Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.497
Filtrar
1.
Adv Protein Chem Struct Biol ; 141: 87-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960488

RESUMEN

The dimeric kinesin-8 motors have the biological function of depolymerizing microtubules (MTs) from the plus end. However, the molecular mechanism of the depolymerization promoted by the kinesin-8 motors is still undetermined. Here, a model is proposed for the MT depolymerization by the kinesin-8 motors. Based on the model, the dynamics of depolymerization in the presence of the single motor at the MT plus end under no load and under load on the motor is studied theoretically. The dynamics of depolymerization in the presence of multiple motors at the MT plus end is also analyzed. The theoretical results explain well the available experimental data. The studies can also be applicable to other families of kinesin motors such as kinesin-13 mitotic centromere-associated kinesin motors that have the ability to depolymerize MTs.


Asunto(s)
Cinesinas , Microtúbulos , Polimerizacion , Cinesinas/metabolismo , Cinesinas/química , Microtúbulos/metabolismo , Humanos , Animales
2.
J Environ Sci (China) ; 146: 149-162, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969443

RESUMEN

Industrial wastewater should be treated with caution due to its potential environmental risks. In this study, a polymerization-based cathode/Fe3+/peroxydisulfate (PDS) process was employed for the first time to treat a raw coking wastewater, which can achieve simultaneous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers. The results confirm that several dominant organic contaminants in coking wastewater such as phenol, cresols, quinoline and indole can be induced to polymerize by self-coupling or cross-coupling. The total chemical oxygen demand (COD) abatement from coking wastewater is 46.8% and the separable organic-polymer formed from organic contaminants accounts for 62.8% of the abated COD. Dissolved organic carbon (DOC) abatement of 41.9% is achieved with about 89% less PDS consumption than conventional degradation-based process. Operating conditions such as PDS concentration, Fe3+ concentration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals. ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl-, Br-, I-, NH4+, SCN- and CN-, suggesting that these inorganic ions may be involved in the polymerization. The specific consumption of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC. The values are much lower than those of the degradation-based processes in treating the same coking wastewater, and also are lower than those of most processes previously reported for coking wastewater treatment.


Asunto(s)
Coque , Polimerizacion , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Sulfatos/química , Polímeros/química , Análisis de la Demanda Biológica de Oxígeno , Técnicas Electroquímicas/métodos
3.
Cells ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38994946

RESUMEN

Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.


Asunto(s)
Actinas , Núcleo Celular , Reparación del ADN , Terapia Genética , Polimerizacion , Humanos , Actinas/metabolismo , Núcleo Celular/metabolismo , Terapia Genética/métodos , Animales
4.
Mol Cell ; 84(13): 2511-2524.e8, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996460

RESUMEN

BCL6, an oncogenic transcription factor (TF), forms polymers in the presence of a small-molecule molecular glue that stabilizes a complementary interface between homodimers of BCL6's broad-complex, tramtrack, and bric-à-brac (BTB) domain. The BTB domains of other proteins, including a large class of TFs, have similar architectures and symmetries, raising the possibility that additional BTB proteins self-assemble into higher-order structures. Here, we surveyed 189 human BTB proteins with a cellular fluorescent reporter assay and identified 18 ZBTB TFs that show evidence of polymerization. Through biochemical and cryoelectron microscopy (cryo-EM) studies, we demonstrate that these ZBTB TFs polymerize into filaments. We found that BTB-domain-mediated polymerization of ZBTB TFs enhances chromatin occupancy within regions containing homotypic clusters of TF binding sites, leading to repression of target genes. Our results reveal a role of higher-order structures in regulating ZBTB TFs and suggest an underappreciated role for TF polymerization in modulating gene expression.


Asunto(s)
Cromatina , Microscopía por Crioelectrón , Humanos , Cromatina/metabolismo , Cromatina/genética , Multimerización de Proteína , Sitios de Unión , Unión Proteica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Polimerizacion , Células HEK293 , Regulación de la Expresión Génica
5.
Oper Dent ; 49(4): 421-431, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38978305

RESUMEN

OBJECTIVES: This study evaluated the depth of cure (DoC) of eight resin-based composites (RBCs) photocured using one multipeak light-curing unit (LCU) on the standard output setting for the manufacturer's RBC recommended exposure time and at a higher irradiance for 3 seconds. METHODS: Three conventional RBCs: Tetric EvoCeram (Evo), Tetric N-Ceram (Cer), Tetric Prime (Pri); and five bulk-fill: Tetric N-Ceram Bulk Fill (CerBF), Opus Bulk Fill APS (OpusBF), Opus Bulk Fill Flow APS (OpusF), Tetric PowerFill (PFill) and Tetric PowerFlow (PFlow) were examined. Only PFill and PFlow are formulated to be photocured in 3 seconds. The RBCs were packed into a metal mold and photocured using a Bluephase PowerCure LCU for the RBC manufacturer's recommended exposure time on the standard mode and using the 3-second high irradiance mode. After photocuring, the specimens were immersed in a solvent for 1 hour. The length of the remaining RBC was measured and divided by 2. Data were analyzed using two-way analysis of variance (ANOVA) followed by the Tukey post hoc multiple comparison test (α=0.05). RESULTS: There was no significant difference in the DoC values for PFill and PFlow when photocured using the 3-second high irradiance protocol compared to the lower irradiance standard mode protocol. All other RBCs had significantly lower DoC values (p<0.001) when photocured off-label using the 3-second high irradiance mode. CONCLUSION: Of the eight RBCs tested, only PFill and PFlow achieved the same DoC when the high irradiance 3-second curing method was used compared to when their longer lower irradiance protocol was used.


Asunto(s)
Resinas Compuestas , Luces de Curación Dental , Ensayo de Materiales , Resinas Compuestas/uso terapéutico , Humanos , Factores de Tiempo , Polimerizacion , Curación por Luz de Adhesivos Dentales/métodos , Materiales Dentales/uso terapéutico , Materiales Dentales/química , Metacrilatos , Propiedades de Superficie
6.
Dalton Trans ; 53(29): 12349-12369, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38989784

RESUMEN

Quite recently we discovered that copper(II) complexes with isomeric morpholine-thiosemicarbazone hybrid ligands show good cytotoxicity in cancer cells and that the molecular target responsible for this activity might be tubulin. In order to obtain better lead drug candidates, we opted to exploit the power of coordination chemistry to (i) assemble structures with globular shape to better fit the colchicine pocket and (ii) vary the metal ion. We report the synthesis and full characterization of bis-ligand cobalt(III) and iron(III) complexes with 6-morpholinomethyl-2-formylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL1), 6-morpholinomethyl-2-acetylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL2), and 6-morpholinomethyl-2-formylpyridine 4N-phenyl-3-thiosemicarbazone (HL3), and mono-ligand nickel(II), zinc(II) and palladium(II) complexes with HL1, namely [CoIII(HL1)(L1)](NO3)2 (1), [CoIII(HL2)(L2)](NO3)2 (2), [CoIII(HL3)(L3)](NO3)2 (3), [FeIII(L2)2]NO3 (4), [FeIII(HL3)(L3)](NO3)2 (5), [NiII(L1)]Cl (6), [Zn(L1)Cl] (7) and [PdII(HL1)Cl]Cl (8). We discuss the effect of the metal identity and metal complex stoichiometry on in vitro cytotoxicity and antitubulin activity. The high antiproliferative activity of complex 4 correlated well with inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity were supported by experimental results and molecular docking calculations.


Asunto(s)
Colchicina , Complejos de Coordinación , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Colchicina/química , Colchicina/metabolismo , Colchicina/farmacología , Humanos , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/síntesis química , Sitios de Unión , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Polimerizacion , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Estructura Molecular , Proliferación Celular/efectos de los fármacos
7.
BMC Oral Health ; 24(1): 775, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987748

RESUMEN

Acrylic resins are widely used as the main components in removable orthodontic appliances. However, poor oral hygiene and maintenance of orthodontic appliances provide a suitable environment for the growth of pathogenic microorganisms. In this study, strontium-modified phosphate-based glass (Sr-PBG) was added to orthodontic acrylic resin at 0% (control), 3.75%, 7.5%, and 15% by weight to evaluate the surface and physicochemical properties of the novel material and its in vitro antifungal effect against Candida albicans (C. albicans). Surface microhardness and contact angle did not vary between the control and 3.75% Sr-PBG groups (p > 0.05), and the flexural strength was lower in the experimental groups than in the control group (p < 0.05), but no difference was found with Sr-PBG content (p > 0.05). All experimental groups showed an antifungal effect at 24 and 48 h compared to that in the control group (p < 0.05). This study demonstrated that 3.75% Sr-PBG exhibits antifungal effects against C. albicans along with suitable physicochemical properties, which may help to minimize the risk of adverse effects associated with harmful microbial living on removable orthodontic appliances and promote the use of various materials.


Asunto(s)
Resinas Acrílicas , Antifúngicos , Candida albicans , Vidrio , Ensayo de Materiales , Fosfatos , Estroncio , Propiedades de Superficie , Candida albicans/efectos de los fármacos , Resinas Acrílicas/química , Estroncio/farmacología , Estroncio/química , Antifúngicos/farmacología , Vidrio/química , Fosfatos/farmacología , Polimerizacion , Dureza , Resistencia Flexional , Humanos , Técnicas In Vitro
8.
Nat Commun ; 15(1): 5535, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951545

RESUMEN

The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.


Asunto(s)
Amiloide , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Cisteína , Oxidación-Reducción , Amiloide/metabolismo , Amiloide/química , Humanos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Cisteína/metabolismo , Cisteína/química , Disulfuros/metabolismo , Disulfuros/química , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Sulfhidrilo/química , Mutación , Polimerizacion
9.
Mikrochim Acta ; 191(8): 472, 2024 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028442

RESUMEN

A Ti3C2TxMXene-based biosensor has been developed and the photocatalytic atom transfer radical polymerization (photo ATRP) amplification strategy applied to detect target miRNA-21 (tRNA). Initially, Ti3C2TxMXene nanosheets were synthesized from the Ti3AlC2 MAX precursor via selective aluminum etching. Then, functionalization of Ti3C2TxMXene nanosheets with 3-aminopropyl triethoxysilane (APTES) via silylation reactions to facilitate covalent bonding with hairpin DNA biomolecules specifically designed for tRNA detection. Upon binding with the tRNA, the hairpin DNA liberated the azide (N3) group, initiating a click reaction to affix to the photo ATRP initiator. Through the ATRP photoreaction, facilitated by an organic photoredox catalyst and light, a significant amount of ferrocenyl methyl methacrylate (FMMA) monomer was immobilized on the electrode. Therefore, the electrochemical signal is amplified. The electrochemical efficacy of the biosensor was assessed using square wave voltammetry (SWV). Under optimized conditions, the biosensor demonstrated remarkable sensitivity in detecting tRNA, with a linear detection range from 0.01 fM to 10 pM and a detection limit of 2.81 aM. The findings elucidate that the developed biosensor, in conjunction with the photo ATRP strategy, offers reproducibility, stability, and increased sensitivity, underscoring its potential applications within the experimental medical sector of the biomolecular industry.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , MicroARNs , Titanio , Técnicas Biosensibles/métodos , MicroARNs/análisis , Técnicas Electroquímicas/métodos , Titanio/química , Catálisis , Procesos Fotoquímicos , Humanos , Polimerizacion , Silanos/química
10.
Proc Natl Acad Sci U S A ; 121(29): e2317977121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990941

RESUMEN

In a recent characterization of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variability present in 30 diagnostic samples from patients of the first COVID-19 pandemic wave, 41 amino acid substitutions were documented in the RNA-dependent RNA polymerase (RdRp) nsp12. Eight substitutions were selected in this work to determine whether they had an impact on the RdRp activity of the SARS-CoV-2 nsp12-nsp8-nsp7 replication complex. Three of these substitutions were found around the polymerase central cavity, in the template entry channel (D499G and M668V), and within the motif B (V560A), and they showed polymerization rates similar to the wild type RdRp. The remaining five mutations (P323L, L372F, L372P, V373A, and L527H) were placed near the nsp12-nsp8F contact surface; residues L372, V373, and L527 participated in a large hydrophobic cluster involving contacts between two helices in the nsp12 fingers and the long α-helix of nsp8F. The presence of any of these five amino acid substitutions resulted in important alterations in the RNA polymerization activity. Comparative primer elongation assays showed different behavior depending on the hydrophobicity of their side chains. The substitution of L by the bulkier F side chain at position 372 slightly promoted RdRp activity. However, this activity was dramatically reduced with the L372P, and L527H mutations, and to a lesser extent with V373A, all of which weaken the hydrophobic interactions within the cluster. Additional mutations, specifically designed to disrupt the nsp12-nsp8F interactions (nsp12-V330S, nsp12-V341S, and nsp8-R111A/D112A), also resulted in an impaired RdRp activity, further illustrating the importance of this contact interface in the regulation of RNA synthesis.


Asunto(s)
Mutación Puntual , ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , ARN Viral/genética , ARN Viral/metabolismo , Humanos , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Polimerizacion , COVID-19/virología , Sustitución de Aminoácidos , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Modelos Moleculares
11.
Sci Rep ; 14(1): 16719, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030243

RESUMEN

The purpose of this work is to explore the properties of the lignin-derived amine-free photoinitiating systems (PISs) during the curing process. Four novel hydrogen donors (HD1, HD2, HD3, and HD4) derived from lignin α-O-4 structural were designed and synthesized by simple methods, and their low C-H bond dissociation energies on methylene were determined by molecular orbitals theory. Four experimental groups using CQ (camphorquinone)/HD PIs formulated with Bis-GMA/TEGDMA (70 w%/30 w%) were compared to CQ/EDB (ethyl 4-dimethylamino benzoate) system. The photopolymerization profiles and double bond conversion rate was tracked by FTIR experiments; the color bleaching ability of the samples and color aging test assay were performed using color indexes measurements; The cytotoxicity of the samples was also compared to EDB related systems. All of the experimental groups with new HDs were compared to the control group with EDB by statistical analysis. Compared to CQ/EDB system, new lignin-derived hydrogen donors combined with CQ showed comparable or even better performances in polymerization initiation to form resin samples, under a blue dental LED in air. Excellent color bleaching property was observed with the new HDs. Aging tests and cytotoxicity examination of the resin were performed, indicating the new lignin compounds to be efficient hydrogen donors for amine-free CQ-based photo-initiating system. Novel lignin α-O-4 derived hydrogen donors are promising for further usage in light-curing materials.


Asunto(s)
Lignina , Polimerizacion , Lignina/química , Hidrógeno/química , Terpenos/química , Espectroscopía Infrarroja por Transformada de Fourier , Resinas Sintéticas/química , Materiales Dentales/química , Polietilenglicoles/química , Ácidos Polimetacrílicos/química , Alcanfor/análogos & derivados
12.
J Oral Sci ; 66(3): 182-188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010166

RESUMEN

PURPOSE: To evaluate the influence of the polymerization distance of monowave and polywave light curing units (LCUs) on the measured irradiance relative to the value reported by the manufacturer in relation to the physical properties of resin-based composites (RBCs). METHODS: Four LCUs were used: one monowave and three polywave. The irradiance was measured with a digital radiometer. Depth of cure (DC) and flexural strength (FS) tests were performed according to ISO 4049:2019 at polymerization distances of 0 mm and 5 mm. RESULTS: The irradiance of all LCUs was higher than that reported by the manufacturer (>25-64%). The irradiance of the four LCUs was reduced when polymerization was performed at between 0 to 5 mm (paired t-test, P < 0.001). The DC at 0 mm was similar in all groups but was significantly decreased at 5 mm distance (ANOVA P < 0.001). FS showed differences among the LCUs at 0 mm (ANOVA P < 0.001) and was affected by the polymerization distance. The elastic modulus was unaffected by the LCU used or the distance (ANOVA P > 0.001). CONCLUSIONS: The LCU must be positioned as near as possible to RBCs during the polymerization process, as increased distance negatively affects the depth of cure and flexural strength.


Asunto(s)
Resinas Compuestas , Luces de Curación Dental , Polimerizacion , Resinas Compuestas/química , Ensayo de Materiales , Resistencia Flexional , Módulo de Elasticidad
13.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000170

RESUMEN

The leading cause of composite restoration failure is secondary caries, and although caries is a multifactorial problem, weak, damage-prone adhesives play a pivotal role in the high susceptibility of composite restorations to secondary caries. Our group has developed synthetic resins that capitalize on free-radical polymerization and sol-gel reactions to provide dental adhesives with enhanced properties. The resins contain γ-methacryloxypropyltrimethoxysilane (MPS) as the Si-based compound. This study investigated the properties of methacrylate-based resins containing methacryloxymethyltrimethoxysilane (MMeS) as a short-chain alternative. The degree of conversion (DC), polymerization kinetics, water sorption, mechanical properties, and leachates of MMeS- and MPS-resins with 55 and 30 wt% BisGMA-crosslinker were determined. The formulations were used as model adhesives, and the adhesive/dentin (a/d) interfaces were analyzed using chemometrics-assisted micro-Raman spectroscopy. The properties of the 55 wt% formulations were comparable. In the 30 wt% BisGMA formulations, the MMeS-resin exhibited faster polymerization, lower DC, reduced leachates, and increased storage and loss moduli, glass transition (Tg), crosslink density, and heterogeneity. The spectroscopic results indicated a comparable spatial distribution of resin, mineralized, and demineralized dentin across the a/d interfaces. The hydrolytically stable experimental short-chain-silane-monomer dental adhesive provides enhanced mechanical properties through autonomous strengthening and offers a promising strategy for the development of restorative dental materials with extended service life.


Asunto(s)
Metacrilatos , Silanos , Silanos/química , Metacrilatos/química , Humanos , Hidrólisis , Dentina/química , Polimerizacion , Recubrimientos Dentinarios/química , Ensayo de Materiales , Espectrometría Raman , Bisfenol A Glicidil Metacrilato/química , Cementos Dentales/química
14.
J Mol Model ; 30(8): 266, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007951

RESUMEN

CONTEXT: Molecularly imprinted polymers (MIPs) have promising applications as synthetic antibodies for protein and peptide recognition. A critical aspect of MIP design is the selection of functional monomers and their adequate proportions to achieve materials with high recognition capacity toward their targets. To contribute to this goal, we calibrated a molecular dynamics protocol to reproduce the experimental trends in peptide recognition of 13 pre-polymerization mixtures reported in the literature for the peptide toxin melittin. METHODS: Three simulation conditions were tested for each mixture by changing the box size and the number of monomers and cross-linkers surrounding the template in a solvent-explicit environment. Fully atomistic MD simulations of 350 ns were conducted with the AMBER20 software, with ff19SB parameters for the peptide, gaff2 parameters for the monomers and cross-linkers, and the OPC water model. Template-monomer interaction energies under the LIE approach showed significant differences between high-affinity and low-affinity mixtures. Simulation systems containing 100 monomers plus cross-linkers in a cubic box of 90 Å3 successfully ranked the mixtures according to their experimental performance. Systems with higher monomer densities resulted in non-specific intermolecular contacts that could not account for the experimental trends in melittin recognition. The mixture with the best recognition capacity showed preferential binding to the 13-26-α-helix, suggesting a relevant role for this segment in melittin imprinting and recognition. Our findings provide insightful information to assist the computational design of molecularly imprinted materials with a validated protocol that can be easily extended to other templates.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Péptidos/química , Meliteno/química , Polimerizacion , Polímeros Impresos Molecularmente/química , Impresión Molecular/métodos
15.
Microb Biotechnol ; 17(6): e14473, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877615

RESUMEN

Poly-L-lactic acid (PLLA) is currently the most abundant bioplastic; however, limited environmental biodegradability and few recycling options diminish its value as a biodegradable commodity. Enzymatic recycling is one strategy for ensuring circularity of PLLA, but this approach requires a thorough understanding of enzymatic mechanisms and protein engineering strategies to enhance activity. In this study, we engineer PLLA depolymerizing subtilisin enzymes originating from Bacillus species to elucidate the molecular mechanisms dictating their PLLA depolymerization activity and to improve their function. The surface-associated amino acids of two closely related subtilisin homologues originating from Bacillus subtilis (BsAprE) and Bacillus pumilus (BpAprE) were compared, as they were previously engineered to have nearly identical active sites, but still varied greatly in PLLA depolymerizing activity. Further analysis identified several surface-associated amino acids in BpAprE that lead to enhanced PLLA depolymerization activity when engineered into BsAprE. In silico protein modelling demonstrated increased enzyme surface hydrophobicity in engineered BsAprE variants and revealed a structural motif favoured for PLLA depolymerization. Experimental evidence suggests that increases in activity are associated with enhanced polymer binding as opposed to substrate specificity. These data highlight enzyme adsorption as a key factor in PLLA depolymerization by subtilisins.


Asunto(s)
Poliésteres , Poliésteres/metabolismo , Poliésteres/química , Adsorción , Polimerizacion , Bacillus/enzimología , Bacillus/genética , Subtilisinas/química , Subtilisinas/genética , Subtilisinas/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Bacillus subtilis/química , Modelos Moleculares , Ingeniería de Proteínas , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
16.
Biomed Res Int ; 2024: 7457900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884017

RESUMEN

Objective: To evaluate the enamel bonding ability and orthodontic adhesive resin degree of conversion using the experimental bracket design. Material and Methods. Thirteen bovine teeth were used in the study. The experimental bracket was modified with a translucent region in the center of its body. After enamel etching, Orthocem orthodontic adhesive (FGM, Joinville, Brazil) was applied on the bracket base for bonding. The groups were divided as follows (n = 10 per group): (1) control (CB) with standard brackets and (2) spot bracket (SB) with experimental brackets featuring a 0.8 mm translucent region at the center using carbide bur. Shear bond strength (SBS) was evaluated after 24 hours in a universal testing machine and adhesive remnant index (ARI). The degree of conversion (DC) was analyzed using Raman spectroscopy (n = 3 per group). Data were then analyzed using Student's t-test and Mann-Whitney statistical methods. Results: The SB group exhibited a higher mean SBS (10.33 MPa) compared to the CB Group (8.77 MPa). However, there was no statistical difference between the groups (p = 0.376). Both SB and CB groups had a mean ARI score of 1. Raman analysis revealed a higher degree of conversion in the SB group (49.3%) compared to the CB group (25.9%). Conclusions: The experimental support showed a higher degree of adhesive conversion, although there was no significant increase in bond strength.


Asunto(s)
Resinas Compuestas , Recubrimiento Dental Adhesivo , Esmalte Dental , Soportes Ortodóncicos , Polimerizacion , Resistencia al Corte , Animales , Bovinos , Recubrimiento Dental Adhesivo/métodos , Esmalte Dental/química , Resinas Compuestas/química , Ensayo de Materiales , Cementos Dentales/química , Cementos de Resina/química
17.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 569-576, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38932544

RESUMEN

Tumor treatment fields (TTFields) can effectively inhibit the proliferation of tumor cells, but its mechanism remains exclusive. The destruction of cellular microtubule structure caused by TTFields through electric field force is considered to be the main reason for inhibiting tumor cell proliferation. However, the validity of this hypothesis still lacks exploration at the mesoscopic level. Therefore, in this study, we built force models for tubulins subjected to TTFields, based on the physical and electrical properties of tubulin molecules. We theoretically analyzed and simulated the dynamic effects of electric field force and torque on tubulin monomer polymerization, as well as the alignment and orientation of α/ß tubulin heterodimer, respectively. Research results indicate that the interference of electric field force induced by TTFields on tubulin monomer is notably weaker than the inherent electrostatic binding force among tubulin monomers. Additionally, the electric field torque generated by the TTFileds on α/ß tubulin dimers is also difficult to affect their random alignment. Therefore, at the mesoscale, our study affirms that TTFields are improbable to destabilize cellular microtubule structures via electric field dynamics effects. These results challenge the traditional view that TTFields destroy the microtubule structure of cells through TTFields electric field force, and proposes a new approach that should pay more attention to the "non-mechanical" effects of TTFields in the study of TTFields mechanism. This study can provide reliable theoretical basis and inspire new research directions for revealing the mesoscopic bioelectrical mechanism of TTFields.


Asunto(s)
Microtúbulos , Neoplasias , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Humanos , Neoplasias/terapia , Proliferación Celular , Electricidad Estática , Polimerizacion , Campos Electromagnéticos
18.
Environ Sci Technol ; 58(26): 11855-11863, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38875312

RESUMEN

Polyamide (PA)-based nanofiltration (NF) membranes have demonstrated extensive applications for a sustainable water-energy-environment nexus. A rational control of interfacial polymerization (IP) is highly efficacious to enhance NF separation performance yet remains a technical challenge. Herein, we proposed a regulation strategy of constructing amphiphilic molybdenum disulfide/cetyltrimethylammonium bromide interlayer atop the Kevlar hydrogel substrate. The amphiphilic nanosheet interlayered NF membrane exhibited a crumpled PA surface with an elevated cross-linking degree of 76.9%, leading to an excellent water permeance (16.8 L m-2 h-1 bar-1) and an impressive Na2SO4 rejection (99.1%). Meanwhile, the selectivity coefficient of Na2SO4/NaCl of the optimized TFC membrane reached 91, surpassing those of the recently reported NF membranes. Moreover, the optimized membrane exhibited a desirable rejection of over 90% against Mn2+ and Cu2+ in actual textile wastewater. Importantly, the underlying NF membrane formation mechanism was elucidated via both experiments and molecular simulations. The synchronous control of mass and heat transfer of IP process offers a new methodology for the state-of-the-art membrane fabrication, which opens more avenues in softening of brackish water and purification of industrial wastewater containing heavy metal ions.


Asunto(s)
Membranas Artificiales , Polimerizacion , Purificación del Agua , Purificación del Agua/métodos , Nanoestructuras/química , Molibdeno/química
19.
Anal Chem ; 96(26): 10496-10505, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38896549

RESUMEN

Circulating microRNAs (miRNAs) have recently emerged as noninvasive disease biomarkers. Quantitative detection of circulating miRNAs could offer significant information for clinical diagnosis due to its significance in the development of biological processes. In response to the current challenges of circulating miRNA detection, we introduce a sensitive, selective, and versatile circulating miRNA detection strategy using terminal deoxynucleotidyl transferase (TdT)-catalyzed RNA-primed DNA polymerization (TCRDP) coupled with semiarbitrary qPCR (SAPCR). Semiarbitrary qPCR was first developed here to detect long fragment targets with only a short-known sequence or to detect a short fragment target after extension with terminal transferase. Besides, the subsequent results show that TdT has a preference for RNA, particularly for extending RNAs with purine-rich and unstructured ends. Consequently, utilizing this assay, we have successfully applied it to the quantitative analysis of circulating miR-122 in animal models, a sensitive and informative biomarker for drug-induced liver injury, and as low as 200 zmol of the target is detected with desirable specificity and sensitivity, indicating that the TCRDP-SAPCR can offer a promising platform for nucleic acids analysis.


Asunto(s)
ADN Nucleotidilexotransferasa , ADN , Polimerizacion , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/química , Humanos , ADN/química , ADN/sangre , Animales , MicroARN Circulante/sangre , MicroARNs/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Anal Chem ; 96(26): 10594-10600, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904276

RESUMEN

The quantitative detection of antibodies is crucial for the diagnosis of infectious and autoimmune diseases, while the traditional methods experience high background signal noise and restricted signal gain. In this work, we have developed a highly efficient electrochemical biosensor by constructing a programmable DNA nanomachine integrated with electrochemically controlled atom transfer radical polymerization (eATRP). The sensor works by binding the target antidigoxin antibody (anti-Dig) to the epitope of the recognization probe, which then initiates the cascaded strand displacement reaction on a magnetic bead, leading to the capture of cupric oxide (CuO) nanoparticles through magnetic separation. After CuO was dissolved, the eATRP initiators were attached to the electrode based on the CuΙ-catalyzed azide-alkyne cycloaddition. The subsequent eATRP reaction results in the formation of long electroactive polymers (poly-FcMMA), producing an amplified current response for sensitive detection of anti-Dig. This method achieved a detection limit at clinically relevant picomolar concentration in human serum, offering a sensitive, convenient, and cost-effective tool for detecting various biomarkers in a wide range of applications.


Asunto(s)
Anticuerpos , Técnicas Biosensibles , Cobre , ADN , Técnicas Electroquímicas , Polimerizacion , ADN/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Humanos , Anticuerpos/inmunología , Anticuerpos/química , Cobre/química , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...