative hyaluronate matrix-based bionanocomposites containing nanosilver and nanosilver/graphene oxide (Hyal/Ag and Hyal/Ag/GO). This study aimed to thoroughly examine the bacteriostatic properties of foils containing the previously developed bionanocomposites. The bacteriostatic activity was assessed in vitro on 88 Gram-positive (n = 51) and Gram-negative (n = 37) bacteria isolated from wounds of small animals and whose antimicrobial resistance patterns and resistance mechanisms were examined in an earlier study. Here, 69.32% of bacterial growth was inhibited by Hyal/Ag and 81.82% by Hyal/Ag/GO. The bionanocomposites appeared more effective against Gram-negative bacteria (growth inhibition of 75.68% and 89.19% by Hyal/Ag and Hyal/Ag/Go, respectively). The effectiveness of Hyal/Ag/GO against Gram-positive bacteria was also high (inhibition of 80.39% of strains), while Hyal/Ag inhibited the growth of 64.71% of Gram-positive bacteria. The effectiveness of Hyal/Ag and Hyal/Ag/Go varied depending on bacterial genus and species. Proteus (Gram-negative) and Enterococcus (Gram-positive) appeared to be the least susceptible to the bionanocomposites. Hyal/Ag most effectively inhibited the growth of non-pathogenic Gram-positive Sporosarcina luteola and Gram-negative Acinetobacter. Hyal/Ag/GO was most effective against Gram-positive Streptococcus and Gram-negative Moraxella osloensis. The Hyal/Ag/GO bionanocomposites proved to be very promising new antibacterial, biocompatible materials that could be used in the production of bioactive wound dressings.


Asunto(s)
Antibacterianos , Grafito , Ácido Hialurónico , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Nanocompuestos , Plata , Grafito/química , Grafito/farmacología , Nanocompuestos/química , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Animales , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Cicatrización de Heridas/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo
19.
ACS Appl Mater Interfaces ; 16(27): 34510-34523, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38946393

RESUMEN

Photoluminescence (PL) metal nanoclusters (NCs) have attracted extensive attention due to their excellent physicochemical properties, good biocompatibility, and broad application prospects. However, developing water-soluble PL metal NCs with a high quantum yield (QY) and high stability for visual drug delivery remains a great challenge. Herein, we have synthesized ultrabright l-Arg-ATT-Au/Ag NCs (Au/Ag NCs) with a PL QY as high as 73% and excellent photostability by heteroatom doping and surface rigidization in aqueous solution. The as-prepared Au/Ag NCs can maintain a high QY of over 61% in a wide pH range and various ionic environments as well as a respectable resistance to photobleaching. The results from structure characterization and steady-state and time-resolved spectroscopic analysis reveal that Ag doping into Au NCs not only effectively modifies the electronic structure and photostability but also significantly regulates the interfacial dynamics of the excited states and enhances the PL QY of Au/Ag NCs. Studies in vitro indicate Au/Ag NCs have a high loading capacity and pH-triggered release ability of doxorubicin (DOX) that can be visualized from the quenching and recovery of PL intensity and lifetime. Imaging-guided experiments in cancer cells show that DOX of Au/Ag NCs-DOX agents can be efficiently delivered and released in the nucleus with preferential accumulation in the nucleolus, facilitating deep insight into the drug action sites and pharmacological mechanisms. Moreover, the evaluation of anticancer activity in vivo reveals an outstanding suppression rate of 90.2% for mice tumors. These findings demonstrate Au/Ag NCs to be a superior platform for bioimaging and visual drug delivery in biomedical applications.


Asunto(s)
Doxorrubicina , Oro , Nanopartículas del Metal , Plata , Agua , Oro/química , Plata/química , Plata/farmacología , Humanos , Animales , Doxorrubicina/química , Doxorrubicina/farmacología , Nanopartículas del Metal/química , Ratones , Agua/química , Sistemas de Liberación de Medicamentos , Células HeLa , Portadores de Fármacos/química , Solubilidad , Liberación de Fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Luminiscencia
20.
Sci Rep ; 14(1): 15658, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977812

RESUMEN

Water pollution and antimicrobial resistance (AMR) have become two global threats; 80% of diseases and 50% of child deaths are due to poor water quality. In this study, hydrothermal processing was employed to manufacture manganese oxide nanorods. Silver dopant was deposited on the surface of manganese oxide. XRD diffractogram confirmed the facile synthesis of Ag/Mn2O3 nanocomposite. XPS survey analysis demonstrated silver content of 9.43 atom %. Photocatalytic measurements demonstrated the outstanding efficiency of the Ag-Mn2O3 compared to virgin oxide particles under visible radiation. Degradation efficiencies Mn2O3 and Ag/Mn2O3 on methyl orange (MO) dye was found to be 53% and 85% under visible spectrum. Silver dopant was found to decrease the binding energy of valence electrons; this action could support electron-hole pair generation under visible spectrum and could promote catalytic performance. Ag/Mn2O3 NPs demonstrated most effective performance (95% removal efficiency) at pH 3; this could be ascribed to the electrostatic attraction between positively charged catalyst and the negatively charged MO. Ag/Mn2O3 demonstrated enhanced antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) (19 mm ZOI), and Gram-negative Escherichia coli (E. coli) (22 mm ZOI) respectively; the developed nanocomposite demonstrated advanced anti-film activity with inhibition percentage of 95.5% against E. coli followed by 89.5% against S. aureus.


Asunto(s)
Escherichia coli , Compuestos de Manganeso , Nanocompuestos , Óxidos , Plata , Staphylococcus aureus , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Óxidos/química , Óxidos/farmacología , Plata/química , Plata/farmacología , Nanocompuestos/química , Catálisis , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Luz , Compuestos Azo/química , Compuestos Azo/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...