Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304.804
Filtrar
1.
Zhonghua Bing Li Xue Za Zhi ; 53(7): 660-666, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-38955695

RESUMEN

Objective: To investigate the clinical, pathological and immunophenotypic features, and differential diagnosis of angioimmunoblastic T-cell lymphoma (AITL) with B-cell proliferation or neoplasms. Methods: Eight qualified cases were collected from the Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China from January 2019 to July 2023. One case was diagnosed with AITL and diffuse large B-cell lymphoma (DLBCL) and the other seven cases were diagnosed with AITL and B-cell proliferation. Clinical characteristics and pathological morphology were summarized. Immunohistochemical analysis, fluorescence in situ hybridization and gene rearrangement detection were performed. Results: The patients' average age was 58 years. Five of them were male. Biopsies of the enlarged cervical lymph nodes showed structural destruction and exhibited various histologic patterns. Some cases revealed Burkitt-like morphology, a moderate tumor volume and slightly irregular nuclei. Some cases showed prominent nucleoli. High endothelial venules and expanded follicular dendritic cells were detected. Tumor cells derived from T-follicular helper (TFH) cells were positive for two or more TFH biomarkers. Nodular or diffuse patchy proliferation of B cells was noted around the tumor tissue, which was initially considered as B-cell lymphoma. All of the 8 cases showed monoclonal rearrangements of the T-cell receptor genes while 5 of them also showed clonal rearrangements of the Ig genes. Seven of the 8 cases were subject to the detection of C-MYC gene breakage and were all negative. EBV-positive cells were seen in 6 cases. Neoplastic B cells were positive for C-MYC (>40%), while proliferative B cells were negative for C-MYC (<40%). Conclusions: The histological morphology of AITL with B-cell proliferation or lymphoma may be different from AITL. An integrated analysis, incorporating clinical, morphologic, immunophenotypic, and molecular assessment, helps reach an accurate diagnosis. This group of cases demonstrated the clinical and pathological characteristics of AITL accompanied by B-cell proliferation and B-cell lymphoma. The findings suggest that C-MYC maybe a feasible indicator for distinguishing B-cell proliferation from B-cell lymphoma, and provide a simple and feasible immunohistochemical marker for the diagnosis and research of composite lymphoma.


Asunto(s)
Linfocitos B , Proliferación Celular , Linfadenopatía Inmunoblástica , Linfoma de Células B Grandes Difuso , Humanos , Masculino , Persona de Mediana Edad , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/genética , Linfadenopatía Inmunoblástica/patología , Linfadenopatía Inmunoblástica/genética , Linfocitos B/patología , Diagnóstico Diferencial , Linfoma de Células T/patología , Linfoma de Células T/genética , Ganglios Linfáticos/patología , Femenino , Hibridación Fluorescente in Situ , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Anciano , Linfoma de Células B/patología , Linfoma de Células B/genética
2.
Med Oncol ; 41(8): 193, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955918

RESUMEN

Preclinical and clinical research showed that immune checkpoint blockade provides beneficial effects for many patients with liver cancer. This study aimed to assess the effect of CTLA-4-specific siRNA on the proliferation, cell cycle, migration, and apoptosis of HePG2 cells. Transfection of siRNA was performed by electroporation. The viability of cells was determined through MTT assay. Flow cytometry was performed to investigate the cell cycle and apoptosis rate, and the wound-healing assay was used to determine HepG2 cells migration. The expression levels of CTLA-4, c-Myc, Ki-67, BCL-2, BAX, caspase-9 (CAS9), and MMP-2,9,13 were measured by qRT-PCR. Transfection of specific CTLA-4-siRNA significantly inhibited the expression of the CTLA-4 gene. Also, our results revealed that CTLA-4 silencing diminished the proliferation and migration as well as induced the apoptosis of HePG2 cells. CTLA-4-siRNA transfection induced the cell cycle arrest in G2 phase. Moreover, CTLA-4-siRNA transfection reduced the expression levels of c-Myc, Ki-67, BCL-2, MMP-2,9,13, and elevated the expression levels of BAX and caspase-9. Our results suggest that silencing CTLA-4 through specific siRNA may be a promising strategy for future therapeutic interventions for treating liver cancer.


Asunto(s)
Apoptosis , Antígeno CTLA-4 , Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Neoplasias Hepáticas , ARN Interferente Pequeño , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Células Hep G2 , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/antagonistas & inhibidores , Movimiento Celular/genética , ARN Interferente Pequeño/genética , Silenciador del Gen
3.
Drug Dev Res ; 85(5): e22231, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38956926

RESUMEN

The close association between inflammation and cancer inspired the synthesis of a series of 1,3,4-oxadiazole derivatives (compounds H4-A-F) of 6-methoxynaphtalene. The chemical structures of the new compounds were validated utilizing Fourier-transform infrared, proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance spectroscopic techniques and CHN analysis. Computer-aided drug design methods were used to predict the compounds biological target, ADMET properties, toxicity, and to evaluate the molecular similarities between the design compounds and erlotinib, a standard epidermal growth factor receptor (EGFR) inhibitor. The antiproliferative effects of the new compounds were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, cell cycle analysis, apoptosis detection by microscopy, quantitative reverse transcription-polymerase chain reaction, and immunoblotting, and EGFR enzyme inhibition assay. In silico analysis of the new oxadiazole derivatives indicated that these compounds target EGFR, and that compounds H4-A, H4-B, H4-C, and H4-E show similar molecular properties to erlotinib. Additionally, the results indicated that none of the synthesized compounds are carcinogenic, and that compounds H4-A, H4-C, and H4-F are nontoxic. Compound H4-A showed the best-fit score against EGFR pharmacophore model, however, the in vitro studies indicated that compound H4-C was the most cytotoxic. Compound H4-C caused cytotoxicity in HCT-116 colorectal cancer cells by inducing both apoptosis and necrosis. Furthermore, compounds H4-D, H4-C, and H4-B had potent inhibitory effect on EGFR tyrosine kinase that was comparable to erlotinib. The findings of this inquiry offer a basis for further investigation into the differences between the synthesized compounds and erlotinib. However, additional testing will be needed to assess all of these differences and to identify the most promising compound for further research.


Asunto(s)
Antineoplásicos , Receptores ErbB , Simulación del Acoplamiento Molecular , Naproxeno , Oxadiazoles , Receptores ErbB/antagonistas & inhibidores , Humanos , Oxadiazoles/farmacología , Oxadiazoles/química , Oxadiazoles/síntesis química , Naproxeno/farmacología , Naproxeno/análogos & derivados , Naproxeno/química , Naproxeno/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proliferación Celular/efectos de los fármacos
4.
Drug Dev Res ; 85(5): e22229, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38958104

RESUMEN

Indole-based agents are frequently used in targeted or supportive therapy of several cancers. In this study, we investigated the anticancer properties of originally synthesized novel indolin-2-one derivatives (6a-d) against Malignant Mesothelioma, Breast cancer, and Colon Cancer cells. Our results revealed that all derivatives were effectively delayed cell proliferation by inhibiting the ERK1/2, AKT, and STAT3 signaling pathways in a concentration-dependent manner. Additionally, these variants induced cell cycle arrest in the S phase, accompanied by elevated levels of p21 and p27 expressions. Derivatives also initiated mitochondrial apoptosis through the upregulation of Bax and downregulation of Bcl-2 proteins, leading to the activation of caspase 3 and PARP cleavage in exposed cells. Remarkably, three of the indolin-2-one derivatives displayed significant selectivity towards Breast and Colon Cancer cells, with compound 6d promising as the most potent and wide spectral one for all cancer cell lines.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Indoles , Humanos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Indoles/farmacología , Indoles/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos
5.
Neoplasma ; 71(3): 243-254, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38958714

RESUMEN

Allicin (AL) is one of garlic-derived organosulfides and has a variety of pharmacological effects. Studies have reported that AL has notable inhibitory effects on liver cancer, gastric cancer, breast cancer, and other cancers. However, there are no relevant reports about its role in human nasopharyngeal carcinoma. Ferroptosis is an iron-dependent form of non-apoptotic regulated cell death. Increasing evidence indicates that induction of ferroptosis can inhibit the proliferation, migration, invasion, and survival of various cancer cells, which act as a tumor suppressor in cancer. In this study, we confirmed that AL can inhibit cell proliferation, migration, invasion, and survival in human nasopharyngeal carcinoma cells. Our finding shows that AL can induce the ferroptosis axis by decreasing the level of GSH and GPX4 and promoting the induction of toxic LPO and ROS. AL-mediated cytotoxicity in human nasopharyngeal carcinoma cells is dependent on ferroptosis. Therefore, AL has good anti-cancer properties and is expected to be a potential drug for the treatment of nasopharyngeal carcinoma.


Asunto(s)
Proliferación Celular , Disulfuros , Ferroptosis , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Especies Reactivas de Oxígeno , Ácidos Sulfínicos , Humanos , Ferroptosis/efectos de los fármacos , Disulfuros/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/patología , Proliferación Celular/efectos de los fármacos , Ácidos Sulfínicos/farmacología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/patología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Movimiento Celular/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Glutatión/metabolismo , Supervivencia Celular/efectos de los fármacos
6.
Neoplasma ; 71(3): 279-288, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38958715

RESUMEN

Osteosarcoma (OS) is a common primary bone tumor in children and adolescents. Circular RNA (circRNA)-IARS acts as an oncogene in multiple human tumors. However, the circ-IARS function in OS is unclear. This research aimed to elucidate the roles and mechanisms of circ-IARS in OS. In this study, circ-IARS expressions were raised in OS tissues and cells. circ-IARS expressions were closely related to clinical stage and distant metastasis. Furthermore, overall survival rates were reduced in OS patients with high circ-IARS levels. Also, silencing circ-IARS weakened OS cell proliferation and invasion, yet enhanced cell ferroptosis. Mechanistically, circ-IARS targeted miR-188-5p to regulate RAB14 expressions in OS cells. Moreover, circ-IARS knockdown repressed OS cell proliferation, invasion, and induced ferroptosis, yet these impacts were abolished by co-transfection with anti-miR-188-5p or pcDNA-RAB14. Meanwhile, interference with circ-IARS reduced OS cell proliferation, and decreased RAB14 (a member of the RAS oncogene family), GPX4, and xCT (crucial ferroptosis regulators) expressions in vivo. In conclusion, circ-IARS facilitated OS progression via miR-188-5p/RAB14.


Asunto(s)
Neoplasias Óseas , Proliferación Celular , Ferroptosis , MicroARNs , Osteosarcoma , ARN Circular , Proteínas de Unión al GTP rab , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , MicroARNs/genética , ARN Circular/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Ferroptosis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Masculino , Línea Celular Tumoral , Femenino , Progresión de la Enfermedad , Ratones , Animales , Regulación Neoplásica de la Expresión Génica
7.
Neoplasma ; 71(3): 219-230, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38958710

RESUMEN

Epidermal growth factor receptor (EGFR) gene exon 19 in-frame deletion (19del) and exon 21 L858R point mutation (21L858R mutation) are prevalent mutations in lung adenocarcinoma. Lung adenocarcinoma patients with 19del presented with a better prognosis than the 21L858R mutation under the same epidermal growth factor receptor tyrosine kinase inhibitor treatment. Our study aimed to uncover the expression of long non-coding RNA LOC105376794 between 19del and 21L858R mutation, and explore the mechanism that regulates cells' biological behavior and gefitinib sensitivity in lung adenocarcinoma cells with 19del. Transcriptome sequencing was conducted to identify differentially expressed lncRNAs between EGFR 19del and 21L858R mutation in serum through the DNBSEQ Platform. Protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes pathway were conducted to analyze the relationship between lncRNAs and mRNAs through STRING and Dr. TOM. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure the expression of lncRNA LOC105376794 in serum and cells. Loss-of-function experiments were used to validate the biological function and gefitinib sensitivity of LOC105376794 in lung adenocarcinoma cells. Protein levels were detected by western blotting. Through transcriptome resequencing and RT-qPCR, we found the expression levels of LOC105376794 in serum were increased in the 19del group compared with the 21L858R mutation group. Inhibition of LOC105376794 promoted proliferation, migration and invasion, and reduced apoptosis of HCC827 and PC-9 cells. The low expression of LOC105376794 reduced gefitinib sensitivity in PC-9 cells. Mechanistically, we found that the knockdown of LOC105376794 suppressed activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP) signaling pathway and facilitated the expression of extracellular signal-regulated kinase 1/2 (ERK) phosphorylation. LOC105376794 altered cell biological behavior and gefitinib sensitivity of lung adenocarcinoma cells with 19del through the ATF4/CHOP signaling pathway and the expression of ERK phosphorylation. The results further illustrated the fact that lung adenocarcinoma patients with 19del presented with a more favorable clinical outcome and provided a theoretical basis for treatment strategy for lung adenocarcinoma patients with 19del.


Asunto(s)
Adenocarcinoma del Pulmón , Movimiento Celular , Resistencia a Antineoplásicos , Receptores ErbB , Gefitinib , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Gefitinib/farmacología , ARN Largo no Codificante/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Fosforilación , Línea Celular Tumoral , Mutación , Proliferación Celular , Invasividad Neoplásica , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción Activador 4
8.
Arch Dermatol Res ; 316(7): 447, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958761

RESUMEN

Malignant melanoma presents a formidable challenge due to its aggressive metastatic behavior and limited response to current treatments. To address this, our study delves into the impact of anlotinib on angiogenesis and vasculogenic mimicry using malignant melanoma cells and human umbilical vein endothelial cells. Evaluating tubular structure formation, cell proliferation, migration, invasion, and key signaling molecules in angiogenesis, we demonstrated that anlotinib exerts a dose-dependent inhibition on tubular structures and effectively suppresses cell growth and invasion in both cell types. Furthermore, in a mouse xenograft model, anlotinib treatment resulted in reduced tumor growth and vascular density. Notably, the downregulation of VEGFR-2, FGFR-1, PDGFR-ß, and PI3K underscored the multitargeted antitumor activity of anlotinib. Our findings emphasize the therapeutic potential of anlotinib in targeting angiogenesis and vasculogenic mimicry, contributing to the development of novel strategies for combating malignant melanoma.


Asunto(s)
Movimiento Celular , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Indoles , Melanoma , Neovascularización Patológica , Quinolinas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Ensayos Antitumor por Modelo de Xenoinjerto , Quinolinas/farmacología , Quinolinas/uso terapéutico , Quinolinas/administración & dosificación , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Animales , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Indoles/farmacología , Indoles/uso terapéutico , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/uso terapéutico , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Ratones Desnudos , Angiogénesis
9.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950937

RESUMEN

The capacity to regenerate lost tissues varies significantly among animals. Some phyla, such as the annelids, display substantial regenerating abilities, although little is known about the cellular mechanisms underlying the process. To precisely determine the origin, plasticity and fate of the cells participating in blastema formation and posterior end regeneration after amputation in the annelid Platynereis dumerilii, we developed specific tools to track different cell populations. Using these tools, we find that regeneration is partly promoted by a population of proliferative gut cells whose regenerative potential varies as a function of their position along the antero-posterior axis of the worm. Gut progenitors from anterior differentiated tissues are lineage restricted, whereas gut progenitors from the less differentiated and more proliferative posterior tissues are much more plastic. However, they are unable to regenerate the stem cells responsible for the growth of the worms. Those stem cells are of local origin, deriving from the cells present in the segment abutting the amputation plane, as are most of the blastema cells. Our results favour a hybrid and flexible cellular model for posterior regeneration in Platynereis relying on different degrees of cell plasticity.


Asunto(s)
Plasticidad de la Célula , Proliferación Celular , Poliquetos , Regeneración , Animales , Regeneración/fisiología , Poliquetos/fisiología , Poliquetos/citología , Plasticidad de la Célula/fisiología , Células Madre/citología , Diferenciación Celular/fisiología , Anélidos/fisiología
10.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 391-395, 2024 Apr 14.
Artículo en Chino | MEDLINE | ID: mdl-38951069

RESUMEN

The aim of this study was to investigate the effects of polyphyllin Ⅶ (PP Ⅶ) on proliferation, apoptosis, and cell cycle of diffuse large B-cell lymphoma (PLBCL) cell lines U2932 and SUDHL-4. The DLBCL cell lines were divided into a control group and a PPⅦ group, and experiments were conducted using MTT assay, flow cytometry, and Western blotting.Results showed that compared with the control group, PPⅦ significantly inhibited the proliferation of U2932 and SUDHL-4 cells (P<0.05). Apoptosis assays demonstrated that treatment with 0.50 and 1.00 µmol/L PP Ⅶ significantly increased the apoptosis rates of both cell lines (P<0.05), upregulated apoptosis-related proteins, and downregulated Bcl-2 protein level (P<0.05). Cell cycle analysis revealed that PPⅦ treatment led to an increase in G0/G1-phase cells (P<0.05) and a decrease in G2/M-phase cells (P<0.05), significantly downregulated cyclin D1, CDK4, CDK6, and survivin protein expression (P<0.05). In conclusion, PPⅦ exerted anti-lymphoma effects by inhibiting proliferation, promoting apoptosis, and inducing G0/G1 phase arrest in DLBCL cells.


Asunto(s)
Apoptosis , Ciclo Celular , Proliferación Celular , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ciclo Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Diosgenina/farmacología , Diosgenina/análogos & derivados , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo
11.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 396-400, 2024 Apr 14.
Artículo en Chino | MEDLINE | ID: mdl-38951070

RESUMEN

Myeloid neoplasms (MNs) belong to a group of hematological malignancies characterized by the abnormal biological functions of hematopoietic stem progenitor cells. The abnormal immune and hematopoietic microenvironment of patients with MN interact with malignant clonal hematopoietic stem cells, promoting the occurrence and development of their diseases. MN large granular lymphocyte proliferation (MN-LGLP) is a special and rare clinical phenomenon in this type of disease. Currently, research on this disease in domestic and international cohorts is limited. This study analyzes the clinical and laboratory characteristics of this type of patient and explores the impact of LGLP on the clinical characteristics and survival of patients with MN. Patients with MN-LGLP are prone to neutropenia and splenomegaly. The presence of LGLP is not a risk factor affecting the survival of patients with MN-LGLP. STAG, ASXL1, and TET2 are the most common accompanying gene mutations in MN-LGLP, and patients with MN-LGLP and STAG2 mutations have poor prognoses.


Asunto(s)
Mutación , Humanos , Masculino , Pronóstico , Femenino , Persona de Mediana Edad , Proliferación Celular , Adulto , Anciano , Leucemia Linfocítica Granular Grande/diagnóstico
12.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952675

RESUMEN

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Escherichia coli , Osteogénesis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Antibacterianos/química , Osteogénesis/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratones , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Prótesis e Implantes , Aleaciones/farmacología , Aleaciones/química , Ratas , Titanio/química , Titanio/farmacología , Plata/química , Plata/farmacología , Proliferación Celular/efectos de los fármacos , Cobre/química , Cobre/farmacología , Masculino , Microtomografía por Rayos X , Línea Celular , Nanopartículas del Metal/química
13.
PeerJ ; 12: e17672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952967

RESUMEN

Background: Mitochondrial creatine kinase (MtCK) plays a pivotal role in cellular energy metabolism, exhibiting enhanced expression in various tumors, including colorectal cancer (CRC). Creatine kinase mitochondrial 2 (CKMT2) is a subtype of MtCK; however, its clinical significance, biological functions, and underlying molecular mechanisms in CRC remain elusive. Methods: We employed immunohistochemical staining to discern the expression of CKMT2 in CRC and adjacent nontumor tissues of patients. The correlation between CKMT2 levels and clinical pathological factors was assessed. Additionally, we evaluated the association between CKMT2 and the prognosis of CRC patients using Kaplan-Meier survival curves and Cox regression analysis. Meanwhile, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression levels of CKMT2 in different CRC cell lines. Finally, we explored the biological functions and potential molecular mechanisms of CKMT2 in CRC cells through various techniques, including qRT-PCR, cell culture, cell transfection, western blot, Transwell chamber assays, flow cytometry, and co-immunoprecipitation. Results: We found that CKMT2 was significantly overexpressed in CRC tissues compared with adjacent nontumor tissues. The expression of CKMT2 is correlated with pathological types, tumor size, distant metastasis, and survival in CRC patients. Importantly, CKMT2 emerged as an independent prognostic factor through Cox regression analysis. Experimental downregulation of CKMT2 expression in CRC cell lines inhibited the migration and promoted apoptosis of these cells. Furthermore, we identified a novel role for CKMT2 in promoting aerobic glycolysis in CRC cells through interaction with lactate dehydrogenase B (LDHB). Conclusion: In this study, we found the elevated expression of CKMT2 in CRC, and it was a robust prognostic indicator in CRC patients. CKMT2 regulates glucose metabolism via amplifying the Warburg effect through interaction with LDHB, which promotes the growth and progression of CRC. These insights unveil a novel regulatory mechanism by which CKMT2 influences CRC and provide promising targets for future CRC therapeutic interventions.


Asunto(s)
Neoplasias Colorrectales , Efecto Warburg en Oncología , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Masculino , Femenino , Línea Celular Tumoral , Pronóstico , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/genética , Progresión de la Enfermedad , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Persona de Mediana Edad , Proliferación Celular , Apoptosis , Regulación Neoplásica de la Expresión Génica
14.
PeerJ ; 12: e17628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952983

RESUMEN

Background: Ovarian cancer is an aggressive malignancy with high mortality known for its considerable metastatic potential. This study aimed to explore the expression and functional role of Unc-51 like autophagy activating kinase 2 (ULK2) in the progression of ovarian cancer. Methods: ULK2 expression patterns in ovarian cancer tissues as well as benign tumor control samples obtained from our institution were evaluated using immunohistochemistry. Cell counting kit 8 and Transwell assays were applied to assess the effects of ULK2 overexpression on cell proliferation, migration and invasion, respectively. RNA sequencing was performed to explore potential mechanisms of action of ULK2 beyond its classical autophagy modulation. Results: Our experiments showed significant downregulation of ULK2 in ovarian cancer tissues. Importantly, low expression of ULK2 was markedly correlated with decreased overall survival. In vitro functional studies further demonstrated that overexpression of ULK2 significantly suppressed tumor cell proliferation, migration, and invasion. RNA sequencing analysis revealed a potential regulatory role of ULK2 in the insulin signaling pathway through upregulation of insulin-like growth factor binding protein-3 (IGFBP3) in ovarian cancer cells. Conclusions: In summary, the collective data indicated that ULK2 acted as a tumor suppressor in ovarian cancer by upregulating the expression of IGFBP3. Our study underscores the potential utility of ULK2 as a valuable prognostic marker for ovarian cancer.


Asunto(s)
Movimiento Celular , Proliferación Celular , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Invasividad Neoplásica , Neoplasias Ováricas , Humanos , Femenino , Movimiento Celular/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/mortalidad , Línea Celular Tumoral , Invasividad Neoplásica/genética , Proliferación Celular/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Regulación Neoplásica de la Expresión Génica , Regulación hacia Arriba , Transducción de Señal , Proteínas Serina-Treonina Quinasas
15.
Anal Cell Pathol (Amst) ; 2024: 1083143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946863

RESUMEN

Objectives: Osteochondral defects (OCDs) are localized areas of damaged cartilage and underlying subchondral bone that can produce pain and seriously impair joint function. Literature reports indicated that icariin (ICA) has the effect of promoting cartilage repair. However, its mechanism remains unclear. Here, we explored the effects of icariin and extracellular vesicles (EVs) from rabbit synovial-derived mesenchymal stem cells (rSMSCs) on repairing of OCDs. Materials and Methods: Rabbit primary genicular chondrocytes (rPGCs), knee skeletal muscle cells (rSMCKs), and rSMSCs, and extracellular vesicles derived from the latter two cells (rSMCK-EVs and rSMSC-EVs) were isolated and identified. The rPGCs were stimulated with ICA, rSMSC-EVs either separately or in combination. The rSMCK-EVs were used as a control. After stimulation, chondrogenic-related markers were analyzed by quantitative RT-PCR and western blotting. Cell proliferation was determined by the CCK-8 assay. The preventative effects of ICA and SMSC-EVs in vivo were determined by H&E and toluidine blue staining. Immunohistochemical analyses were performed to evaluate the levels of COL2A1 and ß-catenin in vivo. Results. In vitro, the proliferation of rPGCs was markedly increased by ICA treatment in a dose-dependent manner. When compared with ICA or rSMSC-EVs treatment alone, combined treatment with ICA and SMSC-EVs produced stronger stimulative effects on cell proliferation. Moreover, combined treatment with ICA and rSMSC-EVs promoted the expression of chondrogenic-related gene, including COL2A1, SOX-9, and RUNX2, which may be via the activation of the Wnt/ß-catenin pathway. In vivo, combined treatment with rSMSC-EVs and ICA promoted cartilage repair in joint bone defects. Results also showed that ICA or rSMSC-EVs both promoted the COL2A1 and ß-catenin protein accumulation in articular cartilage, and that was further enhanced by combined treatment with rSMSC-EVs and ICA. Conclusion: Our findings highlight the promising potential of using combined treatment with ICA and rSMSC-EVs for promoting osteochondral repair.


Asunto(s)
Condrocitos , Condrogénesis , Vesículas Extracelulares , Flavonoides , Células Madre Mesenquimatosas , Membrana Sinovial , Vía de Señalización Wnt , Animales , Conejos , Flavonoides/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Vía de Señalización Wnt/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/citología , Condrogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , beta Catenina/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/efectos de los fármacos
16.
Oncol Res ; 32(7): 1197-1207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948022

RESUMEN

Breast cancer, a predominant global health issue, requires ongoing exploration of new therapeutic strategies. Palbociclib (PAL), a well-known cyclin-dependent kinase (CDK) inhibitor, plays a critical role in breast cancer treatment. While its efficacy is recognized, the interplay between PAL and cellular autophagy, particularly in the context of the RAF/MEK/ERK signaling pathway, remains insufficiently explored. This study investigates PAL's inhibitory effects on breast cancer using both in vitro (MCF7 and MDA-MB-468 cells) and in vivo (tumor-bearing nude mice) models. Aimed at elucidating the impact of PAL on autophagic processes and exploring the potential of combining it with trametinib (TRA), an MEK inhibitor, our research seeks to address the challenge of PAL-induced drug resistance. Our findings reveal that PAL significantly decreases the viability of MCF7 and MDA-MB-468 cells and reduces tumor size in mice while showing minimal cytotoxicity in MCF10A cells. However, PAL also induces protective autophagy, potentially leading to drug resistance via the RAF/MEK/ERK pathway activation. Introducing TRA effectively neutralized this autophagy, enhancing PAL's anti-tumor efficacy. A combination of PAL and TRA synergistically reduced cell viability and proliferation, and in vivo studies showed notable tumor size reduction. In conclusion, the PAL and TRA combination emerges as a promising strategy for overcoming PAL-induced resistance, offering a new horizon in breast cancer treatment.


Asunto(s)
Autofagia , Neoplasias de la Mama , Piperazinas , Piridinas , Piridonas , Pirimidinonas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Piridonas/farmacología , Piridonas/uso terapéutico , Femenino , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Ratones , Piperazinas/farmacología , Piperazinas/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ratones Desnudos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Células MCF-7
17.
J Neuroimmune Pharmacol ; 19(1): 34, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949694

RESUMEN

Amorfrutin B is a selective PPARγ modulator that we demonstrated to be a promising neuroprotective compound in cellular models of stroke and perinatal asphyxia. Although neuronal mechanisms of amorfrutin B-evoked neuroprotection have been identified, none of them reflects the actions of the compound on microglia, which play a pivotal role in brain response to hypoxia/ischemia. Here, we provide evidence for amorfrutin B-induced effects on human microglia subjected to hypoxia/ischemia; the compound counteracts inflammation, and influences mitochondrial status and proliferation potential in a PPARγ-dependent manner. Post-treatment with amorfrutin B decreased the IBA1 fluorescence intensity, reduced caspase-1 activity, and downregulated IL1B/IL-1ß and TNFA but not IL10/IL-10 expression, which was upregulated. Amorfrutin B also stimulated PPARγ signaling, as evidenced by increased mRNA and/or protein levels of PPARγ and PGC1α. In addition, amorfrutin B reversed the hypoxia/ischemia-evoked effects on mitochondria-related parameters, such as mitochondrial membrane potential, BCL2/BCL2 expression and metabolic activity, which were correlated with diminished proliferation potential of microglia. Interestingly, the inhibitory effect of amorfrutin B on the proliferation potential and mitochondrial function of microglia is opposite to the stimulatory effect of amorfrutin B on mouse neuronal survival, as evidenced by increased neuronal viability and reduced neurodegeneration. In summary, this study showed for the first time that amorfrutin B compromises hypoxia/ischemia-induced activation of human microglia in a PPARγ-dependent manner, which involves inhibiting inflammation, normalizing mitochondrial status, and controlling proliferation potential. These data extend the protective potential of amorfrutin B in the pharmacotherapy of hypoxic/ischemic brain injury, targeting not only neurons but also activated microglia.


Asunto(s)
Proliferación Celular , Hipoxia-Isquemia Encefálica , Microglía , Mitocondrias , PPAR gamma , PPAR gamma/metabolismo , Humanos , Microglía/efectos de los fármacos , Microglía/metabolismo , Proliferación Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Células Cultivadas , Fármacos Neuroprotectores/farmacología
18.
J Biochem Mol Toxicol ; 38(7): e23758, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963134

RESUMEN

Glioma is a central nervous system (CNS) malignant tumor with high heterogeneity and mortality, which severely threatens the health of patients. The overall survival of glioma patients is relatively short and it is critical to identify new molecular targets for developing effective treatment strategies. UBE2K is a ubiquitin conjugating enzyme with oncogenic function in several malignant tumors. However, whether UBE2K participates in gliomas remains unknown. Herein, in glioma cells, UBE2K was found highly expressed in U87 and U251 cells. Subsequently, U87 and U251 cells were transfected with si-UBE2K to silence UBE2K, with the si-NC transfection as the negative control. In both U87 and U251 cells, the cell viability was sharply reduced by transfecting si-UBE2K for 48 and 72 h. Markedly decreased colony number, reduced number of migrated cells and invaded cells, and declined relative wound healing rate were observed in si-UBE2K transfected U87 and U251 cells. Moreover, the Bcl-2 level was markedly reduced, while the Bax and cleaved-caspase-3 levels were sharply increased in U87 and U251 cells after the si-UBE2K transfection. Furthermore, the p62 level was signally declined, while the Beclin-1 and LC-3 II/I levels were greatly increased in U87 and U251 cells by the si-UBE2K transfection. Furthermore, the facilitating effect of si-UBE2K on the apoptosis and autophagy in U87 and U251 cells was abolished by the coculture of 3-MA, an inhibitor of autophagy. Collectively, UBE2K facilitated the in vitro growth of glioma cells, possibly by inhibiting the autophagy-related apoptosis, which might be a promising target for treating glioma.


Asunto(s)
Apoptosis , Autofagia , Glioma , Enzimas Ubiquitina-Conjugadoras , Humanos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Glioma/patología , Glioma/metabolismo , Glioma/genética , Línea Celular Tumoral , Silenciador del Gen , Proliferación Celular , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
19.
FASEB J ; 38(13): e23772, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963337

RESUMEN

Ovarian cancer is one of the most common gynecologic malignancies that has a poor prognosis. THUMPD3-AS1 is an oncogenic long noncoding RNA (lncRNA) in several cancers. Moreover, miR-320d is downregulated and inhibited proliferation in ovarian cancer cells, whereas ARF1 was upregulated and promoted the malignant progression in epithelial ovarian cancer. Nevertheless, the role of THUMPD3-AS1 in ovarian cancer and the underlying mechanism has yet to be elucidated. Human normal ovarian epithelial cells (IOSE80) and ovarian cancer cell lines (CAVO3, A2780, SKOV3, OVCAR3, and HEY) were adopted for in vitro experiments. The functional roles of THUMPD3-AS1 in cell viability and apoptosis were determined using CCK-8, flow cytometry, and TUNEL assays. Western blot was performed to assess the protein levels of ARF1, Bax, Bcl-2, and caspase 3, whereas RT-qPCR was applied to measure ARF1 mRNA, THUMPD3-AS1, and miR-320d levels. The targeting relationship between miR-320d and THUMPD3-AS1 or ARF1 was validated with dual luciferase assay. THUMPD3-AS1 and ARF1 were highly expressed in ovarian cancer cells, whereas miR-320d level was lowly expressed. THUMPD3-AS1 knockdown was able to repress cell viability and accelerate apoptosis of OVCAR3 and SKOV3 cells. Also, THUMPD3-AS1 acted as a sponge of miR-320d, preventing the degradation of ARF1. MiR-320d downregulation reversed the tumor suppressive function induced by THUMPD3-AS1 depletion. Additionally, miR-320d overexpression inhibited ovarian cancer cell viability and accelerated apoptosis, which was overturned by overexpression of ARF1. THUMPD3-AS1 inhibited ovarian cancer cell apoptosis by modulation of miR-320d/ARF1 axis. The discoveries might provide a prospective target for ovarian cancer treatment.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Apoptosis , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Apoptosis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Proliferación Celular
20.
Sci Rep ; 14(1): 15160, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956132

RESUMEN

In order to survive and replicate, Salmonella has evolved mechanisms to gain access to intestinal epithelial cells of the crypt. However, the impact of Salmonella Typhimurium on stem cells and progenitors, which are responsible for the ability of the intestinal epithelium to renew and protect itself, remains unclear. Given that intestinal organoids growth is sustained by stem cells and progenitors activity, we have used this model to document the effects of Salmonella Typhimurium infection on epithelial proliferation and differentiation, and compared it to an in vivo model of Salmonella infection in mice. Among gut segments, the caecum was preferentially targeted by Salmonella. Analysis of infected crypts and organoids demonstrated increased length and size, respectively. mRNA transcription profiles of infected crypts and organoids pointed to upregulated EGFR-dependent signals, associated with a decrease in secretory cell lineage differentiation. To conclude, we show that organoids are suited to mimic the impact of Salmonella on stem cells and progenitors cells, carrying a great potential to drastically reduce the use of animals for scientific studies on that topic. In both models, the EGFR pathway, crucial to stem cells and progenitors proliferation and differentiation, is dysregulated by Salmonella, suggesting that repeated infections might have consequences on crypt integrity and further oncogenesis.


Asunto(s)
Diferenciación Celular , Receptores ErbB , Organoides , Infecciones por Salmonella , Salmonella typhimurium , Células Madre , Animales , Organoides/microbiología , Células Madre/metabolismo , Ratones , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/fisiología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Receptores ErbB/metabolismo , Receptores ErbB/genética , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Proliferación Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...