Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.235
Filtrar
1.
FASEB J ; 38(15): e23856, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092913

RESUMEN

Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.


Asunto(s)
Eritrocitos , Ácido N-Acetilneuramínico , Virus de la Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/metabolismo , Eritrocitos/parasitología , Eritrocitos/metabolismo , Animales , Ácido N-Acetilneuramínico/metabolismo , Humanos , Plasmodium yoelii/metabolismo , Ratones , Proteína HN/metabolismo , Malaria/parasitología , Malaria/metabolismo
2.
PLoS Pathog ; 20(7): e1012371, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39052678

RESUMEN

Sialoglycan-binding enveloped viruses often possess receptor-destroying activity to avoid being immobilized by non-functional decoy receptors. Sialic acid (Sia)-binding paramyxoviruses contain a hemagglutinin-neuraminidase (HN) protein that possesses both Sia-binding and -cleavage activities. The multivalent, dynamic receptor interactions of paramyxovirus particles provide virion motility and are a key determinant of host tropism. However, such multivalent interactions have not been exhaustively analyzed, because such studies are complicated by the low affinity of the individual interactions and the requirement of high titer virus stocks. Moreover, the dynamics of multivalent particle-receptor interactions are difficult to predict from Michaelis-Menten enzyme kinetics. Therefore, we here developed Ni-NTA nanoparticles that multivalently display recombinant soluble HN tetramers via their His tags (HN-NPs). Applying this HN-NP platform to Newcastle disease virus (NDV), we investigated using biolayer interferometry (BLI) the role of important HN residues in receptor-interactions and analyzed long-range effects between the catalytic site and the second Sia binding site (2SBS). The HN-NP system was also applicable to other paramyxoviruses. Comparative analysis of HN-NPs revealed and confirmed differences in dynamic receptor-interactions between type 1 human and murine parainfluenza viruses as well as of lab-adapted and clinical isolates of human parainfluenza virus type 3, which are likely to contribute to differences in tropism of these viruses. We propose this novel platform to be applicable to elucidate the dynamics of multivalent-receptor interactions important for host tropism and pathogenesis, particularly for difficult to grow sialoglycan-binding (paramyxo)viruses.


Asunto(s)
Proteína HN , Nanopartículas , Virus de la Enfermedad de Newcastle , Receptores Virales , Proteína HN/metabolismo , Proteína HN/genética , Animales , Virus de la Enfermedad de Newcastle/metabolismo , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/genética , Receptores Virales/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo
3.
Vet Med Sci ; 10(4): e1491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031626

RESUMEN

BACKGROUND: Haemagglutinin-neuraminidase (HN) is one of the membrane proteins of Newcastle disease virus (NDV) that plays a significant role during host viral infection. Therefore, antibodies against HN are vital for the host's ability to protect itself against NDV infection due to their critical functions in viral infection. As a result, HN has been a candidate protein in vaccine development against the Newcastle disease virus. METHODS: This report used the full-length sequence of the HN protein of NDV isolated in Iran (VIId subgenotype). We characterize and identify amino acid substitutions in comparison to other more prevalent NDV genotypes, VII subgenotypes and vaccine strains. Furthermore, bioinformatics tools were applied to determine the three-dimensional structure, molecular dynamics simulation and prediction of B-cell antigenic epitopes. RESULTS: The results showed that the antigenic regions of our isolate are quite comparable to the other VII subgenotypes of NDV isolated from different geographical places. Moreover, by employing the final 3D structure of our HN protein, the amino acid residues are proposed as a B-cell epitope by epitope prediction servers, which leads to the introduction of linear and conformational antigenic sites. CONCLUSIONS: Immunoinformatic vaccine design principles currently exhibit tremendous potential for developing a new generation of candidate vaccines quickly and economically to eradicate infectious viruses, including the NDV. In order to accomplish this, focus is directed on residues that might be considered antigenic.


Asunto(s)
Genotipo , Proteína HN , Virus de la Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/inmunología , Proteína HN/genética , Proteína HN/química , Secuencia de Aminoácidos , Animales , Irán , Secuencia de Bases , Pollos , Enfermedades de las Aves de Corral/virología , Enfermedad de Newcastle/virología
4.
Nat Microbiol ; 9(8): 2128-2143, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858594

RESUMEN

Human parainfluenza virus type 3 (hPIV3) is a respiratory pathogen that can cause severe disease in older people and infants. Currently, vaccines against hPIV3 are in clinical trials but none have been approved yet. The haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Here we describe naturally occurring potently neutralizing human antibodies directed against both surface glycoproteins of hPIV3. We isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. One HN-binding monoclonal antibody (mAb), designated PIV3-23, exhibited functional attributes including haemagglutination and neuraminidase inhibition. We also delineated the structural basis of neutralization for two HN and one F mAbs. MAbs that neutralized hPIV3 in vitro protected against infection and disease in vivo in a cotton rat model of hPIV3 infection, suggesting correlates of protection for hPIV3 and the potential clinical utility of these mAbs.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteína HN , Virus de la Parainfluenza 3 Humana , Infecciones por Respirovirus , Sigmodontinae , Proteínas Virales de Fusión , Animales , Virus de la Parainfluenza 3 Humana/inmunología , Virus de la Parainfluenza 3 Humana/genética , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/química , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/química , Proteína HN/inmunología , Proteína HN/química , Proteína HN/genética , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/virología , Modelos Animales de Enfermedad , Pruebas de Neutralización , Linfocitos B/inmunología , Modelos Moleculares
5.
Viruses ; 16(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38932120

RESUMEN

A gene delivery system utilizing lentiviral vectors (LVs) requires high transduction efficiency for successful application in human gene therapy. Pseudotyping allows viral tropism to be expanded, widening the usage of LVs. While vesicular stomatitis virus G (VSV-G) single-pseudotyped LVs are commonly used, dual-pseudotyping is less frequently employed because of its increased complexity. In this study, we examined the potential of phenotypically mixed heterologous dual-pseudotyped LVs with VSV-G and Sendai virus hemagglutinin-neuraminidase (SeV-HN) glycoproteins, termed V/HN-LV. Our findings demonstrated the significantly improved transduction efficiency of V/HN-LV in various cell lines of mice, cynomolgus monkeys, and humans compared with LV pseudotyped with VSV-G alone. Notably, V/HN-LV showed higher transduction efficiency in human cells, including hematopoietic stem cells. The efficient incorporation of wild-type SeV-HN into V/HN-LV depended on VSV-G. SeV-HN removed sialic acid from VSV-G, and the desialylation of VSV-G increased V/HN-LV infectivity. Furthermore, V/HN-LV acquired the ability to recognize sialic acid, particularly N-acetylneuraminic acid on the host cell, enhancing LV infectivity. Overall, VSV-G and SeV-HN synergistically improve LV transduction efficiency and broaden its tropism, indicating their potential use in gene delivery.


Asunto(s)
Vectores Genéticos , Proteína HN , Lentivirus , Virus Sendai , Transducción Genética , Proteínas del Envoltorio Viral , Animales , Humanos , Vectores Genéticos/genética , Lentivirus/genética , Virus Sendai/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Ratones , Proteína HN/genética , Proteína HN/metabolismo , Línea Celular , Macaca fascicularis , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Tropismo Viral , Células HEK293 , Técnicas de Transferencia de Gen , Terapia Genética/métodos
6.
Vet Res ; 55(1): 58, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715081

RESUMEN

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Asunto(s)
Apoptosis , Proteína HN , FN-kappa B , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/patogenicidad , Animales , Proteína HN/genética , Proteína HN/metabolismo , Enfermedad de Newcastle/virología , FN-kappa B/metabolismo , Enfermedades de las Aves de Corral/virología , Pollos , Embrión de Pollo
7.
J Clin Virol ; 172: 105677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663338

RESUMEN

OBJECTIVES: Parainfluenza virus type 3 (PIV3) outbreaks among hematology patients are associated with high morbidity and mortality. Prompt implementation of infection prevention (IP) measures has proven to be the most efficacious approach for controlling PIV3 outbreaks within this patient population. The most suitable IP measures can vary depending on the mode of virus transmission, which remains unidentified in most outbreaks. We describe the molecular epidemiology of an outbreak of PIV3 among hematology patients and the development of a new method that allows for the differentiation of outbreak and community strains, from which a closed outbreak could be inferred. METHODS: Patients were screened for respiratory viruses using multiplex-PCR. PIV3 positive samples with a cycle threshold (Ct)-value of <31 underwent a retrospective characterization via an in-house developed sequence analysis of the hemagglutinin-neuraminidase (HN) gene. RESULTS: Between July and September 2022, 31 hematology patients were identified with PIV3. Although infection control measures were implemented, the outbreak persisted for nine weeks. Sequencing the HN gene of 27 PIV3 strains from 27 patients revealed that all outbreak strains formed a distinct cluster separate from the control strains, suggestive of a nosocomial transmission route. CONCLUSIONS: Sequencing the HN gene of PIV3 strains in an outbreak setting enables outbreak strains to be distinguished from community strains. Early molecular characterization of PIV3 strains during an outbreak can serve as a tool in determining potential transmission routes. This, in turn, enables rapid implementation of targeted infection prevention measures, with the goal of minimizing the outbreak's duration and reducing associated morbidity and mortality.


Asunto(s)
Brotes de Enfermedades , Control de Infecciones , Epidemiología Molecular , Virus de la Parainfluenza 3 Humana , Infecciones por Respirovirus , Humanos , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/clasificación , Virus de la Parainfluenza 3 Humana/aislamiento & purificación , Masculino , Control de Infecciones/métodos , Femenino , Persona de Mediana Edad , Adulto , Infecciones por Respirovirus/epidemiología , Infecciones por Respirovirus/virología , Infecciones por Respirovirus/prevención & control , Estudios Retrospectivos , Anciano , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Infección Hospitalaria/virología , Adulto Joven , Proteína HN/genética , Anciano de 80 o más Años , Filogenia
8.
mSphere ; 9(4): e0062423, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38501829

RESUMEN

During the coronavirus disease 2019 (COVID-19) pandemic, outbreaks of parainfluenza virus type 3 (PIV-3) decreased due to infection control measures. However, a post-pandemic resurgence of PIV-3 has recently been observed. Nonetheless, the role of viral genetic epidemiology, possibly influenced by a genetic bottleneck effect, remains unexplored. We investigated the phylogenetic structure of the publicly available PIV-3 whole-genome and hemagglutinin-neuraminidase (HN) gene sequences spanning the last 65 years, including the COVID-19 pandemic. Sequences were retrieved from the nucleotide database of the National Center for Biotechnology Information using the search term "Human respirovirus 3." Sequence subsets covering all six genes of PIV-3 or the HN gene were designated as the whole-genome and HN surveillance data sets, respectively. Using these data sets, we constructed maximum-likelihood phylogenetic trees and performed a time-scaled analysis using a Bayesian SkyGrid coalescent prior. A total of 455 whole-genome and 1,139 HN gene sequences were extracted, revealing 10 and 11 distinct lineages, respectively, with >98% concurrence in lineage assignments. During the 2020 COVID-19 pandemic, only three single-lineage clusters were identified in Japan, Korea, and the USA. The inferred year of origin for PIV-3 was 1938 (1903-1963) for the whole-genome data set and 1955 (1930-1963) for the HN gene data set. Our study suggests that PIV-3 epidemics in the post-COVID era are likely influenced by a pandemic-driven bottleneck phenomenon and supports previous hypotheses suggesting s that PIV-3 originated during the early half of the 20th century.IMPORTANCEUsing publicly available parainfluenza virus type 3 (PIV-3) whole-genome sequences, we estimated that PIV-3 originated during the 1930s, consistent with previous hypotheses. Lineage typing and time-scaled phylogenetic analysis revealed that PIV-3 experienced a bottleneck phenomenon in Korea and the USA during the coronavirus disease 2019 pandemic. We identified the conservative hemagglutinin-neuraminidase gene as a viable alternative marker in long-term epidemiological studies of PIV-3 when whole-genome analysis is limited.


Asunto(s)
COVID-19 , Genoma Viral , Virus de la Parainfluenza 3 Humana , Filogenia , Humanos , Genoma Viral/genética , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/clasificación , COVID-19/epidemiología , COVID-19/virología , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/clasificación , Teorema de Bayes , Proteína HN/genética , Infecciones por Respirovirus/epidemiología , Infecciones por Respirovirus/virología
9.
PLoS Pathog ; 20(2): e1011981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354122

RESUMEN

Lysosomes are acidic organelles that mediate the degradation and recycling of cellular waste materials. Damage to lysosomes can cause lysosomal membrane permeabilization (LMP) and trigger different types of cell death, including apoptosis. Newcastle disease virus (NDV) can naturally infect most birds. Additionally, it serves as a promising oncolytic virus known for its effective infection of tumor cells and induction of intensive apoptotic responses. However, the involvement of lysosomes in NDV-induced apoptosis remains poorly understood. Here, we demonstrate that NDV infection profoundly triggers LMP, leading to the translocation of cathepsin B and D and subsequent mitochondria-dependent apoptosis in various tumor and avian cells. Notably, the released cathepsin B and D exacerbate NDV-induced LMP by inducing the generation of reactive oxygen species. Additionally, we uncover that the viral Hemagglutinin neuraminidase (HN) protein induces the deglycosylation and degradation of lysosome-associated membrane protein 1 (LAMP1) and LAMP2 dependent on its sialidase activity, which finally contributes to NDV-induced LMP and cellular apoptosis. Overall, our findings elucidate the role of LMP in NDV-induced cell apoptosis and provide novel insights into the function of HN during NDV-induced LMP, which provide innovative approaches for the development of NDV-based oncolytic agents.


Asunto(s)
Proteína HN , Virus de la Enfermedad de Newcastle , Animales , Virus de la Enfermedad de Newcastle/metabolismo , Proteína HN/metabolismo , Catepsina B , Apoptosis , Lisosomas/metabolismo
10.
Virol J ; 21(1): 7, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178138

RESUMEN

BACKGROUND: Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS: Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS: S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION: These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.


Asunto(s)
Neoplasias Colorrectales , Virus Oncolíticos , Humanos , Animales , Ratones , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Proteína HN/genética , Proteína HN/metabolismo , Neuraminidasa/genética , Neuraminidasa/metabolismo , Hemaglutininas , Ácido N-Acetilneuramínico/metabolismo , Células HCT116 , Virus Oncolíticos/genética , Modelos Animales de Enfermedad , Proteínas de la Membrana , Neoplasias Colorrectales/terapia
11.
Vaccine ; 42(2): 332-338, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38065771

RESUMEN

Newcastle disease (ND) and infectious bursal disease (IBD) pose significant threats to the chicken industry, causing substantial economic losses. Currently, immunization through vaccination is the most effective strategy to prevent ND and IBD but currently used traditional vaccines, including inactivated or attenuated vaccines, face challenges in achieving a balance between immunogenicity and safety. To develop a green and efficient novel vaccine for ND and IBD, we developed a bivalent chimeric virus-like particle vaccine (ND-IBD cVLPs) displaying the ND virus (NDV) HN protein and the IBD virus (IBDV) VP2 protein based on the ND VLPs carrier platform and insect baculovirus expression system. This study aimed to evaluate the immunogenicity and protective efficacy of ND-IBD cVLPs in specific pathogen-free chickens. Chickens were immunized with 50 µg of purified ND-IBD cVLPs at 7 days old, boosted at 21 days old, and challenged at 42 days old. The results demonstrated that ND-IBD cVLPs stimulated highly effective hemagglutination inhibition antibody levels against NDV HN protein and enzyme-linked immunosorbent assay antibody levels against the IBDV VP2 protein. Furthermore, ND-IBD cVLPs provided complete protection against virulent NDV and IBDV challenges and mitigated pathological damage to the lung caused by NDV infection and the bursa of Fabricius caused by IBDV infection. These findings suggest that ND-IBD cVLPs hold promise as a safe and efficient novel vaccine candidate for the effective prevention of ND and IBD, extending the development of a foreign protein delivery platform of ND VLPs.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Pollos , Proteína HN , Anticuerpos Antivirales , Virus de la Enfermedad de Newcastle/genética , Enfermedad de Newcastle/prevención & control , Infecciones por Birnaviridae/prevención & control , Infecciones por Birnaviridae/veterinaria
12.
Front Immunol ; 14: 1259237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920471

RESUMEN

Introduction: Glucose Regulated Proteins/Binding protein (GRP78/Bip), a representative molecular chaperone, effectively influences and actively participates in the replication processes of many viruses. Little is known, however, about the functional involvement of GRP78 in the replication of Newcastle disease virus (NDV) and the underlying mechanisms. Methods: The method of this study are to establish protein interactomes between host cell proteins and the NDV Hemagglutinin-neuraminidase (HN) protein, and to systematically investigate the regulatory role of the GRP78-HN protein interaction during the NDV replication cycle. Results: Our study revealed that GRP78 is upregulated during NDV infection, and its direct interaction with HN is mediated by the N-terminal 326 amino acid region. Knockdown of GRP78 by small interfering RNAs (siRNAs) significantly suppressed NDV infection and replication. Conversely, overexpression of GRP78 resulted in a significant increase in NDV replication, demonstrating its role as a positive regulator in the NDV replication cycle. We further showed that the direct interaction between GRP78 and HN protein enhanced the attachment of NDV to cells, and masking of GRP78 expressed on the cell surface with specific polyclonal antibodies (pAbs) inhibited NDV attachment and replication. Discussion: These findings highlight the essential role of GRP78 in the adsorption stage during the NDV infection cycle, and, importantly, identify the critical domain required for GRP78-HN interaction, providing novel insights into the molecular mechanisms involved in NDV replication and infection.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Virus de la Enfermedad de Newcastle , Animales , Neuraminidasa/metabolismo , Hemaglutininas , Acoplamiento Viral , Proteína HN/genética , Proteína HN/metabolismo , Proteína HN/farmacología , Proteínas Virales/farmacología
13.
Vet Res ; 54(1): 92, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848995

RESUMEN

The haemagglutinin-neuraminidase (HN) protein plays a crucial role in the infectivity and virulence of Newcastle disease virus (NDV). In a previous study, the mutant HN protein was identified as a crucial virulence factor for the velogenic variant NDV strain JS/7/05/Ch, which evolved from the prototypic vaccine strain Mukteswar. Furthermore, macrophages are the main susceptible target cells of NDV. However, the possible involvement of cellular molecules in viral infectivity remains unclear. Herein, we elucidate the crucial role of vimentin, an intermediate filament protein, in regulating NDV infectivity through targeting of the HN protein. Using LC‒MS/MS mass spectrometry and coimmunoprecipitation assays, we identified vimentin as a host protein that differentially interacted with prototypic and mutant HN proteins. Further analysis revealed that the variant NDV strain induced more significant rearrangement of vimentin fibres compared to the prototypic NDV strain and showed an interdependence between vimentin rearrangement and virus replication. Notably, these mutual influences were pronounced in HD11 chicken macrophages. Moreover, vimentin was required for multiple infection processes of the variant NDV strain in HD11 cells, including viral internalization, fusion, and release, while it was not necessary for those of the prototypic NDV strain. Collectively, these findings underscore the pivotal role of vimentin in NDV infection through targeting of the HN protein, providing novel targets for antiviral treatment strategies for NDV.


Asunto(s)
Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Animales , Virus de la Enfermedad de Newcastle/fisiología , Proteína HN/genética , Vimentina/genética , Cromatografía Liquida/veterinaria , Espectrometría de Masas en Tándem/veterinaria , Pollos
14.
Vet Microbiol ; 285: 109872, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690146

RESUMEN

Vaccines are widely used to prevent Newcastle disease virus (NDV). Under the pressure of immunization, NDVs with mutations among epitopes of F and HN protein were isolated, which indicates that the efficiency of vaccine may decrease in terms of preventing emerged NDV. However, the lack of evidences to support whether these mutations contribute to antigenic mutation and immune escape in NDV leading to the controversy that the matched vaccine is more effective than the mismatched vaccine. In this study, a genotype VII velogenic NDV strain (C22) was isolated from a vaccinated farm in Tibet, China. We found that this strain was close to NDV from east China, but it had a specific mutation (K138R) in one epitope (131DYIGGIGKE139) of HN protein. This mutation might change the interaction between amino acids in stalk-head link region of HN protein and then induce the specific antibody to worse recognize the C22 strain, but it did not alter viral virulence and growth ability. Then, the C22 strain was attenuated via modification of the F protein cleavage site to generate a matched vaccine. Comparing to a mismatched vaccine (LaSota), this matched vaccine showed advantages in inhibiting viral shedding and tissue damage. However, both vaccines induced chicken to generate similar level of neutralizing antibodies against C22, C22mut (R138K) and LaSota. These results suggest that the epitope mutation is insufficient to help NDV escaping neutralizing antibodies of vaccinated chicken, supporting that the merits of NDV matched vaccine are not totally related to humoral immunity.


Asunto(s)
Enfermedad de Newcastle , Vacunas Virales , Animales , Virus de la Enfermedad de Newcastle , Hemaglutininas/genética , Neuraminidasa/genética , Tibet , Proteína HN/genética , Vacunas Virales/genética , Pollos , Proteínas Virales/genética , Anticuerpos Neutralizantes/genética , China , Variación Antigénica , Epítopos/genética , Anticuerpos Antivirales , Genotipo
15.
Arch Virol ; 168(8): 203, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418014

RESUMEN

The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a multifunctional protein with receptor recognition ability that plays an important role in the infection of cells by NDV. An alignment of NDV HN protein sequences of different genotypes showed that vaccine strains of NDV, such as the LaSota strain, generally have an HN protein of 577 amino acids. In comparison, the HN protein of the V4 strain has 616 amino acids, with 39 more amino acids at the C-terminus. In this study, we generated a recombinant NDV (rNDV) with a 39-amino-acid truncation at the HN C-terminus based on the full-length cDNA clone of the V4 strain. This rNDV, named rV4-HN-tr, displayed thermostability similar to that of the parental V4 strain. However, growth kinetics and pathogenicity analysis suggested that rV4-HN-tr is more virulent than the V4 strain. Notably, the C-terminus of HN affected the ability of the virus to adsorb onto cells. Structural predictions further suggested that the C-terminus of HN may obstruct the sialic acid binding site. Immunization of chickens with rV4-HN-tr induced a 3.5-fold higher level of NDV-specific antibodies than that obtained with the V4 strain and provided 100% immune protection against NDV challenge. Our study suggests that rV4-HN-tr is a thermostable, safe, and highly efficient vaccine candidate against Newcastle disease.


Asunto(s)
Enfermedad de Newcastle , Vacunas Virales , Animales , Virus de la Enfermedad de Newcastle , Pollos , Virulencia , Neuraminidasa/genética , Hemaglutininas/genética , Proteína HN/genética , Proteína HN/metabolismo , Vacunas Virales/genética , Anticuerpos Antivirales , Aminoácidos
16.
Microbiol Spectr ; 11(3): e0453722, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039701

RESUMEN

To understand the molecular evolution of human parainfluenza virus type 2 (HPIV2), 21 Hemagglutinin-Neuraminidase (HN) gene sequences covering seven Chinese provinces in 2011 and 2017 to 2021 were combined with 90 published HN sequences worldwide for phylogenetic analysis. The result showed that global HPIV2 could be classified into two distinct clusters (I and II), five lineages (IA to IIE), and four sublineages (IB1 and 2, and IIE1 and 2). The minimum genetic distances between different clusters and lineages were 0.049 and 0.014, respectively. In the last decade, one lineage (IID) and three sublineages (IB1, IB2, and IIE1) have been cocirculating in China, with the sublineages IB2 and IIE1 dominating, while sublineages IB1 and IIE1 are dominant globally. In addition, the spread of HPIV2 had relative spatial clustering, and sublineage IB2 has only been detected in China thus far. The overall evolution rate of HPIV2 was relatively low, on the order of 10-4 substitutions/site/year, except for sublineage IB2 at 10-3 substitutions/site/year. Furthermore, human-animal transmission was observed, suggesting that the HPIV2 might have jumped out of animal reservoirs in approximately 1922, the predicted time of a common ancestor. The entire HN protein was under purifying/negative selection, and the specific amino acid changes and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 were mostly located in the globular head region of the HN protein. In this study, preliminary evolutionary characteristics of HPIV2 based on the HN gene were obtained, increasing the recognition of the evolution and adaptation of HPIV2. IMPORTANCE The phylogenetic analysis showed that global HPIV2 could be classified into two distinct clusters (I and II) and five lineages (IA to IIE) with at least 0.049 and 0.014 genetic distances between clusters and lineages, respectively. Furthermore, lineages IB and IIE could be further divided into two sublineages (IB1-2 and IIE1-2). All China sequences belong to one lineage and three sublineages (IB1, IB2, IID, and IIE1), among which sublineages IB2 and IIE1 are predominant and cocirculating in China, while sublineages IB1 and IIE1 are dominant globally. The overall evolution rate of HPIV2 is on the order of 10-4 substitutions/site/year, with the highest rate of 2.18 × 10-3 for sublineage IB2. The entire HN protein is under purifying/negative selection, and the specific amino acid substitutions and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 are mostly located in the globular head region of the HN protein.


Asunto(s)
Virus de la Parainfluenza 2 Humana , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Virus de la Parainfluenza 2 Humana/genética , Virus de la Parainfluenza 2 Humana/metabolismo , Filogenia , Neuraminidasa , Hemaglutininas/metabolismo , Proteína HN/genética , Proteína HN/metabolismo , Proteínas Virales/genética , Evolución Molecular
17.
PLoS Pathog ; 19(3): e1011273, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972304

RESUMEN

Many viruses initiate infection by binding to sialoglycan receptors at the cell surface. Binding to such receptors comes at a cost, however, as the sheer abundance of sialoglycans e.g. in mucus, may immobilize virions to non-functional decoy receptors. As a solution, sialoglycan-binding as well as sialoglycan-cleavage activities are often present in these viruses, which for paramyxoviruses are combined in the hemagglutinin-neuraminidase (HN) protein. The dynamic interactions of sialoglycan-binding paramyxoviruses with their receptors are thought to be key determinants of species tropism, replication and pathogenesis. Here we used biolayer interferometry to perform kinetic analyses of receptor interactions of animal and human paramyxoviruses (Newcastle disease virus, Sendai virus, and human parainfluenza virus 3). We show that these viruses display strikingly different receptor interaction dynamics, which correlated with their receptor-binding and -cleavage activities and the presence of a second sialic acid binding site. Virion binding was followed by sialidase-driven release, during which virions cleaved sialoglycans until a virus-specific density was reached, which was largely independent of virion concentration. Sialidase-driven virion release was furthermore shown to be a cooperative process and to be affected by pH. We propose that paramyxoviruses display sialidase-driven virion motility on a receptor-coated surface, until a threshold receptor density is reached at which virions start to dissociate. Similar motility has previously been observed for influenza viruses and is likely to also apply to sialoglycan-interacting embecoviruses. Analysis of the balance between receptor-binding and -cleavage increases our understanding of host species tropism determinants and zoonotic potential of viruses.


Asunto(s)
Neuraminidasa , Proteínas Virales , Animales , Humanos , Neuraminidasa/metabolismo , Cinética , Unión Proteica , Proteínas Virales/metabolismo , Virión/metabolismo , Proteína HN/genética , Proteína HN/metabolismo
18.
Sci Adv ; 9(6): eade2727, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763666

RESUMEN

Paramyxoviruses-including important pathogens like parainfluenza, measles, and Nipah viruses-use a receptor binding protein [hemagglutinin-neuraminidase (HN) for parainfluenza] and a fusion protein (F), acting in a complex, to enter cells. We use cryo-electron tomography to visualize the fusion complex of human parainfluenza virus 3 (HN/F) on the surface of authentic clinical viruses at a subnanometer resolution sufficient to answer mechanistic questions. An HN loop inserts in a pocket on F, showing how the fusion complex remains in a ready but quiescent state until activation. The globular HN heads are rotated with respect to each other: one downward to contact F, and the other upward to grapple cellular receptors, demonstrating how HN/F performs distinct steps before F activation. This depiction of viral fusion illuminates potentially druggable targets for paramyxoviruses and sheds light on fusion processes that underpin wide-ranging biological processes but have not been visualized in situ or at the present resolution.


Asunto(s)
Infecciones por Paramyxoviridae , Proteínas Virales de Fusión , Humanos , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Proteína HN/química , Proteína HN/metabolismo , Receptores de Superficie Celular , Internalización del Virus
19.
ACS Infect Dis ; 9(3): 617-630, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36848501

RESUMEN

Global infections with viruses belonging to the Paramyxoviridae, such as Newcastle disease virus (NDV) or human parainfluenza viruses (hPIVs), pose a serious threat to animal and human health. NDV-HN and hPIVs-HN (HN hemagglutinin-neuraminidase) share a high degree of similarity in catalytic site structures; therefore, the development of an efficient experimental NDV host model (chicken) may be informative for evaluating the efficacy of hPIVs-HN inhibitors. As part of the broad research in pursuit of this goal and as an extension of our published work on antiviral drug development, we report here the biological results obtained with some newly synthesized C4- and C5-substituted 2,3-unsaturated sialic acid derivatives against NDV. All developed compounds showed high neuraminidase inhibitory activity (IC50 0.03-13 µM). Four molecules (9, 10, 23, 24) confirmed their high in vitro inhibitory activity, which caused a significant reduction of NDV infection in Vero cells, accompanied by very low toxicity.


Asunto(s)
Ácido N-Acetilneuramínico , Infecciones por Paramyxoviridae , Humanos , Animales , Chlorocebus aethiops , Ácido N-Acetilneuramínico/farmacología , Virus de la Enfermedad de Newcastle , Antivirales/química , Neuraminidasa , Hemaglutininas , Células Vero , Proteína HN/genética , Proteína HN/química
20.
Virus Res ; 326: 199050, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682462

RESUMEN

Mumps virus is an infectious pathogen causing major health problems for humans such as encephalitis, orchitis, and parotitis. Therefore, designing an inhibitor for this virus is of great medical and public health importance. With this goal in mind, we investigate the affinity of different sialic acid-based compounds (ligands) against the hemagglutinin-neuraminidase (HN) protein of the mumps virus, using a combination of molecular dynamics (MD) simulations and quantum chemistry calculations. Our MD simulation results indicate that the ligands form stable complexes with the HN protein through a combination of electrostatic, van der Waals (vdW), and hydrogen bond (H-bond) interactions, which the electrostatic interactions play a more important role in the complexation process. Based on the obtained results from the structural analysis Arg381, Arg291, and Arg49 play a key role in the binding site interactions with the different ligands, in comparison with other residues. There are some candidates such as Neu5Acα2-6Galß1-4GlcNAcß, Neu5Acα2-3Galß1-3GlcNacß1-3Galß1-4Glc, and Neu5Acα2-6Galß1-4GlcNAcß1-3Galß1-4Glc that form more stable complexes with the HN than the α2-3-Sialyllactose confirmed by the calculated Gibbs binding energies (-39.65, -46.93, and -36.49 kcal.mol-1, respectively). To investigate the relationship between the molecular properties of the selected compounds and their affinity to the HN receptor, density functional theory dispersion corrected (DFT-D3) calculations were employed. According to our DFT-D3 results, neutral sialic acid-based compounds have lower reactivity to the mumps virus than the negativity charge structures. Moreover, by increasing the electronic chemical potential (µ) the vdW and H-bond interactions between drugs and the HN protein increase. In other words, by elevating the electron tendency of the selected ligands their affinity to the mumps virus increases. Our quantum chemistry calculations reveal that in addition to the structural features the molecular properties of the drugs can play important roles in their affinity and reactivity against the virus. The results of this study can provide useful details to design new compounds or improve their properties against the mumps virus.


Asunto(s)
Virus de la Parotiditis , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Simulación de Dinámica Molecular , Proteína HN/química , Ligandos , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...