Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(8): e0268269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36026508

RESUMEN

Antimalarial drug resistance has thrown a spanner in the works of malaria elimination. New drugs are required for ancillary support of existing malaria control efforts. Plasmodium falciparum requires host glucose for survival and proliferation. On this basis, P. falciparum hexose transporter 1 (PfHT1) protein involved in hexose permeation is considered a potential drug target. In this study, we tested the antimalarial activity of some compounds against PfHT1 using computational techniques. We performed high throughput virtual screening of 21,352 small-molecule compounds against PfHT1. The stability of the lead compound complexes was evaluated via molecular dynamics (MD) simulation for 100 nanoseconds. We also investigated the pharmacodynamic, pharmacokinetic and physiological characteristics of the compounds in accordance with Lipinksi rules for drug-likeness to bind and inhibit PfHT1. Molecular docking and free binding energy analyses were carried out using Molecular Mechanics with Generalized Born and Surface Area (MMGBSA) solvation to determine the selectivity of the hit compounds for PfHT1 over the human glucose transporter (hGLUT1) orthologue. Five important PfHT1 inhibitors were identified: Hyperoside (CID5281643); avicularin (CID5490064); sylibin (CID5213); harpagoside (CID5481542) and quercetagetin (CID5281680). The compounds formed intermolecular interaction with the binding pocket of the PfHT1 target via conserved amino acid residues (Val314, Gly183, Thr49, Asn52, Gly183, Ser315, Ser317, and Asn48). The MMGBSA analysis of the complexes yielded high free binding energies. Four (CID5281643, CID5490064, CID5213, and CID5481542) of the identified compounds were found to be stable within the PfHT1 binding pocket throughout the 100 nanoseconds simulation run time. The four compounds demonstrated higher affinity for PfHT1 than the human major glucose transporter (hGLUT1). This investigation demonstrates the inhibition potential of sylibin, hyperoside, harpagoside, and avicularin against PfHT1 receptor. Robust preclinical investigations are required to validate the chemotherapeutic properties of the identified compounds.


Asunto(s)
Antimaláricos , Malaria Falciparum , Proteínas de Transporte de Monosacáridos , Plasmodium falciparum , Proteínas Protozoarias , Antimaláricos/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa , Humanos , Malaria Falciparum/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Unión Proteica , Proteínas Protozoarias/antagonistas & inhibidores
2.
PLoS One ; 16(9): e0255470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34499670

RESUMEN

TBR225 is one of the most popular commercial rice varieties in Northern Vietnam. However, this variety is highly susceptible to bacterial leaf blight (BLB), a disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which can lead to important yield losses. OsSWEET14 belongs to the SWEET gene family that encodes sugar transporters. Together with other Clade III members, it behaves as a susceptibility (S) gene whose induction by Asian Xoo Transcription-Activator-Like Effectors (TALEs) is absolutely necessary for disease. In this study, we sought to introduce BLB resistance in the TBR225 elite variety. First, two Vietnamese Xoo strains were shown to up-regulate OsSWEET14 upon TBR225 infection. To investigate if this induction is connected with disease susceptibility, nine TBR225 mutant lines with mutations in the AvrXa7, PthXo3 or TalF TALEs DNA target sequences of the OsSWEET14 promoter were obtained using the CRISPR/Cas9 editing system. Genotyping analysis of T0 and T1 individuals showed that mutations were stably inherited. None of the examined agronomic traits of three transgene-free T2 edited lines were significantly different from those of wild-type TBR225. Importantly, one of these T2 lines, harboring the largest homozygous 6-bp deletion, displayed decreased OsSWEET14 expression as well as a significantly reduced susceptibility to a Vietnamese Xoo strains and complete resistance to another one. Our findings indicate that CRISPR/Cas9 editing conferred an improved BLB resistance to a Vietnamese commercial elite rice variety.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Xanthomonas/fisiología , Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Susceptibilidad a Enfermedades , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutación , Oryza/crecimiento & desarrollo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética
3.
J Med Chem ; 64(7): 3885-3896, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33775096

RESUMEN

Quinacrine (QC) and chloroquine (CQ) have antimicrobial and antiviral activities as well as antimalarial activity, although the mechanisms remain unknown. QC increased the antimicrobial activity against yeast exponentially with a pH-dependent increase in the cationic amphiphilic drug (CAD) structure. CAD-QC localized in the yeast membranes and induced glucose starvation by noncompetitively inhibiting glucose uptake as antipsychotic chlorpromazine (CPZ) did. An exponential increase in antimicrobial activity with pH-dependent CAD formation was also observed for CQ, indicating that the CAD structure is crucial for its pharmacological activity. A decrease in CAD structure with a slight decrease in pH from 7.4 greatly reduced their effects; namely, these drugs would inefficiently act on falciparum malaria and COVID-19 pneumonia patients with acidosis, resulting in resistance. The decrease in CAD structure at physiological pH was not observed for quinine, primaquine, or mefloquine. Therefore, restoring the normal blood pH or using pH-insensitive quinoline drugs might be effective for these infectious diseases with acidosis.


Asunto(s)
Antifúngicos/farmacología , Cloroquina/farmacología , Quinacrina/farmacología , Tensoactivos/farmacología , Antifúngicos/química , Antifúngicos/metabolismo , Membrana Celular/metabolismo , Cloroquina/química , Cloroquina/metabolismo , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Protones , Quinacrina/química , Quinacrina/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Tensoactivos/química , Tensoactivos/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33402433

RESUMEN

Artemisinin-resistant malaria parasites have emerged and have been spreading, posing a significant public health challenge. Antimalarial drugs with novel mechanisms of action are therefore urgently needed. In this report, we exploit a "selective starvation" strategy by inhibiting Plasmodium falciparum hexose transporter 1 (PfHT1), the sole hexose transporter in P. falciparum, over human glucose transporter 1 (hGLUT1), providing an alternative approach to fight against multidrug-resistant malaria parasites. The crystal structure of hGLUT3, which shares 80% sequence similarity with hGLUT1, was resolved in complex with C3361, a moderate PfHT1-specific inhibitor, at 2.3-Å resolution. Structural comparison between the present hGLUT3-C3361 and our previously reported PfHT1-C3361 confirmed the unique inhibitor binding-induced pocket in PfHT1. We then designed small molecules to simultaneously block the orthosteric and allosteric pockets of PfHT1. Through extensive structure-activity relationship studies, the TH-PF series was identified to selectively inhibit PfHT1 over hGLUT1 and potent against multiple strains of the blood-stage P. falciparum Our findings shed light on the next-generation chemotherapeutics with a paradigm-shifting structure-based design strategy to simultaneously target the orthosteric and allosteric sites of a transporter.


Asunto(s)
Antimaláricos/química , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 3/ultraestructura , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Monosacáridos/ultraestructura , Proteínas Protozoarias/ultraestructura , Sitio Alostérico , Secuencia de Aminoácidos/genética , Animales , Cristalografía por Rayos X , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/química , Transportador de Glucosa de Tipo 3/química , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Plasmodium falciparum/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Conformación Proteica/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Relación Estructura-Actividad
5.
Biol Pharm Bull ; 43(11): 1653-1659, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32863294

RESUMEN

Hyperuricemia is mainly the result of relative underexcretion of urate. Urate is mainly eliminated by kidney and several important transporters expressed on the membrane of renal tubular cells involved in urate excretion. Olsalazine sodium was screened from 3167 authorized small compounds/drugs, targeting xanthine oxidoreductase. In previous study, we reported that olsalazine sodium significantly reduced the serum urate levels, and the anti-hyperuricemic activity linked with inhibiting urate formation by reducing the activity of xanthine oxidoreductase. The current research aimed to assess olsalazine sodium renal urate excretion and likely molecular mechanism. The results showed that administration of olsalazine sodium 5.0 mg/kg decreased the levels of serum urate in hyperuricemic rats, and noticeably improved the fractional excretion of urate and urate clearance, exhibiting an uricosuric action. Moreover, olsalazine sodium (2.5, 5.0, 10.0 mg/kg) reduced the level of blood urea nitrogen in rats. Further study showed that olsalazine sodium reduced the mRNA expression of urate reabsorptive transporter glucose transporter 9 (GLUT9), increased the mRNA expression of urate secretory transporters, organic anion transporter 1 (OAT1), OAT3 and type 1 sodium-dependent phosphate transporter (NPT1) as well as the protein expression of OAT3 in the kidney in hyperuricemic mice. In conclusion, olsalazine sodium exhibited a promotion of urate excretion in kidney by increasing the expression of OAT3.


Asunto(s)
Ácidos Aminosalicílicos/farmacología , Hiperuricemia/tratamiento farmacológico , Transportadores de Anión Orgánico Sodio-Independiente/agonistas , Eliminación Renal/efectos de los fármacos , Ácido Úrico/metabolismo , Ácidos Aminosalicílicos/uso terapéutico , Animales , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Creatinina/orina , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Hiperuricemia/sangre , Hiperuricemia/fisiopatología , Hiperuricemia/orina , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/fisiopatología , Masculino , Ratones , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/metabolismo , Proteína 1 de Transporte de Anión Orgánico/agonistas , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ratas , Ratas Sprague-Dawley , Eliminación Renal/fisiología , Reabsorción Renal/efectos de los fármacos , Reabsorción Renal/fisiología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/agonistas , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/metabolismo , Ácido Úrico/sangre , Ácido Úrico/orina
6.
Eur J Pharmacol ; 888: 173490, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32827538

RESUMEN

Increasing evidence shows that the intestinal tract plays an important role in maintaining urate homeostasis and might be a potential therapeutic target for hyperuricaemia. However, uric acid-lowering drugs available in the clinic do not target intestinal excretion as a therapeutic strategy. We previously reported that mangiferin had potent hypouricaemic effects in hyperuricaemic animals. However, the underlying mechanisms are not completely clear. Here, we investigated the effects of mangiferin on the intestinal excretion of urate and its underlying mechanisms. The data revealed that mangiferin concentration-dependently promoted the intestinal secretion of endogenous urate in in situ intestinal closed loops in normal and hyperuricaemic mice, as well as inhibited the absorption of exogenous uric acid perfused into the intestinal loops in rats. Administration of mangiferin not only decreased the serum urate levels in the hyperuricaemic mice but also increased the protein expression of ATP-binding cassette transporter, subfamily G, member 2 (ABCG2) and inhibited the protein expression of glucose transporter 9 (GLUT 9) in the intestine. These findings suggested that intestinal ABCG2 and GLUT9 might be pivotal and possible action sites for the observed hypouricaemic effects. Moreover, no significant changes in intestinal xanthine oxidoreductase activities were observed, suggesting that mangiferin did not affect intestinal uric acid generation in the hyperuricaemic mice. Overall, promoting intestinal elimination of urate by upregulating ABCG2 expression and downregulating GLUT9 expression might be an important mechanism underlying mangiferin lowering serum uric acid levels. Mangiferin supplementation might be beneficial for the prevention and treatment of hyperuricaemia.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/biosíntesis , Eliminación Intestinal/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/biosíntesis , Ácido Úrico/metabolismo , Xantonas/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/agonistas , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Eliminación Intestinal/fisiología , Masculino , Ratones , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Xantonas/uso terapéutico
7.
Lett Appl Microbiol ; 69(3): 161-167, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31267555

RESUMEN

Efflux-mediated multidrug resistance is a well-known phenomenon facilitated by multidrug resistant (MDR) transporters. One of the approaches to counteract efflux-mediated resistance is the use of MDR pump inhibitors, and thus be used in combination with the conventional antibiotics to treat deadly diseases like typhoid fever. We have previously reported that STY4874, an efflux transporter of Salmonella serotype Typhi, exhibited promising characteristics as MDR pump. In this study, we aimed to get an insight into possible STY4874 inhibitors of plant origin. STY4874 was overexpressed in Escherichia coli and extracts from pomegranate peel, milk thistle seeds and reserpine, a synthetic plant alkaloid, were screened for inhibition of ciprofloxacin efflux. The extracts of milk thistle seeds and reserpine when incubated with ciprofloxacin showed statistically significant STY4874-mediated inhibitory activity, rendering the efflux pump inactive and hence early growth inhibition of host cells compared with cells expressing efflux pump and incubated only with ciprofloxacin. This efflux pump inhibitory activity was further confirmed by time-kill experiments. This study is the first to report on efflux pump inhibition of S. Typhi STY4874 and results can be extended towards its close homologues such as MdfA and MdtM from E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding and combating resistance governed by multidrug efflux transporters is an ongoing research intensive area, affecting treatment of various nosocomial and endemic/epidemic infections. Confronting drug resistance requires that inhibitors debilitating the underlying mechanisms should be included in combination therapy. One such example is the prescription of clavulanic acid as combination therapy with amoxicillin, collectively called as co-amoxiclav to combat ß-lactamase-mediated resistance. However, research related to finding the inhibitors of efflux transporters, the resistance mechanism distinct from ß-lactamase mediated resistance is at an early stage. The current study finds that plant-derived inhibitors can be an option towards restraining efflux-mediated resistance.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Extractos Vegetales/farmacología , Reserpina/farmacología , Salmonella typhi/efectos de los fármacos , Silybum marianum/química , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli , Pruebas de Sensibilidad Microbiana
8.
PLoS One ; 14(5): e0216457, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31071153

RESUMEN

Although the Plasmodium falciparum hexose transporter PfHT has emerged as a promising target for anti-malarial therapy, previously identified small-molecule inhibitors have lacked promising drug-like structural features necessary for development as clinical therapeutics. Taking advantage of emerging insight into structure/function relationships in homologous facilitative hexose transporters and our novel high throughput screening platform, we investigated the ability of compounds satisfying Lipinksi rules for drug likeness to directly interact and inhibit PfHT. The Maybridge HitFinder chemical library was interrogated by searching for compounds that reduce intracellular glucose by >40% at 10 µM. Testing of initial hits via measurement of 2-deoxyglucose (2-DG) uptake in PfHT over-expressing cell lines identified 6 structurally unique glucose transport inhibitors. WU-1 (3-(2,6-dichlorophenyl)-5-methyl-N-[2-(4-methylbenzenesulfonyl)ethyl]-1,2-oxazole-4-carboxamide) blocked 2-DG uptake (IC50 = 5.8 ± 0.6 µM) with minimal effect on the human orthologue class I (GLUTs 1-4), class II (GLUT8) and class III (GLUT5) facilitative glucose transporters. WU-1 showed comparable potency in blocking 2-DG uptake in freed parasites and inhibiting parasite growth, with an IC50 of 6.1 ± 0.8 µM and EC50 of 5.5 ± 0.6 µM, respectively. WU-1 also directly competed for N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) binding and inhibited the transport of D-glucose with an IC50 of 5.9 ± 0.8 µM in liposomes containing purified PfHT. Kinetic analysis revealed that WU-1 acts as a non-competitive inhibitor of zero-trans D-fructose uptake. Decreased potency for WU-1 and the known endofacial ligand cytochalasin B was observed when PfHT was engineered to contain an N-terminal FLAG tag. This modification resulted in a concomitant increase in affinity for 4,6-O-ethylidene-α-D-glucose, an exofacially directed transport antagonist, but did not alter the Km for 2-DG. Taken together, these data are consistent with a model in which WU-1 binds preferentially to the transporter in an inward open conformation and support the feasibility of developing potent and selective PfHT antagonists as a novel class of anti-malarial drugs.


Asunto(s)
Antimaláricos , Proteínas de Transporte de Monosacáridos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias , Antimaláricos/química , Antimaláricos/farmacología , Transporte Biológico Activo/efectos de los fármacos , Glucosa/metabolismo , Células HEK293 , Humanos , Ligandos , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Ingeniería de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas
9.
Glycobiology ; 29(6): 490-503, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30834435

RESUMEN

SLC35A2 transports UDP-galactose from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum for glycosylation. Mutations in SLC35A2 induce a congenital disorder of glycosylation. Despite the biomedical relevance, mechanisms of transport via SLC35A2 and the impact of disease-associated mutations on activity are unclear. To address these issues, we generated a predicted structure of SLC35A2 and assayed for the effects of a set of structural and disease-associated mutations. Activity assays were performed using a rescue approach in ΔSLC35A2 cells and took advantage of the fact that SLC35A2 is required for expression of the glycosphingolipid globotriaosylceramide (Gb3), the cell surface receptor for Shiga toxin 1 (STx1) and 2 (STx2). The N- and C-terminal cytoplasmic loops of SLC35A2 were dispensable for activity, but two critical glycine (Gly-202 and Gly-214) and lysine (Lys-78 and Lys-297) residues in transmembrane segments were required. Residues corresponding to Gly-202 and Gly-214 in the related transporter SLC35A1 form a substrate-translocating channel, suggesting that a similar mechanism may be involved in SLC35A2. Among the eight disease-associated mutations tested, SLC35A2 function was completely inhibited by two (S213F and G282R) and partially inhibited by three (R55L, G266V, and S304P), providing a straight-forward mechanism of disease. Interestingly, the remaining three (V331I, V258M, and Y267C) did not impact SLC35A2 function, suggesting that complexities beyond loss of transporter activity may underlie disease due to these mutations. Overall, our results provide new insights into the mechanisms of transport of SLC35A2 and improve understanding of the relationship between SLC35A2 mutations and disease.


Asunto(s)
Bioensayo , Proteínas de Transporte de Monosacáridos/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Bacterias/química , Sitios de Unión , Humanos , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Mutación , Toxina Shiga I/genética , Toxina Shiga II/genética
10.
Mol Nutr Food Res ; 63(12): e1801402, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30913372

RESUMEN

SCOPE: Conjugated linoleic acid (CLA), a bioactive substance predominantly found in ruminant products, improves insulin resistance and exhibits anti-inflammatory activity. The chief objective of the study is to investigate the effects and potential mechanisms of CLA on high fructose-induced hyperuricemia and renal inflammation. METHODS AND RESULTS: Hyperuricemia and renal inflammation are induced in rats by 10% fructose. Hyperuricemia, insulin resistance, and renal inflammation are evaluated. CLA potently ameliorates fructose-induced hyperuricemia with insulin resistance and significantly reduces the levels of inflammation factors in serum and kidney. It reverses fructose-induced upregulation of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in the kidney. Moreover, CLA dramatically inhibits the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. Additionally, CLA suppresses toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling activation to inhibit nuclear factor-kB (NF-kB) signaling in the kidney of fructose-fed rats. CONCLUSION: CLA ameliorates hyperuricemia along with insulin resistance and renal inflammatory, which may be associated with the suppression of renal GLUT9 and URAT1 in fructose-fed rats. Its molecular mechanism may be related to the inhibition of NLRP3 inflammasome and TLR4/MyD88 signaling pathway. Therefore, CLA may be a promising candidate for preventing fructose-induced hyperuricemia and renal inflammation.


Asunto(s)
Fructosa/administración & dosificación , Hiperuricemia/tratamiento farmacológico , Inflamasomas/fisiología , Inflamación/tratamiento farmacológico , Riñón/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Receptor Toll-Like 4/fisiología , Animales , Proteínas de Transporte de Anión/antagonistas & inhibidores , Ácidos Linoleicos Conjugados/uso terapéutico , Masculino , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
11.
Molecules ; 23(10)2018 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-30301205

RESUMEN

The intestinal absorption of fatty acids, glucose and fructose is part of the basic requirements for the provision of energy in the body. High access of saturated longchain fatty acids (LCFA), glucose and fructose can facilitate the development of metabolic diseases, particularly the metabolic syndrome and type-2 diabetes mellitus (T2DM). Research has been done to find substances which decelerate or inhibit intestinal resorption of these specific food components. Promising targets are the inhibition of intestinal long-chain fatty acid (FATP2, FATP4), glucose (SGLT1, GLUT2) and fructose (GLUT2, GLUT5) transporters by plant extracts and by pure substances. The largest part of active components in plant extracts belongs to the group of polyphenols. This review summarizes the knowledge about binding sites of named transporters and lists the plant extracts which were tested in Caco-2 cells regarding uptake inhibition.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ácidos Grasos/farmacología , Intestinos/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Células CACO-2 , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Ácidos Grasos/metabolismo , Fructosa/metabolismo , Glucosa/metabolismo , Humanos , Absorción Intestinal/efectos de los fármacos , Intestinos/patología , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Polifenoles/química , Polifenoles/farmacología
12.
Methods Mol Biol ; 1713: 123-135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29218522

RESUMEN

As the simplest eukaryotic model system, the unicellular yeast Saccharomyces cerevisiae is ideally suited for quick and simple functional studies as well as for high-throughput screening. We generated a strain deficient for all endogenous hexose transporters, which has been successfully used to clone, characterize, and engineer carbohydrate transporters from different source organisms. Here we present basic protocols for handling this strain and characterizing sugar transporters heterologously expressed in it.


Asunto(s)
Bioensayo , Proteínas de Transporte de Monosacáridos/metabolismo , Azúcares/metabolismo , Transporte Biológico/efectos de los fármacos , Clonación Molecular , Descubrimiento de Drogas/métodos , Expresión Génica , Prueba de Complementación Genética , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Diabetes ; 67(2): 265-277, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29180353

RESUMEN

Mitophagy is a cellular quality-control pathway, which is essential for elimination of unhealthy mitochondria. While mitophagy is critical to pancreatic ß-cell function, the posttranslational signals governing ß-cell mitochondrial turnover are unknown. Here, we report that ubiquitination is essential for the assembly of a mitophagy regulatory complex, comprised of the E3 ligase Nrdp1, the deubiquitinase enzyme USP8, and Clec16a, a mediator of ß-cell mitophagy with unclear function. We discover that the diabetes gene Clec16a encodes an E3 ligase, which promotes nondegradative ubiquitin conjugates to direct its mitophagy effectors and stabilize the Clec16a-Nrdp1-USP8 complex. Inhibition of the Clec16a pathway by the chemotherapeutic lenalidomide, a selective ubiquitin ligase inhibitor associated with new-onset diabetes, impairs ß-cell mitophagy, oxygen consumption, and insulin secretion. Indeed, patients treated with lenalidomide develop compromised ß-cell function. Moreover, the ß-cell Clec16a-Nrdp1-USP8 mitophagy complex is destabilized and dysfunctional after lenalidomide treatment as well as after glucolipotoxic stress. Thus, the Clec16a-Nrdp1-USP8 complex relies on ubiquitin signals to promote mitophagy and maintain mitochondrial quality control necessary for optimal ß-cell function.


Asunto(s)
Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células Secretoras de Insulina/metabolismo , Lectinas Tipo C/metabolismo , Mitofagia , Proteínas de Transporte de Monosacáridos/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Línea Celular , Células Cultivadas , Cruzamientos Genéticos , Endopeptidasas/química , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/antagonistas & inhibidores , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Lectinas Tipo C/antagonistas & inhibidores , Lectinas Tipo C/química , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitofagia/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Multimerización de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Bancos de Tejidos , Técnicas de Cultivo de Tejidos , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
14.
Glycoconj J ; 34(3): 411-420, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27744520

RESUMEN

Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (ß4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of ß4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in ß4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.


Asunto(s)
Sulfatos de Condroitina/biosíntesis , Dermatán Sulfato/análogos & derivados , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Heparitina Sulfato/biosíntesis , Ácido Hialurónico/biosíntesis , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Sulfatos de Condroitina/antagonistas & inhibidores , Sulfatos de Condroitina/genética , Dermatán Sulfato/antagonistas & inhibidores , Dermatán Sulfato/biosíntesis , Dermatán Sulfato/genética , Células Epiteliales/patología , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Heparitina Sulfato/antagonistas & inhibidores , Heparitina Sulfato/genética , Humanos , Hialuronano Sintasas/antagonistas & inhibidores , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/antagonistas & inhibidores , Ácido Hialurónico/genética , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetil-Lactosamina Sintasa/antagonistas & inhibidores , N-Acetil-Lactosamina Sintasa/genética , N-Acetil-Lactosamina Sintasa/metabolismo , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
15.
Antimicrob Agents Chemother ; 60(12): 7407-7414, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27736766

RESUMEN

The glucose transporter PfHT is essential to the survival of the malaria parasite Plasmodium falciparum and has been shown to be a druggable target with high potential for pharmacological intervention. Identification of compounds against novel drug targets is crucial to combating resistance against current therapeutics. Here, we describe the development of a cell-based assay system readily adaptable to high-throughput screening that directly measures compound effects on PfHT-mediated glucose transport. Intracellular glucose concentrations are detected using a genetically encoded fluorescence resonance energy transfer (FRET)-based glucose sensor. This allows assessment of the ability of small molecules to inhibit glucose uptake with high accuracy (Z' factor of >0.8), thereby eliminating the need for radiolabeled substrates. Furthermore, we have adapted this assay to counterscreen PfHT hits against the human orthologues GLUT1, -2, -3, and -4. We report the identification of several hits after screening the Medicines for Malaria Venture (MMV) Malaria Box, a library of 400 compounds known to inhibit erythrocytic development of P. falciparum Hit compounds were characterized by determining the half-maximal inhibitory concentration (IC50) for the uptake of radiolabeled glucose into isolated P. falciparum parasites. One of our hits, compound MMV009085, shows high potency and orthologue selectivity, thereby successfully validating our assay for antimalarial screening.


Asunto(s)
Antimaláricos/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Glucosa/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Antimaláricos/química , Células Cultivadas , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/parasitología , Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Especificidad de la Especie , Relación Estructura-Actividad , Tritio
16.
J Mol Graph Model ; 66: 174-86, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27131282

RESUMEN

Malaria is the most prevalent parasitic disease in the world. Currently, an effective vaccine for malaria does not exist, and chemotherapy must be used to treat the disease. Because of increasing resistance to current antimalarial drugs, new treatments must be developed. Among the many potential molecular targets, the hexose transporter of Plasmodium falciparum (PfHT) is particularly promising because it plays a vital role in glucose transport for the parasite. Thus, this study aims to determine the three-dimensional structure of PfHT and to describe the intermolecular interactions between active glycoside derivatives and PfHT. Such information should aid in the development of new antimalarial drugs. The receptor PfHT was constructed from primary sequences deposited in the SWISS MODEL database. Next, molecular docking simulations between O-(undec-10-en)-l-D-glucose and the constructed active site models were performed using Autodock Vina. The glycoside derivative-PfHT complexes were then refined using the hybrid QM/MM (PM3/ff03) method within the AMBER package. The models were then evaluated using Ramachandran plots, which indicated that 93.2% of the residues in the refined PfHT models (P5) were present in favorable regions. Furthermore, graphical plots using ANOLEA showed that the potential energies of interaction for atoms unbonded to P5 were negative. Finally, the O-(undec-10-en)-l-D-glucose-PfHT complex was evaluated using 20-ns Molecular Dynamics simulations with an ff03 force field. Docking and QM/MM studies revealed the amino acids essential for molecular recognition of and activity on glycosides. Inhibition of glucose transporters may prevent the development and metabolism of P. falciparum, so a description of the receptor's structure is a critical step towards rational drug design.


Asunto(s)
Antimaláricos/química , Diseño de Fármacos , Proteínas de Transporte de Monosacáridos/química , Plasmodium falciparum/enzimología , Antimaláricos/uso terapéutico , Glucosa/metabolismo , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Vacunas contra la Malaria/química , Vacunas contra la Malaria/uso terapéutico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Conformación Proteica
17.
Virology ; 492: 66-72, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26901486

RESUMEN

BK polyomavirus (BKPyV) is a human pathogen that causes polyomavirus-associated nephropathy and hemorrhagic cystitis in transplant patients. Gangliosides and caveolin proteins have previously been reported to be required for BKPyV infection in animal cell models. Recent studies from our lab and others, however, have indicated that the identity of the cells used for infection studies can greatly influence the behavior of the virus. We therefore wished to re-examine BKPyV entry in a physiologically relevant primary cell culture model, human renal proximal tubule epithelial cells. Using siRNA knockdowns, we interfered with expression of UDP-glucose ceramide glucosyltransferase (UGCG), and the endocytic vesicle coat proteins caveolin 1, caveolin 2, and clathrin heavy chain. The results demonstrate that while BKPyV does require gangliosides for efficient infection, it can enter its natural host cells via a caveolin- and clathrin-independent pathway. The results emphasize the importance of studying viruses in a relevant cell culture model.


Asunto(s)
Virus BK/efectos de los fármacos , Caveolina 1/genética , Caveolina 2/genética , Cadenas Pesadas de Clatrina/genética , Células Epiteliales/efectos de los fármacos , Interacciones Huésped-Patógeno , Virus BK/genética , Virus BK/metabolismo , Caveolina 1/antagonistas & inhibidores , Caveolina 1/metabolismo , Caveolina 2/antagonistas & inhibidores , Caveolina 2/metabolismo , Línea Celular , Cadenas Pesadas de Clatrina/antagonistas & inhibidores , Cadenas Pesadas de Clatrina/metabolismo , Células Epiteliales/virología , Gangliósido G(M1)/farmacología , Gangliósidos/farmacología , Regulación de la Expresión Génica , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/virología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Internalización del Virus/efectos de los fármacos
18.
Genetics ; 202(3): 997-1012, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26757771

RESUMEN

Action mechanisms of anesthetics remain unclear because of difficulty in explaining how structurally different anesthetics cause similar effects. In Saccharomyces cerevisiae, local anesthetics and antipsychotic phenothiazines induced responses similar to those caused by glucose starvation, and they eventually inhibited cell growth. These drugs inhibited glucose uptake, but additional glucose conferred resistance to their effects; hence, the primary action of the drugs is to cause glucose starvation. In hxt(0) strains with all hexose transporter (HXT) genes deleted, a strain harboring a single copy of HXT1 (HXT1s) was more sensitive to tetracaine than a strain harboring multiple copies (HXT1m), which indicates that quantitative reduction of HXT1 increases tetracaine sensitivity. However, additional glucose rather than the overexpression of HXT1/2 conferred tetracaine resistance to wild-type yeast; therefore, Hxts that actively transport hexoses apparently confer tetracaine resistance. Additional glucose alleviated sensitivity to local anesthetics and phenothiazines in the HXT1m strain but not the HXT1s strain; thus, the glucose-induced effects required a certain amount of Hxt1. At low concentrations, fluorescent phenothiazines were distributed in various membranes. At higher concentrations, they destroyed the membranes and thereby delocalized Hxt1-GFP from the plasma membrane, similar to local anesthetics. These results suggest that the aforementioned drugs affect various membrane targets via nonspecific interactions with membranes. However, the drugs preferentially inhibit the function of abundant Hxts, resulting in glucose starvation. When Hxts are scarce, this preference is lost, thereby mitigating the alleviation by additional glucose. These results provide a mechanism that explains how different compounds induce similar effects based on lipid theory.


Asunto(s)
Anestésicos Locales/farmacología , Antipsicóticos/farmacología , Membrana Celular/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Fenotiazinas/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Medios de Cultivo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética
19.
PLoS One ; 10(11): e0141767, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528718

RESUMEN

BACKGROUND: 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) interconverts active 11ß-hydroxyl glucocorticoids and inactive 11keto forms. However, its directionality is determined by availability of NADP+/NADPH. In liver cells, 11ß-HSD1 behaves as a primary reductase, while in Leydig cells it acts as a primary oxidase. However, the exact mechanism is not clear. The direction of 11ß-HSD1 has been proposed to be regulated by hexose-6-phosphate dehydrogenase (H6PDH), which catalyzes glucose-6-phosphate (G6P) to generate NADPH that drives 11ß-HSD1 towards reduction. METHODOLOGY: To examine the coupling between 11ß-HSD1 and H6PDH, we added G6P to rat and human liver and testis or Leydig cell microsomes, and 11ß-HSD1 activity was measured by radiometry. RESULTS AND CONCLUSIONS: G6P stimulated 11ß-HSD1 reductase activity in rat (3 fold) or human liver (1.5 fold), but not at all in testis. S3483, a G6P transporter inhibitor, reversed the G6P-mediated increases of 11ß-HSD1 reductase activity. We compared the extent to which 11ß-HSD1 in rat Leydig and liver cells might be coupled to H6PDH. In order to clarify the location of H6PDH within the testis, we used the Leydig cell toxicant ethane dimethanesulfonate (EDS) to selectively deplete Leydig cells. The depletion of Leydig cells eliminated Hsd11b1 (encoding 11ß-HSD1) expression but did not affect the expression of H6pd (encoding H6PDH) and Slc37a4 (encoding G6P transporter). H6pd mRNA level and H6PDH activity were barely detectable in purified rat Leydig cells. In conclusion, the availability of H6PDH determines the different direction of 11ß-HSD1 in liver and Leydig cells.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Glucosa-6-Fosfato/metabolismo , Células Intersticiales del Testículo/enzimología , Hígado/enzimología , Animales , Antiportadores/antagonistas & inhibidores , Antiportadores/metabolismo , Ácidos Ciclohexanocarboxílicos/farmacología , Humanos , Células Intersticiales del Testículo/citología , Hígado/citología , Masculino , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/metabolismo , NADP/metabolismo , Ratas , Ratas Sprague-Dawley
20.
Antimicrob Agents Chemother ; 59(10): 6203-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26248369

RESUMEN

Malaria and HIV infection are coendemic in a large portion of the world and remain a major cause of morbidity and mortality. Growing resistance of Plasmodium species to existing therapies has increased the need for new therapeutic approaches. The Plasmodium glucose transporter PfHT is known to be essential for parasite growth and survival. We have previously shown that HIV protease inhibitors (PIs) act as antagonists of mammalian glucose transporters. While the PI lopinavir is known to have antimalarial activity, the mechanism of action is unknown. We report here that lopinavir blocks glucose uptake into isolated malaria parasites at therapeutically relevant drug levels. Malaria parasites depend on a constant supply of glucose as their primary source of energy, and decreasing the available concentration of glucose leads to parasite death. We identified the malarial glucose transporter PfHT as a target for inhibition by lopinavir that leads to parasite death. This discovery provides a mechanistic basis for the antimalarial effect of lopinavir and provides a direct target for novel drug design with utility beyond the HIV-infected population.


Asunto(s)
Glucosa/antagonistas & inhibidores , Inhibidores de la Proteasa del VIH/farmacología , Lopinavir/farmacología , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/química , Antimaláricos/farmacología , Transporte Biológico , Reposicionamiento de Medicamentos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/parasitología , Expresión Génica , Glucosa/metabolismo , Células HEK293 , Inhibidores de la Proteasa del VIH/química , Humanos , Concentración 50 Inhibidora , Lopinavir/química , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA