Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.967
Filtrar
1.
Breast Cancer Res ; 26(1): 117, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039568

RESUMEN

BACKGROUND: Diabetes mellitus (DM) affects up to one-third of breast cancer (BC) patients. Patients with co-existing BC and DM (BC-DM) have worsened BC prognosis. Nevertheless, the molecular mechanisms orchestrating BC-DM prognosis remain poorly understood. tRNA-derived fragments (tRFs) have been shown to regulate cancer progression. However, the biological role of tRFs in BC-DM has not been explored. METHODS: tRF levels in tumor tissues and cells were detected by tRF sequencing and qRT-PCR. The effects of tRF on BC cell malignancy were assessed under euglycemic and hyperglycemic conditions in vitro. Metabolic changes were assessed by lactate, pyruvate, and extracellular acidification rate (ECAR) assays. Diabetic animal model was used to evaluate the impacts of tRF on BC tumor growth. RNA-sequencing (RNA-seq), qRT-PCR, Western blot, polysome profiling, luciferase reporter assay, and rescue experiments were performed to explore the regulatory mechanisms of tRF in BC-DM. RESULTS: We identified that tRF-Cys-GCA-029 was downregulated in BC-DM tissues and under hyperglycemia conditions in BC cells. Functionally, downregulation of tRF-Cys-GCA-029 promoted BC cell proliferation and migration in a glucose level-dependent manner. tRF-Cys-GCA-029 knockdown also enhanced glycolysis metabolism in BC cells, indicated by increasing lactate/pyruvate production and ECAR levels. Notably, injection of tRF-Cys-GCA-029 mimic significantly suppressed BC tumor growth in diabetic-mice. Mechanistically, tRF-Cys-GCA-029 regulated BC cell malignancy and glycolysis via interacting with PRKCG in two ways: binding to the coding sequence (CDS) of PRKCG mRNA to regulate its transcription and altering polysomal PRKCG mRNA expression to modify its translation. CONCLUSIONS: Hyperglycemia-downregulated tRF-Cys-GCA-029 enhances the malignancy and glycolysis of BC cells. tRF-Cys-GCA-029-PRKCG-glycolysis axis may be a potential therapeutic target against BC-DM.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Glucólisis , Hiperglucemia , Humanos , Femenino , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Hiperglucemia/metabolismo , Hiperglucemia/genética , Ratones , Proliferación Celular , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Línea Celular Tumoral , Carcinogénesis/genética , Regulación hacia Abajo , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Regulación hacia Arriba , Pronóstico
2.
Sci Rep ; 14(1): 16990, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043734

RESUMEN

Protein kinase C is a family of kinases that play important roles in carcinogenesis. Medicinal plants from Plectranthus spp. (Lamiaceae) are a well-known source of interesting abietanes, such as 7α-acetoxy-6ß-hydroxyroyleanone (Roy). This study aimed to extract and isolate Roy from P. grandidentatus Gürke, comparing two extraction methods (CO2 supercritical and ultrasound-assisted acetonic extraction), and design new royleanone derivatives for PKC modulation focusing on breast cancer therapy. The concentration of Roy in the extracts was determined by HPLC-DAD. The supercritical extraction method yielded 3.6% w/w, with the presence of 42.7 µg mg-1 of Roy (yield of 0.13%), while ultrasound-assisted acetonic extraction yielded 2.3% w/w, with the presence of 55.2 µg mg-1 of Roy (yield of 0.15%). The reactivity of Roy was investigated aiming at synthetizing new ester derivatives through standard benzoylation and esterification reactions. The benzoylated (Roy-12-Bz) and acetylated (Roy-12-Ac) derivatives in the C12 position were consistently prepared with overall good yields (33-86%). These results indicate the 12-OH position as the most reactive for esterification, affording derivatives under mild conditions. The reported di-benzoylated (RoyBz) and di-acetylated (RoyAc) derivatives were also synthesized after increasing the temperature (50 °C), reaction time, and using an excess of reagents. The cytotoxic potential of Roy and its derivatives was assessed against breast cancer cell lines, with RoyBz emerging as the most promising compound. Derivatization at position C-12 did not offer advantages over di-esterification at positions C-12 and C-6 or over the parent compound Roy and the presence of aromatic groups favored cytotoxicity. Evaluation of royleanones as PKC-α, ßI, δ, ε, and ζ activators revealed DeRoy's efficacy across all isoforms, while RoyPr showed promising activation of PKC-δ but not PKC-ζ, highlighting the influence of slight structural changes on isoform selectivity. Molecular docking analysis emphasized the importance of microenvironmental factors in isoform specificity, underscoring the complexity of PKC modulation and the need for further exploration.


Asunto(s)
Proteína Quinasa C , Humanos , Proteína Quinasa C/metabolismo , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Isoenzimas/metabolismo , Células MCF-7 , Línea Celular Tumoral , Diterpenos
3.
Cells ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891113

RESUMEN

Tigilanol tiglate (TT, also known as EBC-46) is a novel, plant-derived diterpene ester possessing anticancer and wound-healing properties. Here, we show that TT-evoked PKC-dependent S985 phosphorylation of the tyrosine kinase MET leads to subsequent degradation of tyrosine phosphorylated p-Y1003 and p-Y1234/5 MET species. PKC inhibition with BIM-1 blocked S985 phosphorylation of MET and led to MET cell surface accumulation. Treatment with metalloproteinase inhibitors prevented MET-ECD release into cell culture media, which was also blocked by PKC inhibitors. Furthermore, unbiased secretome analysis, performed using TMT-technology, identified additional targets of TT-dependent release of cell surface proteins from H357 head and neck cancer cells. We confirm that the MET co-signalling receptor syndecan-1 was cleaved from the cell surface in response to TT treatment. This was accompanied by rapid cleavage of the cellular junction adhesion protein Nectin-1 and the nerve growth factor receptor NGFRp75/TNFR16. These findings, that TT is a novel negative regulator of protumorigenic c-MET and NGFRp75/TNFR16 signalling, as well as regulating Nectin-1-mediated cell adhesion, further contribute to our understanding of the mode of action and efficacy of TT in the treatment of solid tumours.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas c-met , Humanos , Proteínas Proto-Oncogénicas c-met/metabolismo , Fosforilación/efectos de los fármacos , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Secretoma/metabolismo , Diterpenos/farmacología , Proteínas de la Membrana/metabolismo , Transducción de Señal/efectos de los fármacos , Sindecano-1/metabolismo , Nectinas/metabolismo , Proteína Quinasa C/metabolismo
4.
Life Sci ; 351: 122865, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914304

RESUMEN

AIMS: Niacin (NIA) supplementation showed effectiveness against Parkinson's disease (PD) in clinical trials. The depletion of NAD and endoplasmic reticulum stress response (ERSR) are implicated in the pathogenesis of PD, but the potential role for NAD precursors on ERSR is not yet established. This study was undertaken to decipher NIA molecular mechanisms against PD-accompanied ERSR, especially in relation to PKC. METHODS: Alternate-day-low-dose-21 day-subcutaneous exposure to rotenone (ROT) in rats induced PD. Following the 5th ROT injection, rats received daily doses of either NIA alone or preceded by the PKC inhibitor tamoxifen (TAM). Extent of disease progression was assessed by behavioral, striatal biochemical and striatal/nigral histopathological/immunohistochemical analysis. KEY FINDINGS: Via activating PKC/LKB1/AMPK stream, NIA post-treatment attenuated the ERSR reflected by the decline in ATF4, ATF6 and XBP1s to downregulate the apoptotic markers, CHOP/GADD153, p-JNK and active caspase-3. Such amendments congregated in motor activity/coordination improvements in open field and rotarod tasks, enhanced grid test latency and reduced overall PD scores, while boosting nigral/striatal tyrosine hydroxylase immunoreactivity and increasing intact neurons (Nissl stain) in both SNpc and striatum that showed less neurodegeneration (H&E stain). To different extents, TAM reverted all the NIA-related actions to prove PKC as a fulcrum in conveying the drug neurotherapeutic potential. SIGNIFICANCE: PKC activation is a pioneer mechanism in the drug ERSR inhibitory anti-apoptotic modality to clarify NIA promising clinical and potent preclinical anti-PD efficacy. This kinase can be tagged as a druggable target for future add-on treatments that can assist dopaminergic neuronal aptitude against this devastating neurodegenerative disease.


Asunto(s)
Estrés del Retículo Endoplásmico , Niacina , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratas , Niacina/farmacología , Masculino , Proteína Quinasa C/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Rotenona/farmacología , Ratones , Apoptosis/efectos de los fármacos , Ratas Wistar , Modelos Animales de Enfermedad
5.
Sci Adv ; 10(26): eadl0030, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924398

RESUMEN

How can short-lived molecules selectively maintain the potentiation of activated synapses to sustain long-term memory? Here, we find kidney and brain expressed adaptor protein (KIBRA), a postsynaptic scaffolding protein genetically linked to human memory performance, complexes with protein kinase Mzeta (PKMζ), anchoring the kinase's potentiating action to maintain late-phase long-term potentiation (late-LTP) at activated synapses. Two structurally distinct antagonists of KIBRA-PKMζ dimerization disrupt established late-LTP and long-term spatial memory, yet neither measurably affects basal synaptic transmission. Neither antagonist affects PKMζ-independent LTP or memory that are maintained by compensating PKCs in ζ-knockout mice; thus, both agents require PKMζ for their effect. KIBRA-PKMζ complexes maintain 1-month-old memory despite PKMζ turnover. Therefore, it is not PKMζ alone, nor KIBRA alone, but the continual interaction between the two that maintains late-LTP and long-term memory.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Potenciación a Largo Plazo , Ratones Noqueados , Proteína Quinasa C , Animales , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Ratones , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Memoria/fisiología , Memoria a Largo Plazo/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Unión Proteica , Fosfoproteínas
6.
Bone ; 186: 117147, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38866124

RESUMEN

We and others have seen that osteocytes sense high-impact osteogenic mechanical loading via transient plasma membrane disruptions (PMDs) which initiate downstream mechanotransduction. However, a PMD must be repaired for the cell to survive this wounding event. Previous work suggested that the protein Prkd1 (also known as PKCµ) may be a critical component of this PMD repair process, but the specific role of Prkd1 in osteocyte mechanobiology had not yet been tested. We treated MLO-Y4 osteocytes with Prkd1 inhibitors (Go6976, kbNB 142-70, staurosporine) and generated an osteocyte-targeted (Dmp1-Cre) Prkd1 conditional knockout (CKO) mouse. PMD repair rate was measured via laser wounding and FM1-43 dye uptake, PMD formation and post-wounding survival were assessed via fluid flow shear stress (50 dyn/cm2), and in vitro osteocyte mechanotransduction was assessed via measurement of calcium signaling. To test the role of osteocyte Prkd1 in vivo, Prkd1 CKO and their wildtype (WT) littermates were subjected to 2 weeks of unilateral axial tibial loading and loading-induced changes in cortical bone mineral density, geometry, and formation were measured. Prkd1 inhibition or genetic deletion slowed osteocyte PMD repair rate and impaired post-wounding cell survival. These effects could largely be rescued by treating osteocytes with the FDA-approved synthetic copolymer Poloxamer 188 (P188), which was previously shown to facilitate membrane resealing and improve efficiency in the repair rate of PMD in skeletal muscle myocytes. In vivo, while both WT and Prkd1 CKO mice demonstrated anabolic responses to tibial loading, the magnitude of loading-induced increases in tibial BMD, cortical thickness, and periosteal mineralizing surface were blunted in Prkd1 CKO as compared to WT mice. Prkd1 CKO mice also tended to show a smaller relative difference in the number of osteocyte PMD in loaded limbs and showed greater lacunar vacancy, suggestive of impaired post-wounding osteocyte survival. While P188 treatment rescued loading-induced increases in BMD in the Prkd1 CKO mice, it surprisingly further suppressed loading-induced increases in cortical bone thickness and cortical bone formation. Taken together, these data suggest that Prkd1 may play a pivotal role in the regulation and repair of the PMD response in osteocytes and support the idea that PMD repair processes can be pharmacologically targeted to modulate downstream responses, but suggest limited utility of PMD repair-promoting P188 in improving bone anabolic responses to loading.


Asunto(s)
Membrana Celular , Ratones Noqueados , Osteocitos , Animales , Osteocitos/metabolismo , Osteocitos/efectos de los fármacos , Membrana Celular/metabolismo , Ratones , Mecanotransducción Celular/efectos de los fármacos , Proteína Quinasa C/metabolismo
7.
Front Endocrinol (Lausanne) ; 15: 1399274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894746

RESUMEN

Gonadotropin-releasing hormone (GnRH) is a key stimulator for gonadotropin secretion in the pituitary and its pivotal role in reproduction is well conserved in vertebrates. In fish models, GnRH can also induce prolactin (PRL) release, but little is known for the corresponding effect on PRL gene expression as well as the post-receptor signalling involved. Using grass carp as a model, the functional role of GnRH and its underlying signal transduction for PRL regulation were examined at the pituitary level. Using laser capture microdissection coupled with RT-PCR, GnRH receptor expression could be located in carp lactotrophs. In primary cell culture prepared from grass carp pituitaries, the native forms of GnRH, GnRH2 and GnRH3, as well as the GnRH agonist [D-Arg6, Pro9, NEt]-sGnRH were all effective in elevating PRL secretion, PRL mRNA level, PRL cell content and total production. In pituitary cells prepared from the rostral pars distalis, the region in the carp pituitary enriched with lactotrophs, GnRH not only increased cAMP synthesis with parallel CREB phosphorylation and nuclear translocation but also induced a rapid rise in cytosolic Ca2+ by Ca2+ influx via L-type voltage-sensitive Ca2+ channel (VSCC) with subsequent CaM expression and NFAT2 dephosphorylation. In carp pituitary cells prepared from whole pituitaries, GnRH-induced PRL secretion was reduced/negated by inhibiting cAMP/PKA, PLC/PKC and Ca2+/CaM/CaMK-II pathways but not the signalling events via IP3 and CaN/NFAT. The corresponding effect on PRL mRNA expression, however, was blocked by inhibiting cAMP/PKA/CREB/CBP and Ca2+/CaM/CaN/NFAT2 signalling but not PLC/IP3/PKC pathway. At the pituitary cell level, activation of cAMP/PKA pathway could also induce CaM expression and Ca2+ influx via VSCC with parallel rises in PRL release and gene expression in a Ca2+/CaM-dependent manner. These findings, as a whole, suggest that the cAMP/PKA-, PLC/PKC- and Ca2+/CaM-dependent cascades are differentially involved in GnRH-induced PRL secretion and PRL transcript expression in carp lactotrophs. During the process, a functional crosstalk between the cAMP/PKA- and Ca2+/CaM-dependent pathways may occur with PRL release linked with CaMK-II and PKC activation and PRL gene transcription caused by nuclear action of CREB/CBP and CaN/NFAT2 signalling.


Asunto(s)
Calcio , Carpas , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Hormona Liberadora de Gonadotropina , Hipófisis , Prolactina , Proteína Quinasa C , Fosfolipasas de Tipo C , Animales , Carpas/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Prolactina/metabolismo , Hipófisis/metabolismo , Hipófisis/citología , Proteína Quinasa C/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Calcio/metabolismo , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/genética , AMP Cíclico/metabolismo , Transducción de Señal/efectos de los fármacos , Calmodulina/metabolismo , Células Cultivadas , Expresión Génica/efectos de los fármacos
8.
Dev Neurobiol ; 84(3): 217-235, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837880

RESUMEN

The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific versus shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified protein kinase C (PKC) phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via myristoylated alanine-rich C-kinase substrate (MARCKS) is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remain unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.


Asunto(s)
Proteínas Relacionadas con las Cadherinas , Cadherinas , Corteza Cerebral , Dendritas , Proteína Quinasa C , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Cadherinas/metabolismo , Cadherinas/genética , Fosforilación/fisiología , Dendritas/metabolismo , Ratones , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/genética , Secuencias de Aminoácidos/fisiología , Ratones Transgénicos
9.
Redox Rep ; 29(1): 2365590, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38861483

RESUMEN

Emodin is a naturally occurring anthraquinone derivative with a wide range of pharmacological activities, including neuroprotective and anti-inflammatory activities. We aim to assess the anticancer activity of emodin against hepatocellular carcinoma (HCC) in rat models using the proliferation, invasion, and angiogenesis biomarkers. After induction of HCC, assessment of the liver impairment and the histopathology of liver sections were investigated. Hepatic expression of both mRNA and protein of the oxidative stress biomarkers, HO-1, Nrf2; the mitogenic activation biomarkers, ERK5, PKCδ; the tissue destruction biomarker, ADAMTS4; the tissue homeostasis biomarker, aggregan; the cellular fibrinolytic biomarker, MMP3; and of the cellular angiogenesis biomarker, VEGF were measured. Emodin increased the survival percentage and reduced the number of hepatic nodules compared to the HCC group. Besides, emodin reduced the elevated expression of both mRNA and proteins of all PKC, ERK5, ADAMTS4, MMP3, and VEGF compared with the HCC group. On the other hand, emodin increased the expression of mRNA and proteins of Nrf2, HO-1, and aggrecan compared with the HCC group. Therefore, emodin is a promising anticancer agent against HCC preventing the cancer prognosis and infiltration. It works through many mechanisms of action, such as blocking oxidative stress, proliferation, invasion, and angiogenesis.


Asunto(s)
Proteína ADAMTS4 , Antioxidantes , Carcinoma Hepatocelular , Emodina , Neoplasias Hepáticas , Tioacetamida , Animales , Emodina/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Ratas , Tioacetamida/toxicidad , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína ADAMTS4/metabolismo , Masculino , Proteína Quinasa C/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
10.
Biochemistry ; 63(14): 1718-1722, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38916994

RESUMEN

The HMGB1 protein typically serves as a DNA chaperone that assists DNA-repair enzymes and transcription factors but can translocate from the nucleus to the cytoplasm or even to extracellular space upon some cellular stimuli. One of the factors that triggers the translocation of HMGB1 is its phosphorylation near a nuclear localization sequence by protein kinase C (PKC), although the exact modification sites on HMGB1 remain ambiguous. In this study, using spectroscopic methods, we investigated the HMGB1 phosphorylation and its impact on the molecular properties of the HMGB1 protein. Our nuclear magnetic resonance (NMR) data on the full-length HMGB1 protein showed that PKC specifically phosphorylates the A-box domain, one of the DNA binding domains of HMGB1. Phosphorylation of S46 and S53 was particularly efficient. Over a longer reaction time, PKC phosphorylated some additional residues within the HMGB1 A-box domain. Our fluorescence-based binding assays showed that the phosphorylation significantly reduces the binding affinity of HMGB1 for DNA. Based on the crystal structures of HMGB1-DNA complexes, this effect can be ascribed to electrostatic repulsion between the negatively charged phosphate groups at the S46 side chain and DNA backbone. Our data also showed that the phosphorylation destabilizes the folding of the A-box domain. Thus, phosphorylation by PKC weakens the DNA-binding affinity and folding stability of HMGB1.


Asunto(s)
ADN , Proteína HMGB1 , Pliegue de Proteína , Proteína Quinasa C , Proteína HMGB1/metabolismo , Proteína HMGB1/química , Fosforilación , ADN/metabolismo , ADN/química , Proteína Quinasa C/metabolismo , Proteína Quinasa C/química , Estabilidad Proteica , Humanos , Unión Proteica , Animales , Resonancia Magnética Nuclear Biomolecular , Modelos Moleculares , Dominios Proteicos
11.
Biochem J ; 481(12): 759-775, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38752473

RESUMEN

The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.


Asunto(s)
Neoplasias , Proteína Quinasa C-theta , Humanos , Proteína Quinasa C-theta/genética , Proteína Quinasa C-theta/metabolismo , Proteína Quinasa C-theta/química , Neoplasias/genética , Neoplasias/enzimología , Neoplasias/metabolismo , Mutación con Pérdida de Función , Células HEK293 , Dominios Proteicos , Mutación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa C/química
12.
Circ Res ; 135(2): e24-e38, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38813686

RESUMEN

BACKGROUND: Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to ß-adrenergic receptor (ß-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. ß1-AR (ß1-adrenergic receptor) and ß2-ARs (ß2-adrenergic receptor) are the 2 major subtypes of ß-ARs present in the human heart; however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of ß1-ARs drives detrimental cardiac remodeling while ß2-AR signaling is protective. The underlying molecular mechanisms for cardiac protection through ß2-ARs remain unclear. METHODS: ß2-AR signaling mechanisms were studied in isolated neonatal rat ventricular myocytes and adult mouse ventricular myocytes using live cell imaging and Western blotting methods. Isolated myocytes and mice were used to examine the roles of ß2-AR signaling mechanisms in the regulation of cardiac hypertrophy. RESULTS: Here, we show that ß2-AR activation protects against hypertrophy through inhibition of phospholipaseCε signaling at the Golgi apparatus. The mechanism for ß2-AR-mediated phospholipase C inhibition requires internalization of ß2-AR, activation of Gi and Gßγ subunit signaling at endosome and ERK (extracellular regulated kinase) activation. This pathway inhibits both angiotensin II and Golgi-ß1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD (protein kinase D) and histone deacetylase 5 phosphorylation and protection against cardiac hypertrophy. CONCLUSIONS: This reveals a mechanism for ß2-AR antagonism of the phospholipase Cε pathway that may contribute to the known protective effects of ß2-AR signaling on the development of heart failure.


Asunto(s)
Miocitos Cardíacos , Receptores Adrenérgicos beta 2 , Transducción de Señal , Animales , Receptores Adrenérgicos beta 2/metabolismo , Miocitos Cardíacos/metabolismo , Ratones , Células Cultivadas , Ratas , Cardiomegalia/metabolismo , Cardiomegalia/patología , Ratones Endogámicos C57BL , Aparato de Golgi/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Ratas Sprague-Dawley , Masculino , Proteína Quinasa C/metabolismo , Animales Recién Nacidos , Endocitosis , Ratones Noqueados
13.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L3-L18, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38742284

RESUMEN

Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.


Asunto(s)
Asma , Diacilglicerol Quinasa , Transducción de Señal , Asma/metabolismo , Asma/patología , Asma/fisiopatología , Asma/enzimología , Humanos , Diacilglicerol Quinasa/metabolismo , Animales , Diglicéridos/metabolismo , Proteína Quinasa C/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1871(6): 119748, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38723678

RESUMEN

The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIß (PI4KIIIß) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.


Asunto(s)
Transportador de Glucosa de Tipo 4 , Glucosa , Miocardio , Proteína Quinasa C , Transporte de Proteínas , Transducción de Señal , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Miocardio/metabolismo , Animales , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Glucosa/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genética , Ácidos Grasos/metabolismo
15.
Eur J Pharmacol ; 976: 176667, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795754

RESUMEN

Migraine, a debilitating neurological condition, significantly affects patients' quality of life. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist approved for managing dyslipidemia, has shown promise in treating neurological disorders. Therefore, this study aims to investigate the protective effects of fenofibrate against nitroglycerin (NTG)-induced chronic migraine in rats. Migraine was induced in rats by administering five intermittent doses of NTG (10 mg/kg, i. p.) on days 1, 3, 5, 7, and 9. Rats were treated with either topiramate (80 mg/kg/day, p. o.), a standard drug, or fenofibrate (100 mg/kg/day, p. o.) from day 1-10. Fenofibrate significantly improved mechanical and thermal hypersensitivity, photophobia, and head grooming compared to topiramate. These effects were associated with reduced serum levels of nitric oxide (NO), calcitonin gene-related peptide (CGRP), and pituitary adenylate cyclase-activating polypeptide (PACAP). Furthermore, fenofibrate down-regulated c-Fos expression in the medulla and medullary pro-inflammatory cytokine contents. Additionally, fenofibrate attenuated NTG-induced histopathological changes in the trigeminal ganglia and trigeminal nucleus caudalis. These effects were associated with the inhibition of CGRP/p-CREB/purinergic 2X receptor 3 (P2X3) and nerve growth factor (NGF)/protein kinase C (PKC)/acid-sensing ion channel 3 (ASIC3) signaling pathways. This study demonstrates that fenofibrate attenuated NTG-induced migraine-like signs in rats. These effects were partially mediated through the inhibition of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. The present study supports the idea that fenofibrate could be an effective candidate for treating migraine headache without significant adverse effects. Future studies should explore its clinical applicability.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Fenofibrato , Trastornos Migrañosos , Factor de Crecimiento Nervioso , Nitroglicerina , Proteína Quinasa C , Receptores Purinérgicos P2X3 , Transducción de Señal , Animales , Nitroglicerina/farmacología , Nitroglicerina/toxicidad , Péptido Relacionado con Gen de Calcitonina/metabolismo , Transducción de Señal/efectos de los fármacos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/metabolismo , Masculino , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Ratas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína Quinasa C/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Óxido Nítrico/metabolismo , Ratas Sprague-Dawley , Conducta Animal/efectos de los fármacos
16.
Histopathology ; 85(2): 347-352, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38747196

RESUMEN

BACKGROUND AND AIMS: PKC-fused blue naevi are a recently described group of melanocytic tumours that have distinctive morphological features, including a pigmented epithelioid melanocytoma-like junctional component or a dermal biphasic architecture associating with naevocytoid nests surrounded by dendritic and spindled pigmented melanocytes (so-called 'combined common and blue naevus'). There have been reports of smooth muscle hyperplasia in a hamartoma-like pattern in cases of combined blue naevi without genetic exploration. MATERIALS AND METHODS: Herein, we describe 12 cases of protein kinase C (PKC)-fused blue tumours associated with a co-existing smooth muscle hyperplasia, identified from a total of 98 PKC-fused melanocytic tumours. Archived slides of PKC-fused blue naevi with haematoxylin, eosin and phloxin staining, immunohistochemistry and molecular confirmation of a PKC-fusion by fluorescence in-situ hybridisation (FISH) or RNAseq were re-evaluated for identification of notable smooth muscle hyperplasia. Fifty-one of these slides had already been studied in a previous publication from our group. RESULTS: The hyperplasia ranged from hypertrophic arrector pili muscles to extensive horizontal bundles of disorganised fibres constantly associated and limited within a biphasic dermal melanocytic component. At least one arrector pili muscle was always visible within the tumour, with occasionally direct extension of the hyperplastic fibres from the main muscle body. These muscle fibres were devoid of a PKC-fusion signal by FISH. PKC molecules are involved in the regulation of smooth muscle function, offering an explanatory framework. CONCLUSIONS: These data suggest incorporating smooth muscle hyperplasia as a diagnostic morphological feature of PKC-fused blue melanocytic tumours.


Asunto(s)
Hiperplasia , Músculo Liso , Nevo Azul , Proteína Quinasa C , Neoplasias Cutáneas , Humanos , Hiperplasia/patología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Femenino , Masculino , Adulto , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Nevo Azul/patología , Nevo Azul/genética , Nevo Azul/diagnóstico , Músculo Liso/patología , Persona de Mediana Edad , Adolescente , Adulto Joven , Niño , Anciano
17.
J Mol Cell Cardiol ; 193: 1-10, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38789075

RESUMEN

BACKGROUND: Hypothermic ischemia-reperfusion arrhythmia is a common complication of cardiothoracic surgery under cardiopulmonary bypass, but few studies have focused on this type of arrhythmia. Our prior study discovered reduced myocardial Cx43 protein levels may be linked to hypothermic reperfusion arrhythmias. However, more detailed molecular mechanism research is required. METHOD: The microRNA and mRNA expression levels in myocardial tissues were detected by real-time quantitative PCR (RT-qPCR). Besides, the occurrence of hypothermic reperfusion arrhythmias and changes in myocardial electrical conduction were assessed by electrocardiography and ventricular epicardial activation mapping. Furthermore, bioinformatics analysis, applying antagonists of miRNA, western blotting, immunohistochemistry, a dual luciferase assay, and pearson correlation analysis were performed to investigate the underlying molecular mechanisms. RESULTS: The expression level of novel-miR-17 was up-regulated in hypothermic ischemia-reperfusion myocardial tissues. Inhibition of novel-miR-17 upregulation ameliorated cardiomyocyte edema, reduced apoptosis, increased myocardial electrical conduction velocity, and shortened the duration of reperfusion arrhythmias. Mechanistic studies showed that novel-miR-17 reduced the expression of Cx43 by directly targeting Gja1 while mediating the activation of the PKC/c-Jun signaling pathway. CONCLUSION: Up-regulated novel-miR-17 is a newly discovered pro-arrhythmic microRNA that may serve as a potential therapeutic target and biomarker for hypothermic reperfusion arrhythmias.


Asunto(s)
Arritmias Cardíacas , Conexina 43 , MicroARNs , Proteína Quinasa C , Transducción de Señal , Animales , Humanos , Masculino , Ratas , Apoptosis/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/etiología , Arritmias Cardíacas/patología , Conexina 43/metabolismo , Conexina 43/genética , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/etiología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Regulación hacia Arriba
18.
Drug Des Devel Ther ; 18: 1415-1438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707614

RESUMEN

Objective: This study aims to explore the mechanism of action of Yixintai in treating chronic ischemic heart failure by combining bioinformatics and experimental validation. Materials and Methods: Five potential drugs for treating heart failure were obtained from Yixintai (YXT) through early mass spectrometry detection. The targets of YXT for treating heart failure were obtained by a search of online databases. Gene ontology (GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted on the common targets using the DAVID database. A rat heart failure model was established by ligating the anterior descending branch of the left coronary artery. A small animal color Doppler ultrasound imaging system detected cardiac function indicators. Hematoxylin-eosin (HE), Masson's, and electron microscopy were used to observe the pathological morphology of the myocardium in rats with heart failure. The network pharmacology analysis results were validated by ELISA, qPCR, and Western blotting. Results: A total of 107 effective targets were obtained by combining compound targets and eliminating duplicate values. PPI analysis showed that inflammation-related proteins (TNF and IL1B) were key targets for treating heart failure, and KEGG enrichment suggested that NF-κB signaling pathway was a key pathway for YXT treatment of heart failure. Animal model validation results indicated the following: YXT can significantly reduce the content of intestinal microbiota metabolites such as trimethylamine oxide (TMAO) and improve heart failure by improving the EF and FS values of heart ultrasound in rats and reducing the levels of serum NT-proBNP, ANP, and BNP to improve heart failure. Together, YXT can inhibit cardiac muscle hypertrophy and fibrosis in rats and improve myocardial ultrastructure and serum IL-1ß, IL-6, and TNF-α levels. These effects are achieved by inhibiting the expressions of NF-κB and PKC. Conclusion: YXT regulates the TMAO/PKC/NF-κB signaling pathway in heart failure.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Farmacología en Red , Transducción de Señal , Animales , Masculino , Ratas , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Metilaminas/farmacología , FN-kappa B/metabolismo , Proteína Quinasa C/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
19.
J Ethnopharmacol ; 331: 118289, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718892

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Successful use of herbal medicine in the treatment of rheumatoid arthritis (RA) creates opportunities for alternative therapies. Yuanhu Zhitong oral liquid (YZOL) is an herbal preparation known for its potent analgesic and anti-inflammatory properties in traditional use. However, the pharmacological mechanism of YZOL for treating RA remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy of YZOL in the treatment of RA and to explore its potential mechanisms through omics analysis. MATERIALS AND METHODS: Type II collagen was used to induce an arthritis rat model. The effects of YZOL on paw swelling, inflammatory cytokines, oxidative stress, and histopathological changes were systematically investigated. A pathway-driven transcriptomic analysis was performed to identify key signaling pathways associated with YZOL therapy. The key alterations were validated by qRT-PCR, Western blot, and immunohistochemistry assays. RESULTS: YZOL significantly attenuated arthritis progression, reduced paw swelling rate, and lowered arthritis score in CIA rats. YZOL also inhibited systemic inflammation and associated oxidative stress during RA. Transcriptomic analysis identified 341 genes with significantly altered expression following YZOL treatment. These genes were enriched in inflammation-related pathways, particularly in the NF-κB and MAPK signaling pathways. In addition, we discovered that YZOL can alleviate inflammation in the local synovial tissue. The effect of YZOL was confirmed by the suppression of PKC/ERK/NF-κB p65 signaling at systemic and local levels. CONCLUSIONS: This study provides novel evidence that YZOL treatment ameliorates RA by suppressing the PKC/ERK/NF-κB pathway, suggesting its potential as an alternative therapy for RA.


Asunto(s)
Antiinflamatorios , Artritis Experimental , Medicamentos Herbarios Chinos , FN-kappa B , Transducción de Señal , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , FN-kappa B/metabolismo , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratas , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Proteína Quinasa C/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratas Sprague-Dawley , Administración Oral
20.
J Neurophysiol ; 131(6): 1188-1199, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691529

RESUMEN

Prolonged inhibition of respiratory neural activity elicits a long-lasting increase in phrenic nerve amplitude once respiratory neural activity is restored. Such long-lasting facilitation represents a form of respiratory motor plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although facilitation also occurs in inspiratory intercostal nerve activity after diminished respiratory neural activity (iIMF), it is of shorter duration. Atypical PKC activity in the cervical spinal cord is necessary for iPMF and iIMF, but the site and specific isoform of the relevant atypical PKC are unknown. Here, we used RNA interference to test the hypothesis that the zeta atypical PKC isoform (PKCζ) within phrenic motor neurons is necessary for iPMF but PKCζ within intercostal motor neurons is unnecessary for transient iIMF. Intrapleural injections of siRNAs targeting PKCζ (siPKCζ) to knock down PKCζ mRNA within phrenic and intercostal motor neurons were made in rats. Control rats received a nontargeting siRNA (NTsi) or an active siRNA pool targeting a novel PKC isoform, PKCθ (siPKCθ), which is required for other forms of respiratory motor plasticity. Phrenic nerve burst amplitude and external intercostal (T2) electromyographic (EMG) activity were measured in anesthetized and mechanically ventilated rats exposed to 30 min of respiratory neural inactivity (i.e., neural apnea) created by modest hypocapnia (20 min) or a similar recording duration without neural apnea (time control). Phrenic burst amplitude was increased in rats treated with NTsi (68 ± 10% baseline) and siPKCθ (57 ± 8% baseline) 60 min after neural apnea vs. time control rats (-3 ± 3% baseline), demonstrating iPMF. In contrast, intrapleural siPKCζ virtually abolished iPMF (5 ± 4% baseline). iIMF was transient in all groups exposed to neural apnea; however, intrapleural siPKCζ attenuated iIMF 5 min after neural apnea (50 ± 21% baseline) vs. NTsi (97 ± 22% baseline) and siPKCθ (103 ± 20% baseline). Neural inactivity elevated the phrenic, but not intercostal, responses to hypercapnia, an effect that was blocked by siPKCζ. We conclude that PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient iIMF.NEW & NOTEWORTHY We report important new findings concerning the mechanisms regulating a form of spinal neuroplasticity elicited by prolonged inhibition of respiratory neural activity, inactivity-induced phrenic motor facilitation (iPMF). We demonstrate that the atypical PKC isoform PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient inspiratory intercostal facilitation. Our findings are novel and advance our understanding of mechanisms contributing to phrenic motor plasticity.


Asunto(s)
Neuronas Motoras , Nervio Frénico , Proteína Quinasa C , Ratas Sprague-Dawley , Animales , Nervio Frénico/fisiología , Proteína Quinasa C/metabolismo , Proteína Quinasa C/fisiología , Neuronas Motoras/fisiología , Masculino , Ratas , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...