RESUMEN
Fire is a major disturbance affecting ecosystems globally, but its impact on mutualisms has received minimal attention. Here, we use a long-term field experiment to investigate the impact of different fire regimes on globally important ant-honeydew and ant-extrafloral nectar (EFN) mutualistic interactions in an Australian tropical savanna. These interactions provide ants with a key energy source, while their plant and hemipteran hosts receive protection services. We examined ant interactions on species of Eucalyptus (lacking EFNs) and Acacia (with EFNs) in three replicate plots each of burning every 2 and 3 years early in the dry season, burning late in the dry season every 2 years, and unburnt for > 25 years. The proportions of plants with ant-honeydew interactions in Acacia (44.6%) and Eucalyptus (36.3%) were double those of Acacia plants with ant-EFN interactions (18.9%). The most common ants, representing 85% of all interactions, were behaviourally dominant species of Oecophylla, Iridomyrmex and Papyrius. Fire promoted the incidence of ant interactions, especially those involving EFNs on Acacia, which occurred on only 3% of plants in unburnt plots compared with 24% in frequently burnt plots. Fire also promoted the relative incidence of behaviourally dominant ants, which are considered the highest quality mutualists. Contrary to expectations, frequent fire did not result in a switching of behaviourally dominant ant partners from forest-adapted Oecophylla to arid-adapted Iridomyrmex. Our findings that frequent fire increases ant interactions mediated by honeydew and extrafloral nectar, and promotes the quality of ant mutualists, have important implications for protective services provided by ants in highly fire-prone ecosystems.
Asunto(s)
Hormigas , Incendios , Pradera , Néctar de las Plantas , Animales , Hormigas/fisiología , Australia , Acacia , Simbiosis , Eucalyptus , Ecosistema , Clima TropicalRESUMEN
Organisms can respond to environmental gradients from local to landscape features. Aquatic insects are particularly affected by watershed peculiarities due to their dependence on microhabitat conditions. However, these relationships are poorly understood in lotic ecosystems of subtropical grasslands, limiting water resources management and bioassessment proposals. Here, we investigated how local stream environment and variations in landscape types affect the assemblage structure of a bioindicator insect group, face to the spatial proximity of the sampled locations. We sampled immatures of Ephemeroptera, Plecoptera, and Trichoptera in streams along the Brazilian Pampa biome, recording environmental descriptors in different grassland ecosystem types. The structure of aquatic insect assemblages differed across grassland types, with specific dominant genera associated with each landscape. Spatially-structured water physicochemical descriptors explained a significant amount of variation in assemblage data. Our findings suggest that grassland ecosystem type delimitations capture ecological attributes, influencing watershed features important to EPT assemblage structuration. Moreover, we highlight the importance of niche-based process structuring EPT assemblages along grassland ecosystem types of Pampa biome. In addition, we encourage using aquatic insects in bioassessment of lotic waters to assess local and landscape environmental impacts. We strongly recommend considering the grassland ecosystem schedule for water resources management and bioassessment proposals.
Asunto(s)
Pradera , Insectos , Ríos , Animales , Insectos/clasificación , Brasil , Ríos/química , Biodiversidad , Ecosistema , Monitoreo del Ambiente/métodosRESUMEN
Palm swamp forests are wetland ecosystems typical of the Brazilian Cerrado, which in recent decades have undergone intense changes due to land use alterations and climate change. As a result of these disturbances, many palm swamps have been experiencing significant drying, which can also affect adjacent vegetation. In the present study, we evaluated whether the drying of palm swamps affects the structure of plant-herbivore networks located in adjacent savanna areas in Brazil. Our results show that savanna areas adjacent to dry zones of palm swamps have fewer interactions, fewer interacting species, and a less specialized topology, which corroborates our expectations. Our findings indicate that the drying of palm swamps also has propagated impacts on adjacent savanna vegetation, impairing more specialized interactions in these environments. On the other hand, contrary to expectations, plant-herbivore networks in dry zones displayed higher modularity, lower nestedness and lower robustness than those in wet zones, suggesting that in dry environments, species tend to compartmentalize their interactions, even with lower interaction specialization. This is the first study to investigate the impacts of environmental drying on the structure of plant-herbivore networks in tropical ecosystems, highlighting the complexity of these effects and their differential impact on specialized and generalized interactions. Understanding these dynamics is crucial for developing effective conservation and management strategies in the face of ongoing environmental changes.
Asunto(s)
Bosques , Pradera , Humedales , Brasil , Cambio Climático , Ecosistema , Arecaceae/fisiología , Herbivoria/fisiología , Estrés FisiológicoRESUMEN
Rhipicephalus microplus is among the most important ectoparasites for livestock. The use of synthetic acaricides has raised some concerns due to the selection of tick populations that are resistant to acaricides and environmental contamination. Therefore, plant extracts have been used as alternatives for the treatment of animals infested with ticks. In this study, R. microplus populations from seven different dairy farms were collected and assessed for their resistance to the acaricides cypermethrin or trichlorfon. Larvae of the most resistant population were used in assays to evaluate the acaricide effect of leaf extracts from plants of the Brazilian savanna. The most active extracts were also tested against fully engorged females. Among seven tick populations, five and three showed resistance level ≥ III for cypermethrin or trichlorfon, respectively. The most resistant tick population was evaluated in mortality assays with the plants Piptadenia viridiflora, Annona crassiflora, Caryocar brasiliense, Ximenia americana, and Schinopsis brasilienses. The ethanolic extracts of C. brasiliense, X. americana and S. brasilienses showed higher larvicidal effects in comparison to the other extracts and cypermethrin. The ethanolic extract of X. americana showed 60.79â¯% efficacy against fully engorged females of the acaricide resistant tick strain. The ethanolic extracts of C. brasiliense, X. americana, and S. brasilienses showed peaks in HPLC-DAD, indicating the presence of tannins and flavonoids. Three of the plants showed promising results and should be explored in further studies to develop novel tools to control R. microplus in cattle.
Asunto(s)
Acaricidas , Extractos Vegetales , Piretrinas , Rhipicephalus , Triclorfón , Animales , Rhipicephalus/efectos de los fármacos , Piretrinas/farmacología , Acaricidas/farmacología , Brasil , Femenino , Extractos Vegetales/farmacología , Triclorfón/farmacología , Larva/efectos de los fármacos , Pradera , Bovinos , Resistencia a Medicamentos , Hojas de la Planta/química , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/tratamiento farmacológicoRESUMEN
Urban sprawl threatens biodiversity and is responsible for significant changes in the species that live in these environments. Given the high cost of comprehensive surveillance, monitoring disease indirectly, such as detecting skin lesions in birds, may help us better understand the prevalence of diseases affecting wild populations. We assessed the frequency of leg skin lesions, as a proxy of disease presence, in 1,565 individuals of 25 species, along the urban matrix of a large Neotropical city, Brasília, Federal District, Brazil. We tested the hypothesis that there is an increase in the frequency of skin lesions in birds due to urban intensification. We observed an increasing trend in some bird species between the frequency of occurrence of lesions and the intensity of urbanization. Species with a higher number of captures had an increase in the percentage of lesions, indicating that the occurrence of lesions may be linked to higher population density or that detection of the effect occurs only when sample sizes are high and controlled among urbanization categories. Our study highlights how the intensity of urbanization may increase the risk of disease transmission for these species. Unfortunately, studies on this topic are scarce in Neotropical regions, despite the region's high biodiversity and urban expansion.
Asunto(s)
Enfermedades de las Aves , Aves , Urbanización , Animales , Brasil/epidemiología , Enfermedades de las Aves/epidemiología , Enfermedades de la Piel/veterinaria , Enfermedades de la Piel/epidemiología , Enfermedades de la Piel/patología , Ciudades/epidemiología , PraderaRESUMEN
Soil microbial traits and functions play a central role in soil organic carbon (SOC) dynamics. However, at the macroscale (regional to global) it is still unresolved whether (i) specific environmental attributes (e.g., climate, geology, soil types) or (ii) microbial community composition drive key microbial traits and functions directly. To address this knowledge gap, we used 33 grassland topsoils (0-10 cm) from a geoclimatic gradient in Chile. First, we incubated the soils for 1 week in favorable standardized conditions and quantified a wide range of soil microbial traits and functions such as microbial biomass carbon (MBC), enzyme kinetics, microbial respiration, growth rates as well as carbon use efficiency (CUE). Second, we characterized climatic and physicochemical properties as well as bacterial and fungal community composition of the soils. We then applied regression analysis to investigate how strongly the measured microbial traits and functions were linked with the environmental setting versus microbial community composition. We show that environmental attributes (predominantly the amount of soil organic matter) determined patterns of MBC along the gradient, which in turn explained microbial respiration and growth rates. However, respiration and growth normalized for MBC (i.e., specific respiration and growth) were more linked to microbial community composition than environmental attributes. Notably, both specific respiration and growth followed distinct trends and were related to different parts of the microbial community, which in turn resulted in strong effects on microbial CUE. We conclude that even at the macroscale, CUE is the result of physiologically decoupled aspects of microbial metabolism, which in turn is partially determined by microbial community composition. The environmental setting and microbial community composition affect different microbial traits and functions, and therefore both factors need to be considered in the context of macroscale SOC dynamics.
Asunto(s)
Ciclo del Carbono , Carbono , Microbiota , Microbiología del Suelo , Suelo , Chile , Carbono/metabolismo , Carbono/análisis , Suelo/química , Hongos/fisiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Biomasa , PraderaRESUMEN
The synthesis and differential allocation of reserve compounds is an important adaptive mechanism that enables species to resprout in fire-prone ecosystems. The analysis of compound allocation dynamics (differential accumulation of compounds between plant organs) provides insights into plant responses to disturbances. The aim was to quantify reserves in eight legume species from Cerrado open savannas with high fire frequency in order to investigate the patterns of allocation and distribution of compounds between leaves and underground organs, drawing ecophysiological inferences. The species were collected in 'campo sujo' areas of the Cerrado. Leaves and underground organs (xylopodium, taproot tubers) were subjected to physiological analyses. Overall, underground organs were characterised by greater deposits of carbohydrates, mainly soluble sugars, and also with the accumulation of proteins and amino acids. This suggests that nitrogen reserves, as well as carbohydrates, may have an ecophysiological function in response to fire, being allocated to the underground organs. Phenols were mainly evident in leaves, but a morphophysiological pattern was identified, where the two species with taproot tubers tended to concentrate more phenols in the underground portion compared to species with xylopodium, possibly due to functional differences between these organs. Such data allow inferring relevant ecophysiological dynamics in legumes from open savannas.
Asunto(s)
Fabaceae , Hojas de la Planta , Fabaceae/metabolismo , Hojas de la Planta/metabolismo , Incendios , Pradera , Brasil , Fenoles/metabolismo , Raíces de Plantas/metabolismo , Aminoácidos/metabolismo , Tubérculos de la Planta/metabolismoRESUMEN
The field study aims to address identified research gaps by providing valuable information on the concentration, spatial distribution, pollution levels, and source apportionment of toxic and essential elements in sediment samples from four sampling sites (P1: Beira Rio (urban area), P2: Bananal (rural area), P3: Embiral (rural area), P4: Cidelândia (rural area) distributed along the middle Tocantins River, Brazil. Samples were collected in 2023 from river sections and analyzed using various contamination índices (geoaccumulation index, contamination factor, enrichment factor, pollution load index, sediment pollution index, potential ecological risk coefficients, and integrated risk index). Results indicated that the levels of aluminum, iron, manganese, and selenium exceeded legal standards in that year. Chromium, nickel, copper, zinc, and lead exceeded guidelines, mainly in section P1 for aluminum and section P3 for nickel and lead. Rainy months showed increased presence, indicating seasonal variability. The geoaccumulation index indicated low pollution levels, with lead and nickel notably present near urban and industrial areas. The enrichment factor highlighted elevated concentrations of lead and zinc in industrial areas. Both PLI and SPI indices raise concerns regarding Pb (P4) and Zn (P3) concentrations at specific times of the year. Overall, potential ecological risks were deemed low for most sites. Continuous monitoring and interventions are crucial to preserve water and environmental quality in the region.
Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Ríos , Contaminantes Químicos del Agua , Brasil , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Pradera , Humanos , Medición de Riesgo , Metales Pesados/análisisRESUMEN
Seagrass meadows are one of the world's most diverse ecosystems offering habitats for an extensive array of species, as well as serving as protectors of coral reefs and vital carbon sinks. Furthermore, they modify hydrodynamics by diminishing water flow velocities and enhancing sediment deposition, indicating the potential for microplastic accumulation in their sediments. The build-up of microplastics could potentially have ecological impacts threatening to ecosystems, however little is known about microplastic abundance and controlling factors in seagrass sediments. Here we investigated microplastic characteristics and abundances within sediments underlying four seagrass meadow sites on the Turneffe Atoll, Belize. Sediment cores were collected and sub-sampled to include a range of replicate surface sediments (0-4 cm) and depth cores (sediment depths 0-2, 2-5, 5-10, 10-20 and 20-30 cm). These were analysed using 25 µm resolution µFTIR, with spectral maps processed using siMPle software. Microplastics were prevalent across the sites with an abundance range (limit of detection (LOD) blank-corrected) of < LOD to 17137 microplastics kg-1 dw found on the east side of the atoll. However, their abundances varied greatly between the replicate samples. Polyethylene and polypropylene were the most commonly detected polymers overall, although the dominant polymer type varied between sites. There were no differences in the abundance of microplastics between sites, nor could abundance distributions be explained by seagrass cover. However, abundances of microplastics were highest in sediments with lower proportions of fine grained particles (clay, <4 µm) suggesting that hydrodynamics override seagrass effects. Additionally, no patterns were seen between microplastic abundance and depth of sediment. This suggests that microplastic abundance and distribution in seagrass meadows may vary significantly depending on the specific geographical locations within those meadows, and that more complex hydrodynamic factors influence spatial variability at a localised scale.
Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Sedimentos Geológicos/química , Arrecifes de Coral , Pradera , Contaminación Química del Agua/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , Belice , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Savannas and grasslands have lost almost 50% of their original cover worldwide. Therefore, the development of methods and information on open-canopy ecosystem restoration is urgent for the inclusion of these ecosystems into global and regional priorities. In the Brazilian savanna, the most diverse savanna in the world, restoration efforts focused on open ecosystems have been virtually absent, but have increased in the last 10 years. Such efforts are frequently threatened by invasive exotic grasses (IEG) that invade and dominate areas excluding native species, oftentimes aided by altered soil conditions. Long-term studies of savanna restoration trajectories are rare. In this study, we surveyed 22 savanna restoration areas established two to ten years before the study with similar restoration methods to assess their current status. We show that the current restoration methods are successful in establishing native species and allowing species turnover but they are threatened by IEG. Restoration success varies and is affected by soil conditions, IEG landscape cover and post-sowing weeding. Despite that, the simultaneous introduction of different plant functional groups allows turnover from fast to slow-growing plants. Establishing savanna native species is possible at an operational scale with current knowledge and techniques. However, native species establishment fails to prevent IEG reinfestation, which needs to be managed in restoration efforts in the Brazilian savanna.
Asunto(s)
Conservación de los Recursos Naturales , Pradera , Brasil , Poaceae/crecimiento & desarrollo , Ecosistema , Especies IntroducidasRESUMEN
Fire plays a key role in grasslands, determining the distribution and evolution of species and boundaries with neighboring ecosystems. Evidence of community-wide responses to fire is largely based on taxonomic and functional descriptors, while the phylogenetic dimension is overlooked. Here we evaluated how the taxonomic and phylogenetic structure of grassland plant communities responded to a time since fire (TSF) gradient. We sampled 12 communities in Southern Brazil under varying TSF and calculated taxonomic species richness (S) and dominance (D), phylogenetic diversity (PD), and mean phylogenetic distances (MPD). We used Structural Equation Models to test the relationships between the environmental gradient and community descriptors. Communities with longer TSF presented higher PD and MPD but lower species richness and increased taxonomic dominance. These sites were dominated by monocots, specifically C4 grasses, but also presented exclusive clades, whereas recently-burned sites presented lower taxonomic dominance and more species distributed in a wider variety of clades. Our results indicate that these scenarios are interchangeable and dependent on fire management. Fire adaptation was not constrained by phylogenetic relatedness, contrasting with previous findings for tropical savannahs and indicating that temperate and tropical non-forest ecosystems from South America respond differently to fire, possibly due to different evolutionary histories.
Asunto(s)
Biodiversidad , Incendios , Pradera , Filogenia , Brasil , Plantas/clasificación , Plantas/genética , Poaceae/genética , Poaceae/clasificación , EcosistemaRESUMEN
Several herbaceous species exhibit mass flowering after fires in Neotropical savannas. However, unequivocal evidence of fire dependency and the consequences for plant reproduction are lacking. In nutrient-poor fire-prone savannas, the damage caused by fire and by other means (e.g., leaf removal, but not necessarily having a negative impact) constrains the maintenance and expansion of plant population by affecting the ability of individuals to recover. Therefore, the compensatory responses of plants to both damages should be convergent in such environments. Using Bulbostylis paradoxa-reported to be fire-dependent to flower-as a model, we investigated the role of fire and leaf removal in anticipating the flowering and reproduction periods, and its possible consequences on seedling establishment. We monitored 70 burned individuals, 70 damaged/clipped, and 35 without damage to estimate time for flowering, seed quality and germination parameters. To expand our sampling coverage, we examined high-resolution images from herbarium collections in the SpeciesLink database. For each herbarium image, we recorded the presence or absence of a fire scar, the month of flowering, and the number of flowering stalks. Bulbostylis paradoxa was fire-stimulated but not dependent on fire to flower, with 65.7% of the individuals flowering in the burned area, 48.6% in the clipped, and 11.4% in the control. This was consistent with the analysis of the herbarium images in which 85.7% of the specimens with flowers had fire scars and 14.3% did not. Burned individuals synchronized flowering and produced more viable seeds. However, the seeds might face a period of unsuitable ecological conditions after early to mid-dry season fires. Flowering of unburned plants was synchronized with the onset of the rainy season. Flexibility in flowering and vegetative reproduction by fragmentation confer to this species, and most likely other plants from the herbaceous layer, the capability of site occupation and population persistence in burned and unburned savanna sites.
Asunto(s)
Incendios , Flores , Pradera , Hojas de la Planta , Flores/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Reproducción/fisiología , Germinación/fisiología , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Clima TropicalRESUMEN
Elevational gradients constitute excellent systems for understanding the mechanisms that generate and maintain global biodiversity patterns. Climatic gradients associated with elevation show strong influence on species distribution in mountains. The study of mountains covered by the same habitat type is an ideal scenario to compare alternatives to the energy hypotheses. Our aim was to investigate how changes in climatic conditions along the elevational gradient drive α- and ß-diversity of four taxa in a mountain system located within a grassland biome. We sampled ants, spiders, birds and plants, and measured climatic variables at six elevational bands (with 10 sampling sites each) established between 470 and 1,000 masl on a mountain from the Ventania Mountain System, Argentina. Species richness per site and ß-diversity (turnover and nestedness) between the lowest band and upper sites were estimated. For most taxa, species richness declined at high elevations and energy, through temperature, was the major driver of species richness for ants, plants and birds, prevailing over productivity and water availability. The major ß-diversity component was turnover for plants, spiders and birds, and nestedness for ants. The unique environmental conditions of the upper bands could favour the occurrence of specialist and endemic species.
Asunto(s)
Altitud , Hormigas , Biodiversidad , Aves , Pradera , Arañas , Animales , Hormigas/fisiología , Hormigas/clasificación , Aves/fisiología , Argentina , Arañas/fisiología , Arañas/clasificación , Plantas/clasificación , Clima , EcosistemaRESUMEN
The Least Nighthawk Chordeiles pusillus is widespread wherever there are savannas in the South American tropics, often in isolated patches, such as white-sands savannas in the Amazon rainforest realm. Here, we investigate genetic relationships between populations of the Least Nighthawk to understand historical processes leading to its diversification and to determine dispersal routes between northern and southern savannas by way of three hypothesized dispersal corridors by comparing samples from white-sand savannas to samples from other savannas outside of the Amazon rainforest region. We use 32 mtDNA samples from the range of C. pusillus to infer a dated phylogeny. In a subset of 17 samples, we use shotgun sequences to infer a distance-based phylogeny and to estimate individual admixture proportions. We calculate gene flow and shared alleles between white-sand and non-Amazonian populations using the ABBA-BABA test (D statistics), and Principal Component Analysis (PCA) to examine genetic structure within and between lineages. Finally, we use species distribution modelling (SDM) of conditions during the Last Glacial Maximum (LGM), currently, and in the future (2050-2080) to predict potential species occurrence under a climate change scenario. Two main clades (estimated to have diverged around 1.07 million years ago) were recovered with mtDNA sequences and Single Nucleotide Polymorphism (SNPs) and were supported by NGSadmix and PCA: one in the Amazon basin white-sand savannas, the other in the non-Amazonian savannas. Possible allele sharing between these clades was indicated by the D-statistics between northern non-Amazonian populations and the white-sand savanna population, but this was not corroborated by the admixture analyses. Dispersal among northern non-Amazonian populations may have occurred in a dry corridor between the Guianan and the Brazilian Shield, which has since moved eastward. Our data suggest that the lineages separated well before the Last Glacial Maximum, consequently dispersal could have happened at any earlier time during similar climatic conditions. Subsequently, non-Amazonian lineages became more divergent among themselves, possibly connecting and dispersing across the mouth of the Amazon River across Marajó island during favourable climatic conditions in the Pleistocene.
Asunto(s)
ADN Mitocondrial , Especiación Genética , Filogenia , Animales , América del Sur , ADN Mitocondrial/genética , Pradera , Flujo Génico , Bosque Lluvioso , Genética de PoblaciónRESUMEN
Scavenging is a key process for the cycling of nutrients in ecosystems, yet it is still neglected in the ecological literature. Apart from the importance of specific groups of animals in scavenging, there have been few ecological studies that compare them. Furthermore, the ecological studies on scavenging have mainly focused on vertebrates despite the crucial importance of invertebrates in this process. Here, we performed a large-scale ant suppression and vertebrate exclusion experiment to quantify the relative contribution of ants, non-ant invertebrates and vertebrates in scavenging nitrogen-rich (insect carcasses) and carbon-rich (seeds) baits in two contrasting mountainous habitats in Brazil (grasslands and forests). Overall, bait removal was 23.2% higher in forests than in grasslands. Ants were the primary scavengers in grasslands, responsible for more than 57% of dead insect larvae and seed removal, while, in forests, non-ant invertebrates dominated, removing nearly 65% of all baits. Vertebrates had a minor role in scavenging dead insect larvae and seeds in both habitats, with <4% of removals. Furthermore, our results show that animal-based baits were more consumed in forests than seeds, and both resources were equally consumed in grasslands. Therefore, we demonstrate the superiority of invertebrates in this process, with a particular emphasis on the irreplaceable role of ants, especially in this grassland ecosystem. As such, we further advance our knowledge of a key ecosystem process, showing the relative importance of three major groups in scavenging and the differences in ecosystems functioning between two contrasting tropical habitats.
Asunto(s)
Hormigas , Bosques , Pradera , Invertebrados , Animales , Hormigas/fisiología , Invertebrados/fisiología , Brasil , Conducta Alimentaria/fisiología , Ecosistema , Insectos/fisiologíaRESUMEN
Aquatic macrophytes are the main autochthonous component of primary production in the Amazon Basin. Floating meadows of these plants support habitats with highly diverse animal communities. Fishes inhabiting these habitats have been assumed to use a broad range of food items and compose a particular food web. We employed carbon (δ13C) and nitrogen (δ15N) stable isotope analysis to draw the trophic structure of these habitats and to trace the energy flow by its trophic levels. Fishes and other animals from 18 independent macrophyte meadows of a floodplain lake of the Solimões River (Amazonia, Brazil) were analyzed. The food web of macrophyte meadows consists of four trophic levels above autotrophic sources. In general, primary consumers exhibited a broader range of food sources than the upper trophic levels. Some fish species depended on a large number of food sources and at the same time are consumed by several predators. The energy transfer from one trophic level to the next was then mainly accomplished by these species concentrating a high-energy flux and acting as hubs in the food web. The broad range of δ13C values observed indicates that the organisms living in the macrophyte meadows utilize a great diversity of autotrophic sources.
Asunto(s)
Pradera , Lagos , Animales , Lagos/química , Ecosistema , Cadena Alimentaria , Peces , Transferencia de EnergíaRESUMEN
Urban environments present less environmental heterogeneity in relation to the natural ones, affecting the biodiversity of bats and the ecological processes in which they participate. In this way, we will identify how urbanization influences the structure of bat communities in the municipality of Goiânia, Goiás, Brazil. We compared species composition, guilds and bat richness in a gradient that crossed urban, semi-urban and natural areas in the municipality of Goiânia, contained in the Cerrado biome. We captured a total of 775 bats of 16 species distributed in three families. Urban areas had a higher species abundance, while semi-urban areas had a higher species richness. The three types of environments have different compositions, the urban one being more homogeneous, the fauna in these areas is composed of generalist species, which benefit from this process. The diversity present in semi-urban areas is a consequence of the intersection between urban and natural fauna, which is why urban expansion needs to occur in a planned manner to minimize the impacts of this process and ensure the maintenance of biodiversity.
Asunto(s)
Quirópteros , Humanos , Animales , Urbanización , Brasil , Pradera , Ecosistema , BiodiversidadRESUMEN
Environmental heterogeneity poses a significant influence on the functional characteristics of species and communities at local scales. Environmental transition zones, such as at the savanna-forest borders, can act as regions of ecological tension when subjected to sharp variations in the microclimate. For ectothermic organisms, such as lizards, environmental temperatures directly influence physiological capabilities, and some species use different thermoregulation strategies that produce varied responses to local climatic conditions, which in turn affect species occurrence and community dynamics. In the context of global warming, these various strategies confer different types of vulnerability as well as risks of extinction. To assess the vulnerability of a species and understand the relationships between environmental variations, thermal tolerance of a species and community structure, lizard communities in forest-savanna transition areas of two national parks in the southwestern Amazon were sampled and their thermal functional traits were characterized. Then, we investigated how community structure and functional thermal variation were shaped by two environmental predictors (i.e., microclimates estimated locally and vegetation structure estimated from remote sensing). It was found that the community structure was more strongly predicted by the canopy surface reflectance values obtained via remote sensing than by microclimate variables. Environmental temperatures were not the most important factor affecting the occurrence of species, and the variations in ecothermal traits demonstrated a pattern within the taxonomic hierarchy at the family level. This pattern may indicate a tendency for evolutionary history to indirectly influence these functional features. Considering the estimates of the thermal tolerance range and warming tolerance, thermoconformer lizards are likely to be more vulnerable and at greater risk of extinction due to global warming than thermoregulators. The latter, more associated with open environments, seem to take advantage of their lower vulnerability and occur in both habitat types across the transition, potentially out-competing and further increasing the risk of extinction and vulnerability of forest-adapted thermoconformer lizards in these transitional areas.
Asunto(s)
Lagartos , Microclima , Bosque Lluvioso , Animales , Lagartos/fisiología , Pradera , Brasil , Calentamiento GlobalRESUMEN
The spread of invasive alien species over natural environments has become one of the most serious threats to biodiversity and the functioning of ecosystems worldwide. Understanding the population attributes that allow a given species to become invasive is crucial for improving prevention and control interventions. Pampas grasslands are particularly sensitive to the invasion of exotic woody plants. In particular, the Ventania Mountains undergo the advance of alien woody plants; among which the Aleppo pine (Pinus halepensis) stands out due to the extension of the area it covers and the magnitude of the ecological changes associated to its presence. Using a model that describes the population dynamics of the species in the area, we evaluated the expected behavior of the population under different environmental conditions and different management scenarios. When the effect of stochastic fires was simulated, the growth rate was greater than 1 for all the frequencies considered, peaking under fires every nine years, on average. When evaluating the effect of periodic mechanical control of the adult population, the reduction in growth rate was insufficient, except for cutting intensities that significantly exceeded the current operational capacity of the area. Under prescribed fire scenarios, on the other hand, burning frequencies greater than seven years resulted in population reductions. The results highlight the importance of fire in regulating the population of P. halepensis in the Ventania Mountains, with contrasting effects depending on the frequency with which it occurs, which allows considering it as an effective environmental management option for the control of the species.