Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.731
Filtrar
1.
Cells ; 13(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38995008

RESUMEN

Accumulating evidence indicates that inflammatory and immunologic processes play a significant role in the development and progression of glomerular diseases. Podocytes, the terminally differentiated epithelial cells, are crucial for maintaining the integrity of the glomerular filtration barrier. Once injured, podocytes cannot regenerate, leading to progressive proteinuric glomerular diseases. However, emerging evidence suggests that podocytes not only maintain the glomerular filtration barrier and are important targets of immune responses but also exhibit many features of immune-like cells, where they are involved in the modulation of the activity of innate and adaptive immunity. This dual role of podocytes may lead to the discovery and development of new therapeutic targets for treating glomerular diseases. This review aims to provide an overview of the innate immunity mechanisms involved in podocyte injury and the progression of proteinuric glomerular diseases.


Asunto(s)
Inmunidad Innata , Podocitos , Podocitos/inmunología , Podocitos/patología , Humanos , Animales , Enfermedades Renales/inmunología , Enfermedades Renales/patología , Glomérulos Renales/patología , Glomérulos Renales/inmunología
2.
Ren Fail ; 46(2): 2373276, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38967134

RESUMEN

BACKGROUND: Podocytes, as intrinsic renal cells, can also express MHC-II and costimulatory molecules under inflammatory conditions, suggesting that they may act as antigen-presenting cells (APCs) to activate immune cell responses and then lead to immune-mediated renal injury. They are already recognized as main targets in the pathogenic mechanism of hepatitis B virus (HBV)-associated glomerulonephritis (HBV-GN). Previous studies also have indicated that inflammatory cells infiltration and immune-mediated tissue injury are evident in the kidney samples of patients with HBV-GN. However, the role of podocytes immune disorder in the pathogenic mechanism of HBV-GN remains unclear. METHODS: Renal function and inflammatory cells infiltration were measured in HBV transgenic (HBV-Tg) mice. In vitro, podocytes/CD4+ T cells or macrophages co-culture system was established. Then, the expression of HBx, CD4, and CD68 was determined by immunohistochemistry, while the expression of MHC-II, CD40, and CD40L was determined by immunofluorescence. Co-stimulatory molecules expression was examined by flow cytometry. The levels of inflammatory factors were detected by ELISA. RESULTS: In vivo, renal function was obviously impaired in HBV-Tg mice. HBx was significantly upregulated and immune cells infiltrated in the glomerulus of HBV-Tg mice. Expression of MHC-II and costimulatory molecule CD40 increased in the podocytes of HBV-Tg mice; CD4+ T cells exhibited increased CD40L expression in glomerulus. In vitro, CD40 expression was markedly elevated in HBx-podocytes. In co-culture systems, HBx-podocytes stimulated CD4+ T cells activation and caused the imbalance between IFN-γ and IL-4. HBx-podocytes also enhanced the adhesion ability of macrophages and induced the release of proinflammatory mediators. CONCLUSION: Taken together, these podocyte-related immune disorder may be involved in the pathogenic mechanism of HBV-GN.


Asunto(s)
Glomerulonefritis , Virus de la Hepatitis B , Ratones Transgénicos , Podocitos , Transactivadores , Proteínas Reguladoras y Accesorias Virales , Animales , Podocitos/inmunología , Podocitos/patología , Podocitos/metabolismo , Ratones , Transactivadores/metabolismo , Transactivadores/genética , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Glomerulonefritis/virología , Virus de la Hepatitis B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Hepatitis B/inmunología , Hepatitis B/complicaciones , Humanos , Técnicas de Cocultivo , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
3.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000447

RESUMEN

mTOR inhibitors (mTOR-Is) may induce proteinuria in kidney transplant recipients through podocyte damage. However, the mechanism has only been partially defined. Total cell lysates and supernatants of immortalized human podocytes treated with different doses of everolimus (EVE) (10, 100, 200, and 500 nM) for 24 h were subjected to mass spectrometry-based proteomics. Support vector machine and partial least squares discriminant analysis were used for data analysis. The results were validated in urine samples from 28 kidney transplant recipients receiving EVE as part of their immunosuppressive therapy. We identified more than 7000 differentially expressed proteins involved in several pathways, including kinases, cell cycle regulation, epithelial-mesenchymal transition, and protein synthesis, according to gene ontology. Among these, after statistical analysis, 65 showed an expression level significantly and directly correlated with EVE dosage. Polo-Like Kinase 1 (PLK1) content was increased, whereas osteopontin (SPP1) content was reduced in podocytes and supernatants in a dose-dependent manner and significantly correlated with EVE dose (p < 0.0001, FDR < 5%). Similar results were obtained in the urine of kidney transplant patients. This study analyzed the impact of different doses of mTOR-Is on podocytes, helping to understand not only the biological basis of their therapeutic effects but also the possible mechanisms underlying proteinuria.


Asunto(s)
Everolimus , Inmunosupresores , Podocitos , Proteómica , Humanos , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Everolimus/farmacología , Proteómica/métodos , Inmunosupresores/farmacología , Trasplante de Riñón , Quinasa Tipo Polo 1 , Proteoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/metabolismo , Femenino , Proteinuria , Masculino , Osteopontina
4.
Ren Fail ; 46(2): 2378999, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39011603

RESUMEN

Objectives: Astaxanthin (ATX) is a strong antioxidant drug. This study aimed to investigate the effects of ATX on podocytes in diabetic nephropathy and the underlying renal protective mechanism of ATX, which leads to pathological crosstalk with mesangial cells.Methods: In this study, diabetic rats treated with ATX exhibited reduced 24-h urinary protein excretion and decreased blood glucose and lipid levels compared to vehicle-treated rats. Glomerular mesangial matrix expansion and renal tubular epithelial cell injury were also attenuated in ATX-treated diabetic rats compared to control rats.Results: ATX treatment markedly reduced the α-SMA and collagen IV levels in the kidneys of diabetic rats. Additionally, ATX downregulated autophagy levels. In vitro, compared with normal glucose, high glucose inhibited LC3-II expression and increased p62 expression, whereas ATX treatment reversed these changes. ATX treatment also inhibited α-SMA and collagen IV expression in cultured podocytes. Secreted factors (vascular endothelial growth factor B and transforming growth factor-ß) generated by high glucose-induced podocytes downregulated autophagy in human mesangial cells (HMCs); however, this downregulation was upregulated when podocytes were treated with ATX.Conclusions: The current study revealed that ATX attenuates diabetes-induced kidney injury likely through the upregulation of autophagic activity in podocytes and its antifibrotic effects. Crosstalk between podocytes and HMCs can cause renal injury in diabetes, but ATX treatment reversed this phenomenon.


Asunto(s)
Autofagia , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Células Mesangiales , Podocitos , Regulación hacia Arriba , Xantófilas , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Autofagia/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Animales , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Células Mesangiales/patología , Xantófilas/farmacología , Xantófilas/uso terapéutico , Ratas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Humanos , Regulación hacia Arriba/efectos de los fármacos , Ratas Sprague-Dawley , Actinas/metabolismo , Colágeno Tipo IV/metabolismo , Células Cultivadas , Antioxidantes/farmacología
5.
Clin Exp Pharmacol Physiol ; 51(9): e13909, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038854

RESUMEN

Diabetic kidney disease (DKD) is a complication of diabetic mellitus. New treatments need to be developed. This study aimed to investigate the effects of quercetin-4'-O-ß-D-glucopyranoside (QODG) on podocyte injury. Podocytes were cultured in high glucose (HG) medium, treated with QODG, and overexpressing or knocking down SIRT5. Oxidative stress indicators were assessed using corresponding kits. Pyroptosis was detected by flow cytometry and western blot analysis. Succinylation modification was detected using immunoprecipitation (IP) and western blot analysis. The interaction between NEK7 and NLRP3 was determined by co-IP. The results indicated that QODG inhibited oxidative stress and pyroptosis of podocytes induced by HG. Besides, QODG suppressed succinylation levels in HG-induced podocytes, with the upregulation of SIRT5. Knockdown of SIRT5 reversed the effects of QODG on oxidative stress and pyroptosis. Moreover, SIRT5 inhibited the succinylation of NEK7 and the interaction between NLRP3 and NEK7. In conclusion, QODG upregulates SIRT5 to inhibit the succinylation modification of NEK7, impedes the interaction between NEK7 and NLRP3, and then inhibits the pyroptosis and oxidative stress injury of podocytes under HG conditions. The findings suggested that QODG has the potential to treat DKD and explore a novel underlying mechanism of QODG function.


Asunto(s)
Quinasas Relacionadas con NIMA , Podocitos , Sirtuinas , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Quinasas Relacionadas con NIMA/metabolismo , Sirtuinas/metabolismo , Sirtuinas/genética , Animales , Ratones , Estrés Oxidativo/efectos de los fármacos , Piroptosis/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Glucósidos/farmacología , Línea Celular
6.
BMJ Open Diabetes Res Care ; 12(4)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025793

RESUMEN

INTRODUCTION: Prolonged hyperglycemia in diabetes mellitus can result in the development of diabetic nephropathy (DN) and increase the susceptibility to kidney failure. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive modality that has demonstrated effective tissue repair capabilities. The objective of this study was to showcase the reparative potential of LIPUS on renal injury at both animal and cellular levels, while also determining the optimal pulse length (PL). RESEARCH DESIGN AND METHODS: We established a rat model of DN, and subsequently subjected the rats' kidneys to ultrasound irradiation (PL=0.2 ms, 10 ms, 20 ms). Subsequently, we assessed the structural and functional changes in the kidneys. Additionally, we induced podocyte apoptosis and evaluated its occurrence following ultrasound irradiation. RESULTS: Following irradiation, DN rats exhibited improved mesangial expansion and basement membrane thickening. Uric acid expression increased while urinary microalbumin, podocalyxin in urine, blood urea nitrogen, and serum creatinine levels decreased (p<0.05). These results suggest that the optimal PL was 0.2 ms. Using the optimal PL further demonstrated the reparative effect of LIPUS on DN, it was found that LIPUS could reduce podococyte apoptosis and alleviate kidney injury. Metabolomics revealed differences in metabolites including octanoic acid and seven others and western blot results showed a significant decrease in key enzymes related to lipolysis (p<0.05). Additionally, after irradiating podocytes with different PLs, we observed suppressed apoptosis (p<0.05), confirming the optimal PL as 0.2 ms. CONCLUSIONS: LIPUS has been demonstrated to effectively restore renal structure and function in DN rats, with an optimal PL of 0.2 ms. The mechanism underlying the alleviation of DN by LIPUS is attributed to its ability to improve lipid metabolism disorder. These findings suggest that LIPUS may provide a novel perspective for future research in this field.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Animales , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/terapia , Ratas , Masculino , Diabetes Mellitus Experimental/complicaciones , Podocitos/efectos de la radiación , Podocitos/patología , Ratas Sprague-Dawley , Riñón/patología , Riñón/efectos de la radiación , Modelos Animales de Enfermedad , Ondas Ultrasónicas , Terapia por Ultrasonido/métodos
7.
Sci Rep ; 14(1): 15916, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987283

RESUMEN

Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of childhood chronic kidney disease. Congenital nephrotic syndrome of the Finnish type (CNF) (MIM# 256300) is caused by biallelic variants in the gene NPHS1, encoding nephrin, an integral component of the kidney filtration barrier. No causal treatments exist, and children inevitably require kidney replacement therapy. In preparation for gene replacement therapy (GRT) in CNF, we established a quantifiable and reproducible phenotypic assessment of the nephrin-deficient CNF mouse model: 129/Sv-Nphs1tm1Rkl/J. We assessed the phenotypic spectrum of homozygous mice (Nphs1tm1Rkl/Nphs1tm1Rkl) compared to heterozygous controls (Nphs1tm1Rkl/Nphs1WT) by the following parameters: 1. cohort survival, 2. podocyte foot process (FP) density per glomerular basement membrane (GBM) using transmission electron microscopy, 3. tubular microcysts in brightfield microscopy, and 4. urinary albumin/creatinine ratios. Nphs1tm1Rkl/Nphs1tm1Rkl mice exhibited: 1. perinatal lethality with median survival of 1 day, 2. FP effacement with median FP density of 1.00 FP/µm GBM (2.12 FP/µm in controls), 3. tubular dilation with 65 microcysts per section (6.5 in controls), and 4. increased albumin/creatinine ratio of 238 g/g (4.1 g/g in controls). We here established four quantifiable phenotyping features of a CNF mouse model to facilitate future GRT studies by enabling sensitive detection of phenotypic improvements.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de la Membrana , Ratones Noqueados , Síndrome Nefrótico , Fenotipo , Podocitos , Animales , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Proteínas de la Membrana/genética , Ratones , Podocitos/metabolismo , Podocitos/patología , Masculino , Femenino , Membrana Basal Glomerular/patología
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 349-358, 2024 Mar 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38970508

RESUMEN

OBJECTIVES: Obesity related glomerulopathy (ORG) is induced by obesity, but the pathogenesis remains unclear. This study aims to investigate the expression of early growth response protein 3 (EGR3) in the renal cortex tissues of ORG patients and high-fat diet-induced obese mice, and to further explore the molecular mechanism of EGR3 in inhibiting palmitic acid (PA) induced human podocyte inflammatory damage. METHODS: Renal cortex tissues were collected from ORG patients (n=6) who have been excluded from kidney damage caused by other diseases and confirmed by histopathology, and from obese mice induced by high-fat diet (n=10). Human and mouse podocytes were intervened with 150 µmol/L PA for 48 hours. EGR3 was overexpressed or silenced in human podocytes. Enzyme linked immunosorbent assay (ELISA) was used to detcet the levels of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). Real-time RT-PCR was used to detect the mRNA expressions of EGR3, podocytes molecular markers nephrosis 1 (NPHS1), nephrosis 2 (NPHS2), podocalyxin (PODXL), and podoplanin (PDPN). RNA-seq was performed to detect differentially expressed genes (DEGs) after human podocytes overexpressing EGR3 and treated with 150 µmol/L PA compared with the control group. Co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS) was used to detect potential interacting proteins of EGR3 and the intersected with the RNA-seq results. Co-IP confirmed the interaction between EGR3 and protein arginine methyltransferases 1 (PRMT1), after silencing EGR3 and PRMT1 inhibitor intervention, the secretion of IL-6 and IL-1ß in PA-induced podocytes was detected. Western blotting was used to detect the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) after overexpression or silencing of EGR3. RESULTS: EGR3 was significantly upregulated in renal cortex tissues of ORG patients and high-fat diet-induced obese mice (both P<0.01). In addition, after treating with 150 µmol/L PA for 48 hours, the expression of EGR3 in human and mouse podocytes was significantly upregulated (both P<0.05). Overexpression or silencing of EGR3 in human podocytes inhibited or promoted the secretion of IL-6 and IL-1ß in the cell culture supernatant after PA intervention, respectively, and upregulated or downregulated the expression of NPHS1, PODXL, NPHS2,and PDPN (all P<0.05). RNA-seq showed a total of 988 DEGs, and Co-IP+LC-MS identified a total of 238 proteins that may interact with EGR3. Co-IP confirmed that PRMT1 was an interacting protein with EGR3. Furthermore, PRMT1 inhibitors could partially reduce PA-induced IL-6 and IL-1ß secretion after EGR3 silencing in human podocytes (both P<0.05). Overexpression or silencing of EGR3 negatively regulated the expression of PRMT1 and p-STAT3. CONCLUSIONS: EGR3 may reduce ORG podocyte inflammatory damage by inhibiting the PRMT1/p-STAT3 pathway.


Asunto(s)
Proteína 3 de la Respuesta de Crecimiento Precoz , Obesidad , Podocitos , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Factor de Transcripción STAT3 , Podocitos/metabolismo , Podocitos/patología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Animales , Humanos , Ratones , Factor de Transcripción STAT3/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/patología , Ácido Palmítico/farmacología , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Ratones Obesos , Masculino , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Interleucina-6/metabolismo , Interleucina-6/genética , Corteza Renal/metabolismo , Corteza Renal/patología
9.
Int J Biol Sci ; 20(9): 3317-3333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993555

RESUMEN

The glomerular podocyte, a terminally differentiated cell, is crucial for the integrity of the glomerular filtration barrier. The re-entry of podocytes into the mitotic phase results in injuries or death, known as mitotic catastrophe (MC), which significantly contributes to the progression of diabetic nephropathy (DN). Furthermore, P62-mediated autophagic flux has been shown to regulate DN-induced podocyte injury. Although previous studies, including ours, have demonstrated that ursolic acid (UA) mitigates podocyte injury by enhancing autophagy under high glucose conditions, the protective functions and potential regulatory mechanisms of UA against DN have not been fully elucidated. For aiming to investigate the regulatory mechanism of podocyte injuries in DN progression, and the protective function of UA treatment against DN progression, we utilized db/db mice and high glucose (HG)-induced podocyte models in vivo and in vitro, with or without UA administration. Our findings indicate that UA treatment reduced DN progression by improving biochemical indices. P62 accumulation led to Murine Double Minute gene 2 (MDM2)-regulated MC in podocytes during DN, which was ameliorated by UA through enhanced P62-mediated autophagy. Additionally, the overexpression of NF-κB p65 or TNF-α abolished the protective effects of UA both in vivo and in vitro. Overall, our results provide strong evidence that UA could be a potential therapeutic agent for DN, regulated by inhibiting podocyte MC through the NF-κB/MDM2/Notch1 pathway by targeting autophagic-P62 accumulation.


Asunto(s)
Autofagia , Nefropatías Diabéticas , Podocitos , Triterpenos , Ácido Ursólico , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Animales , Triterpenos/farmacología , Triterpenos/uso terapéutico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Ratones , Autofagia/efectos de los fármacos , Mitosis/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
10.
Dokl Biol Sci ; 517(1): 69-72, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955882

RESUMEN

The fine structure of echiurid blood vessels in the proboscis is known in detail, but the circulatory system of the trunk is still understood mainly at the level of general anatomy. The trunk circulatory system was studied in Bonellia viridis females, and specialized podocytes were found to form the walls of the ring vessel and the anterior part of the ventral vessel. Podocytes were for the first time described in the echiurid circulatory system. Podocytes of B. viridis displayed a typical cell architecture, which is known for other bilaterians. A podocyte consists of a cell body; primary processes; and pedicels, which extend from the primary processes and are interconnected via specialized slit diaphragms. The presence of podocytes indicates that the ventral and ring vessels act as ultrafiltration sites, where the plasma is filtered through the basal lamina into the body cavity.


Asunto(s)
Podocitos , Animales , Anélidos/fisiología , Anélidos/anatomía & histología , Femenino , Sistema Cardiovascular
11.
Ren Fail ; 46(2): 2381597, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39039856

RESUMEN

BACKGROUND AND AIMS: Diabetic kidney disease (DKD) is one of the most common complications of diabetes. It is reported that mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) may have great clinical application potential for the treatment of DKD, but the underlying mechanism has not been illustrated. To clarify the effect of MSC-Exo on NOD2 signaling pathway in podocytes under high glucose (HG) and DKD, we conduct this study. METHODS: We co-cultured podocytes and MSCs-Exo under 30 mM HG and injected MSCs-Exo into DKD mice, then we detected the NOD2 signaling pathway by western blot, qRT-PCT, immunofluorescence, transmission electron microscopy and immunohistochemistry both in vitro and in vivo. RESULTS: In vitro, HG lead to the apoptosis, increased the ROS level and activated the NOD2 signaling pathway in podocytes, while MSCs-Exo protected podocytes from injury reduced the expression of inflammatory factors including TNF-α, IL-6, IL-1ß, and IL-18 and alleviated the inflammatory response, inhibited the activation of NOD2 signaling pathway and the expression of it's downstream protein p-P65, p-RIP2, prevented apoptosis, increased cell viability in podocytes caused by HG. In vivo, MSCs-Exo alleviated renal injury in DKD mice, protected renal function, decreased urinary albumin excretion and inhibited the activation of NOD2 signaling pathway as well as the inflammation in renal tissue. CONCLUSION: MSCs-Exo protected the podocytes and DKD mice from inflammation by mediating NOD2 pathway, MSCs-Exo may provide a new target for the treatment of DKD.


Asunto(s)
Apoptosis , Nefropatías Diabéticas , Exosomas , Células Madre Mesenquimatosas , Proteína Adaptadora de Señalización NOD2 , Podocitos , Transducción de Señal , Animales , Exosomas/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/terapia , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteína Adaptadora de Señalización NOD2/metabolismo , Podocitos/metabolismo , Podocitos/patología , Masculino , Ratones Endogámicos C57BL , Glucosa/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Técnicas de Cocultivo , Trasplante de Células Madre Mesenquimatosas/métodos , Especies Reactivas de Oxígeno/metabolismo , Riñón/patología , Riñón/metabolismo , Diabetes Mellitus Experimental/complicaciones
12.
Ren Fail ; 46(2): 2365408, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38874119

RESUMEN

Podocyte loss in glomeruli is a fundamental event in the pathogenesis of chronic kidney diseases. Currently, mitotic catastrophe (MC) has emerged as the main cause of podocyte loss. However, the regulation of MC in podocytes has yet to be elucidated. The current work aimed to study the role and mechanism of p53 in regulating the MC of podocytes using adriamycin (ADR)-induced nephropathy. In vitro podocyte stimulation with ADR triggered the occurrence of MC, which was accompanied by hyperactivation of p53 and cyclin-dependent kinase (CDK1)/cyclin B1. The inhibition of p53 reversed ADR-evoked MC in podocytes and protected against podocyte injury and loss. Further investigation showed that p53 mediated the activation of CDK1/cyclin B1 by regulating the expression of Wee1. Restraining Wee1 abolished the regulatory effect of p53 inhibition on CDK1/cyclin B1 and rebooted MC in ADR-stimulated podocytes via p53 inhibition. In a mouse model of ADR nephropathy, the inhibition of p53 ameliorated proteinuria and podocyte injury. Moreover, the inhibition of p53 blocked the progression of MC in podocytes in ADR nephropathy mice through the regulation of the Wee1/CDK1/cyclin B1 axis. Our findings confirm that p53 contributes to MC in podocytes through regulation of the Wee1/CDK1/Cyclin B1 axis, which may represent a novel mechanism underlying podocyte injury and loss during the progression of chronic kidney disorder.


Asunto(s)
Proteína Quinasa CDC2 , Proteínas de Ciclo Celular , Ciclina B1 , Doxorrubicina , Mitosis , Podocitos , Proteínas Tirosina Quinasas , Proteína p53 Supresora de Tumor , Podocitos/metabolismo , Podocitos/patología , Animales , Proteína Quinasa CDC2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ratones , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Doxorrubicina/farmacología , Ciclina B1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino
13.
Exp Biol Med (Maywood) ; 249: 10051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881848

RESUMEN

Podocyte injury or dysfunction can lead to proteinuria and glomerulosclerosis. Zonula occludens 1 (ZO-1) is a tight junction protein which connects slit diaphragm (SD) proteins to the actin cytoskeleton. Previous studies have shown that the expression of ZO-1 is decreased in chronic kidney disease (CKD). Thus, elucidation of the regulation mechanism of ZO-1 has considerable clinical importance. Triptolide (TP) has been reported to exert a strong antiproteinuric effect by inhibiting podocyte epithelial mesenchymal transition (EMT) and inflammatory response. However, the underlying mechanisms are still unclear. We found that TP upregulates ZO-1 expression and increases the fluorescence intensity of ZO-1 in a puromycin aminonucleoside (PAN)-induced podocyte injury model. Permeablity assay showed TP decreases podocyte permeability in PAN-treated podocyte. TP also upregulates the DNA demethylase TET2. Our results showed that treatment with the DNA methyltransferase inhibitors 5-azacytidine (5-AzaC) and RG108 significantly increased ZO-1 expression in PAN-treated podocytes. Methylated DNA immunoprecipitation (MeDIP) and hydroxymethylated DNA immunoprecipitation (hMeDIP) results showed that TP regulates the methylation status of the ZO-1 promoter. Knockdown of TET2 decreased ZO-1 expression and increased methylation of its promoter, resulting in the increase of podocyte permeability. Altogether, these results indicate that TP upregulates the expression of ZO-1 and decreases podocyte permeability through TET2-mediated 5 mC demethylation. These findings suggest that TP may alleviate podocyte permeability through TET2-mediated hydroxymethylation of ZO-1.


Asunto(s)
Dioxigenasas , Diterpenos , Compuestos Epoxi , Fenantrenos , Podocitos , Proteína de la Zonula Occludens-1 , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Podocitos/patología , Proteína de la Zonula Occludens-1/metabolismo , Fenantrenos/farmacología , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Dioxigenasas/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Permeabilidad/efectos de los fármacos , Humanos , Metilación de ADN/efectos de los fármacos
14.
Iran J Kidney Dis ; 18(3): 168-178, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38904337

RESUMEN

INTRODUCTION: Diabetic nephropathy (DN) belongs to the major cause of end-stage kidney disease. We probed the functions of a microRNA miR-33a in inducing podocytes injury during childhood  DN (CDN). METHODS: Kidney samples were collected from 20 children with DN. Matrix deposition and glomerular basement membranes thickness were examined by periodic acid-Schiff staining. Immunofluorescence staining was performed to assess kidney function-related proteins. MicroRNA (MiR)-33a mimic together with miR-33a inhibitor was transfected into podocytes for determining the roles of miR-33a. Glomerular podocyte apoptosis was determined by terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining along with flow cytometry. RESULTS: Down-regulation of Nephrin and Podocin and increased podocyte apoptosis rate were observed in the glomerulus of CDN as well as podocytes treated with high glucose. MiR-33a was up regulated in the glomeruli and glucose-treated podocytes. Injury in podocytes was aggravated with miR-33a elevation but alleviated with miR-33a inhibition. Moreover, the expression of Sirtuin 6 (Sirt6) was decreased while the levels of notch receptor 1 (Notch1) and notch receptor 4 (Notch4) were elevated in the glomerulus and glucose-treated podocytes. Decreased level of Sirt6 upon glucose treatment was abrogated by miR-33a inhibition, and the podocytes injury induced by glucose exposure was relieved by Sirt6 via Notch signaling. CONCLUSION: These findings indicated that miR-33a promoted podocyte injury via targeting Sirt6-dependent Notch signaling in CDN, which might provide a novel sight for CDN treatment. DOI: 10.52547/ijkd.7904.


Asunto(s)
Apoptosis , Nefropatías Diabéticas , MicroARNs , Podocitos , Transducción de Señal , Sirtuinas , MicroARNs/metabolismo , MicroARNs/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Podocitos/metabolismo , Podocitos/patología , Humanos , Sirtuinas/metabolismo , Sirtuinas/genética , Apoptosis/genética , Masculino , Niño , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Femenino , Receptores Notch/metabolismo , Receptores Notch/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glucosa/metabolismo , Regulación hacia Arriba , Receptor Notch1/metabolismo , Receptor Notch1/genética , Regulación hacia Abajo
15.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891998

RESUMEN

Approximately 30% of steroid-resistant nephrotic syndromes are attributed to monogenic disorders that involve 27 genes. Mutations in KANK family members have also been linked to nephrotic syndrome; however, the precise mechanism remains elusive. To investigate this, podocyte-specific Kank1 knockout mice were generated to examine phenotypic changes. In the initial assessment under normal conditions, Kank1 knockout mice showed no significant differences in the urinary albumin-creatinine ratio, blood urea nitrogen, serum creatinine levels, or histological features compared to controls. However, following kidney injury with adriamycin, podocyte-specific Kank1 knockout mice exhibited a significantly higher albumin-creatinine ratio and a significantly greater sclerotic index than control mice. Electron microscopy revealed more extensive foot process effacement in the knockout mice than in control mice. In addition, KANK1-deficient human podocytes showed increased detachment and apoptosis following adriamycin exposure. These findings suggest that KANK1 may play a protective role in mitigating podocyte damage under pathological conditions.


Asunto(s)
Proteínas del Citoesqueleto , Doxorrubicina , Ratones Noqueados , Podocitos , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Podocitos/metabolismo , Podocitos/patología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
16.
Biochem Biophys Res Commun ; 725: 150263, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38905995

RESUMEN

OBJECTIVE: To explore the feasibility of screening potential drugs for the treatment of diabetic kidney disease (DKD) using a single-cell transcriptome sequencing dataset and Connectivity Map (CMap) database screening. METHODS: A DKD single-nucleus transcriptome sequencing dataset was analyzed using Seurat 4.0 to obtain specific podocyte subclusters and differentially expressed genes (DEGs) related to DKD. These DEGs were subsequently subjected to a search against the CMap database to screen for drug candidates. Cell and animal experiments were conducted to evaluate the efficacy of the top 3 drug candidates. RESULTS: Initially, we analyzed the DKD single-nucleus transcriptome sequencing dataset to obtain intrinsic renal cells such as podocytes, endothelial cells, mesangial cells, proximal tubular cells, collecting duct cells and immune cells. Podocytes were further divided into four subclusters, among which the proportion of POD_1 podcytes was significantly greater in DKD kidneys than in control kidneys (34.0 % vs. 3.4 %). The CMap database was searched using the identified DEGs in the POD_1 subcluster, and the drugs, including tozasertib, paroxetine, and xylazine, were obtained. Cell-based experiments showed that tozasertib, paroxetine and xylazine had no significant podocyte toxicity in the concentration range of 0.01-50 µM. Tozasertib, paroxetine, and xylazine all reversed the advanced glycation end products (AGEs)-induced decrease in podocyte marker levels, but the effect of paroxetine was more prominent. Animal experiments showed that paroxetine decreased urine ALB/Cr levels in DKD model mice by approximately 51.5 % (115.7 mg/g vs. 238.8 mg/g, P < 0.05). Histopathological assessment revealed that paroxetine attenuated basement membrane thickening, restored the number of foot processes of podocytes, and reduced foot process fusion. In addition, paroxetine also attenuated renal tubular-interstitial fibrosis. Mechanistically, paroxetine inhibited the expression of GRK2 and NLRP3, decreased the phosphorylation level of p65, restored NRF2 expression, and relieved inflammation and oxidative stress. CONCLUSION: This strategy based on single-cell transcriptome sequencing and CMap data can facilitate the identification and aid the rapid development of clinical DKD drugs. Paroxetine, screened by this strategy, has excellent renoprotective effects.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Transcriptoma , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Animales , Transcriptoma/efectos de los fármacos , Ratones , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Análisis de la Célula Individual/métodos , Masculino , Evaluación Preclínica de Medicamentos/métodos , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica , Humanos
17.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928144

RESUMEN

This study aimed to investigate obesity-related glomerulopathy (ORG) at cellular, structural, and transcriptomic levels. Thirty Wistar rats were randomized into two groups: 15 rats were fed with a standard diet (SD-rats), and 15 rats were fed with a high-fat diet (HFD-rats). After 10 weeks, the weight, kidney function, histological features, and transcriptomic changes were assessed. HFD-rats gained significantly more weight (55.8% vs. 29.2%; p < 0.001) and albuminuria (10,384.04 ng/mL vs. 5845.45 ng/mL; p < 0.001) compared to SD-rats. HFD-rats exhibited early stages of ORG, with predominant mesangial matrix increase and podocyte hypertrophy (PH). These lesions correlated with differentially expressed (DE) genes and miRNAs. Functional analysis showed that miR-205, which was DE in both the kidneys and urine of HFD-rats, negatively regulated the PTEN gene, promoting lipid endocytosis in podocytes. The downregulation of PTEN was proved through a higher PTEN/nephrin ratio in the SD-rats and the presence of lipid vacuoles in HFD-podocytes. This study has found a specific targetome of miRNAs and gene expression in early stages of ORG. Also, it emphasizes the potential value of miR-205 as a urinary biomarker for detecting podocyte injury in ORG, offering a tool for early diagnosis, and opening new avenues for future therapeutic research of obesity-related glomerulopathy.


Asunto(s)
Dieta Alta en Grasa , MicroARNs , Obesidad , Podocitos , ARN Mensajero , Ratas Wistar , Animales , MicroARNs/genética , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Ratas , Dieta Alta en Grasa/efectos adversos , Masculino , Podocitos/metabolismo , Podocitos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Transcriptoma , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
18.
BMC Med Genomics ; 17(1): 152, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831322

RESUMEN

OBJECTIVE: To investigate the role of BTG2 in periodontitis and diabetic kidney disease (DKD) and its potential underlying mechanism. METHODS: Gene expression data for periodontitis and DKD were acquired from the Gene Expression Omnibus (GEO) database. Differential expression analysis identified co-expressed genes between these conditions. The Nephroseq V5 online nephropathy database validated the role of these genes in DKD. Pearson correlation analysis identified genes associated with our target gene. We employed Gene Set Enrichment Analysis (GSEA) and Protein-Protein Interaction (PPI) networks to elucidate potential mechanisms. Expression levels of BTG2 mRNA were examined using quantitative polymerase Chain Reaction (qPCR) and immunofluorescence assays. Western blotting quantified proteins involved in epithelial-to-mesenchymal transition (EMT), apoptosis, mTORC1 signaling, and autophagy. Additionally, wound healing and flow cytometric apoptosis assays evaluated podocyte migration and apoptosis, respectively. RESULTS: Analysis of GEO database data revealed BTG2 as a commonly differentially expressed gene in both DKD and periodontitis. BTG2 expression was reduced in DKD compared to normal conditions and correlated with proteinuria. GSEA indicated enrichment of BTG2 in the EMT and mTORC1 signaling pathways. The PPI network highlighted BTG2's relevance to S100A9, S100A12, and FPR1. Immunofluorescence assays demonstrated significantly lower BTG2 expression in podocytes under high glucose (HG) conditions. Reduced BTG2 expression in HG-treated podocytes led to increased levels of EMT markers (α-SMA, vimentin) and the apoptotic protein Bim, alongside a decrease in nephrin. Lower BTG2 levels were associated with increased podocyte mobility and apoptosis, as well as elevated RPS6KB1 and mTOR levels, but reduced autophagy marker LC3. CONCLUSION: Our findings suggest that BTG2 is a crucial intermediary gene linking DKD and periodontitis. Modulating autophagy via inhibition of the mTORC1 signaling pathway, and consequently suppressing EMT, may be pivotal in the interplay between periodontitis and DKD.


Asunto(s)
Apoptosis , Nefropatías Diabéticas , Transición Epitelial-Mesenquimal , Periodontitis , Proteínas Supresoras de Tumor , Periodontitis/genética , Periodontitis/metabolismo , Periodontitis/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Humanos , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Podocitos/metabolismo , Podocitos/patología , Transducción de Señal , Autofagia , Mapas de Interacción de Proteínas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Movimiento Celular
19.
J Extracell Vesicles ; 13(6): e12460, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853287

RESUMEN

Migrasomes represent a recently uncovered category of extracellular microvesicles, spanning a diameter range of 500 to 3000 nm. They are emitted by migrating cells and harbour a diverse array of RNAs and proteins. Migrasomes can be readily identified in bodily fluids like serum and urine, rendering them a valuable non-invasive source for disease diagnosis through liquid biopsy. In this investigation, we introduce a streamlined and effective approach for the capture and quantitative assessment of migrasomes, employing wheat germ agglutinin (WGA)-coated magnetic beads and flow cytometry (referred to as WBFC). Subsequently, we examined the levels of migrasomes in the urine of kidney disease (KD) patients with podocyte injury and healthy volunteers using WBFC. The outcomes unveiled a substantial increase in urinary podocyte-derived migrasome concentrations among individuals with KD with podocyte injury compared to the healthy counterparts. Notably, the urinary podocyte-derived migrasomes were found to express an abundant quantity of phospholipase A2 receptor (PLA2R) proteins. The presence of PLA2R proteins in these migrasomes holds promise for serving as a natural antigen for the quantification of autoantibodies against PLA2R in the serum of patients afflicted by membranous nephropathy. Consequently, our study not only pioneers a novel technique for the isolation and quantification of migrasomes but also underscores the potential of urinary migrasomes as a promising biomarker for the early diagnosis of KD with podocyte injury.


Asunto(s)
Podocitos , Podocitos/metabolismo , Humanos , Micropartículas Derivadas de Células/metabolismo , Masculino , Femenino , Enfermedades Renales/orina , Enfermedades Renales/diagnóstico , Enfermedades Renales/metabolismo , Citometría de Flujo/métodos , Persona de Mediana Edad , Adulto , Biomarcadores/orina , Receptores de Fosfolipasa A2
20.
Cell Mol Life Sci ; 81(1): 261, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878170

RESUMEN

Blood ultrafiltration in nephrons critically depends on specialized intercellular junctions between podocytes, named slit diaphragms (SDs). Here, by studying a homologous structure found in Drosophila nephrocytes, we identify the phospholipid scramblase Scramb1 as an essential component of the SD, uncovering a novel link between membrane dynamics and SD formation. In scramb1 mutants, SDs fail to form. Instead, the SD components Sticks and stones/nephrin, Polychaetoid/ZO-1, and the Src-kinase Src64B/Fyn associate in cortical foci lacking the key SD protein Dumbfounded/NEPH1. Scramb1 interaction with Polychaetoid/ZO-1 and Flotillin2, the presence of essential putative palmitoylation sites and its capacity to oligomerize, suggest a function in promoting SD assembly within lipid raft microdomains. Furthermore, Scramb1 interactors as well as its functional sensitivity to temperature, suggest an active involvement in membrane remodeling processes during SD assembly. Remarkably, putative Ca2+-binding sites in Scramb1 are essential for its activity raising the possibility that Ca2+ signaling may control the assembly of SDs by impacting on Scramb1 activity.


Asunto(s)
Proteínas de Drosophila , Proteínas de Transferencia de Fosfolípidos , Podocitos , Animales , Podocitos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Microdominios de Membrana/metabolismo , Uniones Intercelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...