Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.732
Filtrar
1.
Methods Mol Biol ; 2854: 75-82, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192120

RESUMEN

Click chemistry, also known as "link chemistry," is an important molecular connection method that can achieve simple and efficient connections between specific small molecular groups at the molecular level. Click chemistry offers several advantages, including high efficiency, good selectivity, mild conditions, and few side reactions. These features make it a valuable tool for in-depth analysis of various protein posttranslational modifications (PTMs) caused by changes in cell metabolism during viral infection. This chapter considers the palmitoylation, carbonylation, and alkylation of STING and presents detailed information and experimental procedures for measuring PTMs using click chemistry.


Asunto(s)
Química Clic , Procesamiento Proteico-Postraduccional , Química Clic/métodos , Humanos , Alquilación , Lipoilación , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Carbonilación Proteica
2.
Anal Chim Acta ; 1320: 343005, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142782

RESUMEN

BACKGROUND: Cell-surface proteins, which are closely associated with various physiological and pathological processes, have drawn much attention in drug discovery and disease diagnosis. Thus, wash-free imaging of the target cell-surface protein under its native environment is critical and helpful for early detection and prognostic evaluation of diseases. RESULTS: To minimize the interference from autofluorescence and fit the penetration depth towards tissue samples, we developed a fluorogenic antibody-based probe, Ab-Cy5.5, which will liberate > 5-fold turn-on near-infrared (NIR) emission in the presence of its target antigen within 10 min. SIGNIFICANCE: By taking advantage of the fluorescence-quenched dimeric H-aggregation of Cy5.5, Ab-Cy5.5 with Cy5.5 attached at the N-terminus showed negligible background signal, allowing direct imaging of the target cell-surface protein in both living cells and tissue samples without washing.


Asunto(s)
Carbocianinas , Colorantes Fluorescentes , Proteínas de la Membrana , Colorantes Fluorescentes/química , Humanos , Carbocianinas/química , Proteínas de la Membrana/química , Proteínas de la Membrana/análisis , Proteínas de la Membrana/inmunología , Animales , Imagen Óptica , Anticuerpos/química , Anticuerpos/inmunología , Ratones
3.
Protein Sci ; 33(9): e5143, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39150080

RESUMEN

The cellular signaling process or ion transport is mediated by membrane proteins (MPs) located on the cell surface, and functional studies of MPs have mainly been conducted using cells endogenously or transiently expressing target proteins. Reconstitution of purified MPs in the surface of live cells would have advantages of short manipulation time and ability to target cells in which gene transfection is difficult. However, direct reconstitution of MPs in live cells has not been established. The traditional detergent-mediated reconstitution method of MPs into a lipid bilayer cannot be applied to live cells because this disrupts and reforms the lipid bilayer structure, which is detrimental to cell viability. In this study, we demonstrated that GPCRs (prostaglandin E2 receptor 4 [EP4] and glucagon-like peptide-1 receptor [GLP1R]) or serotonin receptor 3A (5HT3A), a ligand-gated ion channel, stabilized with amphiphilic poly-γ-glutamate (APG), can be reconstituted into mammalian cell plasma membranes without affecting cell viability. Furthermore, 5HT3A reconstituted in mammalian cells showed ligand-dependent Ca2+ ion transport activity. APG-mediated reconstitution of GPCR in synthetic liposomes showed that electrostatic interaction between APG and membrane surface charge contributed to the reconstitution process. This APG-mediated membrane engineering method could be applied to the functional modification of cell membranes with MPs in live cells.


Asunto(s)
Membrana Celular , Receptores de Serotonina 5-HT3 , Humanos , Receptores de Serotonina 5-HT3/metabolismo , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/genética , Membrana Celular/metabolismo , Membrana Celular/química , Células HEK293 , Animales , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Calcio/metabolismo , Calcio/química , Liposomas/química , Liposomas/metabolismo
4.
Nat Commun ; 15(1): 6645, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103332

RESUMEN

Multidomain proteins with flexible linkers and disordered regions play important roles in many cellular processes, but characterizing their conformational ensembles is difficult. We have previously shown that the coarse-grained model, Martini 3, produces too compact ensembles in solution, that may in part be remedied by strengthening protein-water interactions. Here, we show that decreasing the strength of protein-protein interactions leads to improved agreement with experimental data on a wide set of systems. We show that the 'symmetry' between rescaling protein-water and protein-protein interactions breaks down when studying interactions with or within membranes; rescaling protein-protein interactions better preserves the binding specificity of proteins with lipid membranes, whereas rescaling protein-water interactions preserves oligomerization of transmembrane helices. We conclude that decreasing the strength of protein-protein interactions improves the accuracy of Martini 3 for IDPs and multidomain proteins, both in solution and in the presence of a lipid membrane.


Asunto(s)
Unión Proteica , Soluciones , Agua/química , Agua/metabolismo , Simulación de Dinámica Molecular , Proteínas/química , Proteínas/metabolismo , Conformación Proteica , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química
5.
Methods Mol Biol ; 2841: 215-224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115781

RESUMEN

Macroautophagy/autophagy is a highly conserved process for the degradation of cellular components and plays an essential role in cellular homeostasis maintenance. During autophagy, specialized double-membrane vesicles known as autophagosomes are formed and sequester cytoplasmic cargoes and deliver them to lysosomes or vacuoles for breakdown. Central to this process are autophagy-related (ATG) proteins, with the ATG9-the only integral membrane protein in this core machinery-playing a central role in mediating autophagosome formation. Recent years have witnessed the maturation of cryo-electron microscopy (cryo-EM) and single-particle analysis into powerful tools for high-resolution structural determination of protein complexes. These advancements have significantly deepened our understanding of the intricate molecular mechanisms underlying autophagosome biogenesis. In this study, we present a protocol detailing the acquisition of the three-dimensional structure of ATG9 from Arabidopsis thaliana. The structural resolution achieved 7.8 Å determined by single-particle cryo-electron microscopy (cryo-EM).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Relacionadas con la Autofagia , Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura
6.
J Am Chem Soc ; 146(34): 24158-24166, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39138141

RESUMEN

Cell membrane genetic engineering has been utilized to confer cell membranes with functionalities for diagnostic and therapeutic purposes but concerns over cost and variable modification results. Although nongenetic chemical modification and phospholipid insertion strategies are more convenient, they still face bottlenecks in either biosafety or stability of the modifications. Herein, we show that pyrazolone-bearing molecules can bind to proteins with high stability, which is mainly contributed to by the multiple interactions between pyrazolone and basic amino acids. This new binding model offers a simple and versatile noncovalent approach for cell membrane functionalization. By binding to cell membrane proteins, pyrazolone-bearing dyes enabled precise cell tracking in vitro (>96 h) and in vivo (>21 days) without interfering with the protein function or causing cell death. Furthermore, the convenient anchor of pyrazolone-bearing biotin on cell membranes rendered the biorecognition to avidin, showing the potential for artificially creating cell targetability.


Asunto(s)
Membrana Celular , Pirazolonas , Pirazolonas/química , Pirazolonas/farmacología , Membrana Celular/metabolismo , Membrana Celular/química , Humanos , Biotina/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Unión Proteica
7.
Proc Natl Acad Sci U S A ; 121(34): e2405986121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145928

RESUMEN

RAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization. Here, we probe three isoforms of RAS [Kirsten Rat Sarcoma viral oncogene (KRAS), Harvey Rat Sarcoma viral oncogene (HRAS), and Neuroblastoma oncogene (NRAS)] directly from membranes using mass spectrometry. We show that KRAS on membranes in the inactive state (GDP-bound) is monomeric but forms dimers in the active state (GTP-bound). We demonstrate that the small molecule BI2852 can induce dimerization of KRAS, whereas the binding of effector proteins disrupts dimerization. We also show that RAS dimerization is dependent on lipid composition and reveal that oligomerization of NRAS is regulated by palmitoylation. By monitoring the intrinsic GTPase activity of RAS, we capture the emergence of a dimer containing either mixed nucleotides or GDP on membranes. We find that the interaction of RAS with the catalytic domain of Son of Sevenless (SOScat) is influenced by membrane composition. We also capture the activation and monomer to dimer conversion of KRAS by SOScat. These results not only reveal the stoichiometry of RAS assemblies on membranes but also uncover the impact of critical factors on oligomerization, encompassing regulation by nucleotides, lipids, and palmitoylation.


Asunto(s)
Membrana Celular , Multimerización de Proteína , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Humanos , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Lipoilación , Proteínas ras/metabolismo , Proteínas ras/química , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
8.
J Am Chem Soc ; 146(34): 24114-24124, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39162019

RESUMEN

The lateral organization of proteins and lipids in the plasma membrane is fundamental to regulating a wide range of cellular processes. Compartmentalized ordered membrane domains enriched with specific lipids, often termed lipid rafts, have been shown to modulate the physicochemical and mechanical properties of membranes and to drive protein sorting. Novel methods and tools enabling the visualization, characterization, and/or manipulation of membrane compartmentalization are crucial to link the properties of the membrane with cell functions. Flipper, a commercially available fluorescent membrane tension probe, has become a reference tool for quantitative membrane tension studies in living cells. Here, we report on a so far unidentified property of Flipper, namely, its ability to photosensitize singlet oxygen (1O2) under blue light when embedded into lipid membranes. This in turn results in the production of lipid hydroperoxides that increase membrane tension and trigger phase separation. In biological membranes, the photoinduced segregated domains retain the sorting ability of intact phase-separated membranes, directing raft and nonraft proteins into ordered and disordered regions, respectively, in contrast to radical-based photo-oxidation reactions that disrupt raft protein partitioning. The dual tension reporting and photosensitizing abilities of Flipper enable simultaneous visualization and manipulation of the mechanical properties and lateral organization of membranes, providing a powerful tool to optically control lipid raft formation and to explore the interplay between membrane biophysics and cell function.


Asunto(s)
Microdominios de Membrana , Microdominios de Membrana/metabolismo , Microdominios de Membrana/química , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Luz , Colorantes Fluorescentes/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Procesos Fotoquímicos , Membrana Celular/metabolismo , Membrana Celular/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Separación de Fases
10.
Phys Chem Chem Phys ; 26(33): 21930-21953, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39108200

RESUMEN

The objective of this work is to highlight the power of isotope-edited Fourier transform infrared (FTIR) spectroscopy in resolving important problems encountered in biochemistry, biophysics, and biomedical research, focusing on protein-protein and protein membrane interactions that play key roles in practically all life processes. An overview of the effects of isotope substitutions in (bio)molecules on spectral frequencies and intensities is given. Data are presented demonstrating how isotope-labeled proteins and/or lipids can be used to elucidate enzymatic mechanisms, the mode of membrane binding of peripheral proteins, regulation of membrane protein function, protein aggregation, and local and global structural changes in proteins during functional transitions. The use of polarized attenuated total reflection FTIR spectroscopy to identify the spatial orientation and the secondary structure of a membrane-bound interfacial enzyme and the mode of lipid hydrolysis is described. Methods of production of site-directed, segmental, and domain-specific labeling of proteins by the synthetic, semisynthetic, and recombinant strategies, including advanced protein engineering technologies such as nonsense suppression and frameshift quadruplet codons are overviewed.


Asunto(s)
Proteínas de la Membrana , Espectroscopía Infrarroja por Transformada de Fourier , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Marcaje Isotópico , Membrana Celular/metabolismo , Membrana Celular/química , Proteínas/química , Proteínas/metabolismo
11.
J Vis Exp ; (210)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39185860

RESUMEN

Members of the LRRC8 protein family form heteromeric ion and osmolyte channels with roles in numerous physiological processes. As volume-regulated anion channels (VRACs)/volume-sensitive outwardly rectifying channels (VSORs), they are activated upon osmotic cell swelling and mediate the extrusion of chloride and organic osmolytes, leading to the efflux of water and hence cell shrinkage. Beyond their role in osmotic volume regulation, VRACs have been implicated in cellular processes such as differentiation, migration, and apoptosis. Through their effect on membrane potential and their transport of various signaling molecules, leucine-rich repeat containing 8 (LRRC8) channels play roles in neuron-glia communication, insulin secretion, and immune response. The activation mechanism has remained elusive. LRRC8 channels, like other ion channels, are typically studied using electrophysiological methods. Here, we describe a method to detect LRRC8 channel activation by measuring intra-complex sensitized-emission Förster resonance energy transfer (SE-FRET) between fluorescent proteins fused to the C-terminal leucine-rich repeat domains of LRRC8 subunits. This method offers the possibility to study channel activation in situ without exchange of the cytosolic environment and during processes such as cell differentiation and apoptosis.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Células HEK293 , Animales
12.
Methods Enzymol ; 701: 123-156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39025570

RESUMEN

Membrane proteins (MPs) often show preference for one phase over the other, which is characterized by the partition coefficient, Kp. The physical mechanisms underlying Kp have been only inferred indirectly from experiments due to the unavailability of detailed structures and compositions of ordered phases. Molecular dynamics (MD) simulations can complement these details and thus, in principle, provide further insights into the partitioning of MPs between two phases. However, the application of MD has remained difficult due to long time scales required for equilibration and large system size for the phase stability, which have not been fully resolved even in free energy simulations. This chapter describes the recently developed binary bilayer simulation method, where the membrane is composed of two laterally attached membrane patches. The binary bilayer system (BBS) is designed to preserve the lateral packing of both phases in a significantly smaller size compared to that required for macroscopic phase separation. These characteristics are advantageous in partitioning simulations, as the length scale for diffusion across the system can be significantly smaller. Hence the BBS can be efficiently employed in both conventional MD and free energy simulations, though sampling in ordered phases remains difficult due to slow diffusion. Development of efficient lipid swapping methods and its combination with the BBS would be a useful approach for partitioning in coexisting phases.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Difusión , Termodinámica
13.
Methods Enzymol ; 701: 237-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39025573

RESUMEN

The Martini model is a popular force field for coarse-grained simulations. Membranes have always been at the center of its development, with the latest version, Martini 3, showing great promise in capturing more and more realistic behavior. In this chapter we provide a step-by-step tutorial on how to construct starting configurations, run initial simulations and perform dedicated analysis for membrane-based systems of increasing complexity, including leaflet asymmetry, curvature gradients and embedding of membrane proteins.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Membrana Celular/química , Membrana Celular/metabolismo
14.
Methods Enzymol ; 701: 457-514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39025579

RESUMEN

In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.


Asunto(s)
Proteínas de la Membrana , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Hidrodinámica , Membrana Celular/química , Membrana Celular/metabolismo , Cinética , Simulación de Dinámica Molecular , Viscosidad , Difusión , Membrana Dobles de Lípidos/química
15.
Methods Enzymol ; 701: 47-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39025580

RESUMEN

Many membrane proteins are sensitive to their local lipid environment. As structural methods for membrane proteins have improved, there is growing evidence of direct, specific binding of lipids to protein surfaces. Unfortunately the workhorse of understanding protein-small molecule interactions, the binding affinity for a given site, is experimentally inaccessible for these systems. Coarse-grained molecular dynamics simulations can be used to bridge this gap, and are relatively straightforward to learn. Such simulations allow users to observe spontaneous binding of lipids to membrane proteins and quantify localized densities of individual lipids or lipid fragments. In this chapter we outline a protocol for extracting binding affinities from these localized distributions, known as the "density threshold affinity." The density threshold affinity uses an adaptive and flexible definition of site occupancy that alleviates the need to distinguish between "bound'' lipids and bulk lipids that are simply diffusing through the site. Furthermore, the method allows "bead-level" resolution that is suitable for the case where lipids share binding sites, and circumvents ambiguities about a relevant reference state. This approach provides a convenient and straightforward method for comparing affinities of a single lipid species for multiple sites, multiple lipids for a single site, and/or a single lipid species modeled using multiple forcefields.


Asunto(s)
Simulación de Dinámica Molecular , Unión Proteica , Sitios de Unión , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos/química
16.
Methods Enzymol ; 701: 387-424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39025577

RESUMEN

The Helfrich free energy is widely used to model the generation of membrane curvature due to different physical and chemical components. The governing equations resulting from the energy minimization procedure are a system of coupled higher order partial differential equations. Simulations of membrane deformation for obtaining quantitative comparisons against experimental observations require computational schemes that will allow us to solve these equations without restrictions to axisymmetric coordinates. Here, we describe one such tool that we developed in our group based on discrete differential geometry to solve these equations along with examples.


Asunto(s)
Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Membrana Celular/metabolismo , Membrana Celular/química , Modelos Biológicos , Termodinámica , Simulación por Computador , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
17.
Methods Enzymol ; 701: 579-601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39025583

RESUMEN

We describe methods to analyze lipid distributions and curvature in membranes with complex lipid mixtures and embedded membrane proteins. We discuss issues involved in these analyses, available tools to calculate curvature preferences of lipids and proteins, and focus on tools developed in our group for visual analysis of lipid-protein interactions and the analysis of membrane curvature.


Asunto(s)
Membrana Dobles de Lípidos , Lípidos de la Membrana , Proteínas de la Membrana , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Lípidos/química
18.
PLoS Comput Biol ; 20(7): e1011421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976709

RESUMEN

Membrane binding is a crucial mechanism for many proteins, but understanding the specific interactions between proteins and membranes remains a challenging endeavor. Coagulation factor Va (FVa) is a large protein whose membrane interactions are complicated due to the presence of multiple anchoring domains that individually can bind to lipid membranes. Using molecular dynamics simulations, we investigate the membrane binding of FVa and identify the key mechanisms that govern its interaction with membranes. Our results reveal that FVa can either adopt an upright or a tilted molecular orientation upon membrane binding. We further find that the domain organization of FVa deviates (sometimes significantly) from its crystallographic reference structure, and that the molecular orientation of the protein matches with domain reorganization to align the C2 domain toward its favored membrane-normal orientation. We identify specific amino acid residues that exhibit contact preference with phosphatidylserine lipids over phosphatidylcholine lipids, and we observe that mostly electrostatic effects contribute to this preference. The observed lipid-binding process and characteristics, specific to FVa or common among other membrane proteins, in concert with domain reorganization and molecular tilt, elucidate the complex membrane binding dynamics of FVa and provide important insights into the molecular mechanisms of protein-membrane interactions. An updated version of the HMMM model, termed extHMMM, is successfully employed for efficiently observing membrane bindings of systems containing the whole FVa molecule.


Asunto(s)
Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Biología Computacional , Membrana Celular/metabolismo , Membrana Celular/química , Sitios de Unión , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Humanos
19.
Colloids Surf B Biointerfaces ; 242: 114071, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39002202

RESUMEN

Disc-like lipid nanoparticles stabilized by saponin biosurfactants display fascinating properties, including their temperature-driven re-organization. ß-Aescin, a saponin from seed extract of the horse chestnut tree, shows strong interactions with lipid membranes and has gained interest due to its beneficial therapeutic implications as well as its ability to decompose continuous lipid membranes into size-tuneable discoidal nanoparticles. Here, we characterize lipid nanoparticles formed by aescin and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine. We present site-resolved insights into central molecular interactions and their modulations by temperature and aescin content. Using the membrane protein bacteriorhodopsin, we additionally demonstrate that, under defined conditions, aescin-lipid discs can accommodate medium-sized transmembrane proteins. Our data reveal the general capability of this fascinating system to generate size-tuneable aescin-lipid-protein particles, opening the road for further applications in biochemical, biophysical and structural studies.


Asunto(s)
Escina , Nanopartículas , Tamaño de la Partícula , Nanopartículas/química , Escina/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Temperatura , Dimiristoilfosfatidilcolina/química , Estabilidad Proteica , Liposomas
20.
Langmuir ; 40(31): 16454-16462, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39046853

RESUMEN

The significant inconsistency between the experimental and simulation results of the free energy for the translocon-assisted insertion of the transmembrane helix (TMH) has not been reasonably explained. Understanding the mechanism of TMH insertion through the translocon is the key to solving this problem. In this study, we performed a series of coarse-grained molecular dynamics simulations and calculated the potential mean forces (PMFs) for three insertion processes of a hydrophobic TMH. The simulations reveal the pathway of the TMH insertion assisted by a translocon. The results indicate that the TMH contacts the top of the lateral gate first and then inserts down the lateral gate, which agrees with the sliding model. The TMH begins to transfer laterally to the bilayer when it is blocked by the plug and reaches the exit of the lateral gate, where there is a free energy minimum point. We also found that the connecting section between TM2 and TM3 of Sec61α prevented TMH from leaving the lateral gate and directly transitioning to the surface-bound state. These findings provide insight into the mechanism of the insertion of TMH through the translocon.


Asunto(s)
Simulación de Dinámica Molecular , Canales de Translocación SEC , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Conformación Proteica en Hélice alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...