Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.036
Filtrar
1.
J Nanobiotechnology ; 22(1): 513, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192264

RESUMEN

The application of nanoscale scaffolds has become a promising strategy in vaccine design, with protein-based nanoparticles offering desirable avenues for the biocompatible and efficient delivery of antigens. Here, we presented a novel endogenous capsid-forming protein, activated-regulated cytoskeleton-associated protein (ARC), which could be engineered through the plug-and-play strategy (SpyCatcher3/SpyTag3) for multivalent display of antigens. Combined with the self-assembly capacity and flexible modularity of ARC, ARC-based vaccines elicited robust immune responses against Mpox or SARS-CoV-2, comparable to those induced by ferritin-based vaccines. Additionally, ARC-based nanoparticles functioned as immunostimulants, efficiently stimulating dendritic cells and facilitating germinal center responses. Even without adjuvants, ARC-based vaccines generated protective immune responses in a lethal challenge model. Hence, this study showed the feasibility of ARC as a novel protein-based nanocarrier for multivalent surface display of pathogenic antigens and demonstrated the potential of exploiting recombinant mammalian retrovirus-like protein as a delivery vehicle for bioactive molecules.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , SARS-CoV-2 , Animales , Nanopartículas/química , Ratones , SARS-CoV-2/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/química , Humanos , Ratones Endogámicos BALB C , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Femenino , Células Dendríticas/inmunología , Nanovacunas , Proteínas del Tejido Nervioso
2.
Nat Commun ; 15(1): 6824, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122694

RESUMEN

MICAL proteins represent a unique family of actin regulators crucial for synapse development, membrane trafficking, and cytokinesis. Unlike classical actin regulators, MICALs catalyze the oxidation of specific residues within actin filaments to induce robust filament disassembly. The potent activity of MICALs requires tight control to prevent extensive damage to actin cytoskeleton. However, the molecular mechanism governing MICALs' activity regulation remains elusive. Here, we report the cryo-EM structure of MICAL1 in the autoinhibited state, unveiling a head-to-tail interaction that allosterically blocks enzymatic activity. The structure also reveals the assembly of C-terminal domains via a tripartite interdomain interaction, stabilizing the inhibitory conformation of the RBD. Our structural, biochemical, and cellular analyses elucidate a multi-step mechanism to relieve MICAL1 autoinhibition in response to the dual-binding of two Rab effectors, revealing its intricate activity regulation mechanisms. Furthermore, our mutagenesis study of MICAL3 suggests the conserved autoinhibition and relief mechanisms among MICALs.


Asunto(s)
Actinas , Microscopía por Crioelectrón , Oxigenasas de Función Mixta , Humanos , Actinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/química , Unión Proteica , Citoesqueleto de Actina/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Dominios Proteicos , Calponinas
3.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062914

RESUMEN

The Ezrin/Radixin/Moesin (ERM) family of proteins act as cross-linkers between the plasma membrane and the actin cytoskeleton. This mechanism plays an essential role in processes related to membrane remodeling and organization, such as cell polarization, morphogenesis and adhesion, as well as in membrane protein trafficking and signaling pathways. For several human aquaporin (AQP) isoforms, an interaction between the ezrin band Four-point-one, Ezrin, Radixin, Moesin (FERM)-domain and the AQP C-terminus has been demonstrated, and this is believed to be important for AQP localization in the plasma membrane. Here, we investigate the structural basis for the interaction between ezrin and two human AQPs: AQP2 and AQP5. Using microscale thermophoresis, we show that full-length AQP2 and AQP5 as well as peptides corresponding to their C-termini interact with the ezrin FERM-domain with affinities in the low micromolar range. Modelling of the AQP2 and AQP5 FERM complexes using ColabFold reveals a common mode of binding in which the proximal and distal parts of the AQP C-termini bind simultaneously to distinct binding sites of FERM. While the interaction at each site closely resembles other FERM-complexes, the concurrent interaction with both sites has only been observed in the complex between moesin and its C-terminus which causes auto-inhibition. The proposed interaction between AQP2/AQP5 and FERM thus represents a novel binding mode for extrinsic ERM-interacting partners.


Asunto(s)
Acuaporina 2 , Acuaporina 5 , Proteínas del Citoesqueleto , Unión Proteica , Humanos , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/química , Acuaporina 5/metabolismo , Acuaporina 5/química , Acuaporina 2/metabolismo , Acuaporina 2/química , Sitios de Unión , Acuaporinas/metabolismo , Acuaporinas/química , Dominios Proteicos , Modelos Moleculares , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química
4.
Sci Rep ; 14(1): 16043, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992051

RESUMEN

FtsZ is highly conserved among bacteria and plays an essential role in bacterial cell division. The tense conformation of FtsZ bound to GTP assembles into a straight filament via head-to-tail associations, and then the upper subunit of FtsZ hydrolyzes GTP bound to the lower FtsZ subunit. The subunit with GDP bound disassembles accompanied by a conformational change in the subunit from the tense to relaxed conformation. Although crystal structures of FtsZ derived from several bacterial species have been determined, the conformational change from the relaxed to tense conformation has only been observed in Staphylococcus aureus FtsZ (SaFtsZ). Recent cryo-electron microscopy analyses revealed the three-dimensional reconstruction of the protofilament, in which tense molecules assemble via head-to-tail associations. However, the lower resolution of the protofilament suggested that the flexibility of the FtsZ protomers between the relaxed and tense conformations caused them to form in less-strict alignments. Furthermore, this flexibility may also prevent FtsZs other than SaFtsZ from crystalizing in the tense conformation, suggesting that the flexibility of bacterial FtsZs differs. In this study, molecular dynamics simulations were performed using SaFtsZ and Bacillus subtilis FtsZ in several situations, which suggested that different features of the FtsZs affect their conformational stability.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas del Citoesqueleto , Simulación de Dinámica Molecular , Conformación Proteica , Staphylococcus aureus , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/química , Bacillus subtilis/metabolismo , Bacillus subtilis/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/química , Estabilidad Proteica , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química
5.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928159

RESUMEN

Arc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling. Although its mechanisms of action in these forms of synaptic plasticity are not completely well established, the activities of Arc include the remodeling of the actin cytoskeleton, the facilitation of AMPA receptor (AMPAR) endocytosis, and the regulation of the transcription of AMPAR subunits. In addition, Arc has sequence and structural similarity to retroviral Gag proteins and self-associates into virus-like particles that encapsulate mRNA and perhaps other cargo for intercellular transport. Each of these activities is likely to be influenced by Arc's reversible self-association into multiple oligomeric species. Here, we used mass photometry to show that Arc exists predominantly as monomers, dimers, and trimers at approximately 20 nM concentration in vitro. Fluorescence fluctuation spectroscopy revealed that Arc is almost exclusively present as low-order (monomer to tetramer) oligomers in the cytoplasm of living cells, over a 200 nM to 5 µM concentration range. We also confirmed that an α-helical segment in the N-terminal domain contains essential determinants of Arc's self-association.


Asunto(s)
Proteínas del Citoesqueleto , Proteínas del Tejido Nervioso , Multimerización de Proteína , Humanos , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Animales
6.
J Biol Chem ; 300(6): 107336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718863

RESUMEN

FtsZ, the tubulin homolog essential for bacterial cell division, assembles as the Z-ring at the division site, and directs peptidoglycan synthesis by treadmilling. It is unclear how FtsZ achieves kinetic polarity that drives treadmilling. To obtain insights into fundamental features of FtsZ assembly dynamics independent of peptidoglycan synthesis, we carried out structural and biochemical characterization of FtsZ from the cell wall-less bacteria, Spiroplasma melliferum (SmFtsZ). Interestingly the structures of SmFtsZ, bound to GDP and GMPPNP respectively, were captured as domain swapped dimers. SmFtsZ was found to be a slower GTPase with a higher critical concentration (CC) compared to Escherichia coli FtsZ (EcFtsZ). In FtsZs, a conformational switch from R-state (close) to T-state (open) favors polymerization. We identified that Phe224, located at the interdomain cleft of SmFtsZ, is crucial for R- to T-state transition. SmFtsZF224M exhibited higher GTPase activity and lower CC, whereas the corresponding EcFtsZM225F resulted in cell division defects in E. coli. Our results demonstrate that relative rotation of the domains is a rate-limiting step of polymerization. Our structural analysis suggests that the rotation is plausibly triggered upon addition of a GTP-bound monomer to the filament through interaction of the preformed N-terminal domain (NTD). Hence, addition of monomers to the NTD-exposed end of filament is slower in comparison to the C-terminal domain (CTD) end, thus explaining kinetic polarity. In summary, the study highlights the importance of interdomain interactions and conformational changes in regulating FtsZ assembly dynamics.


Asunto(s)
Proteínas Bacterianas , Proteínas del Citoesqueleto , Escherichia coli , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Dominios Proteicos , Multimerización de Proteína , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , División Celular
7.
PLoS One ; 19(4): e0300453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683783

RESUMEN

The activity-regulated cytoskeleton-associated protein (Arc) is a complex regulator of synaptic plasticity in glutamatergic neurons. Understanding its molecular function is key to elucidate the neurobiology of memory and learning, stress regulation, and multiple neurological and psychiatric diseases. The recent development of anti-Arc nanobodies has promoted the characterization of the molecular structure and function of Arc. This study aimed to validate two anti-Arc nanobodies, E5 and H11, as selective modulators of the human Arc N-lobe (Arc-NL), a domain that mediates several molecular functions of Arc through its peptide ligand binding site. The structural characteristics of recombinant Arc-NL-nanobody complexes were solved at atomic resolution using X-ray crystallography. Both anti-Arc nanobodies bind specifically to the multi-peptide binding site of Arc-NL. Isothermal titration calorimetry showed that the Arc-NL-nanobody interactions occur at nanomolar affinity, and that the nanobodies can displace a TARPγ2-derived peptide from the binding site. Thus, both anti-Arc-NL nanobodies could be used as competitive inhibitors of endogenous Arc ligands. Differences in the CDR3 loops between the two nanobodies indicate that the spectrum of short linear motifs recognized by the Arc-NL should be expanded. We provide a robust biochemical background to support the use of anti-Arc nanobodies in attempts to target Arc-dependent synaptic plasticity. Function-blocking anti-Arc nanobodies could eventually help unravel the complex neurobiology of synaptic plasticity and allow to develop diagnostic and treatment tools.


Asunto(s)
Proteínas del Citoesqueleto , Proteínas del Tejido Nervioso , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Sitios de Unión , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/inmunología , Ligandos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/inmunología , Cristalografía por Rayos X , Unión Proteica , Modelos Moleculares , Secuencia de Aminoácidos
8.
Elife ; 132024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639993

RESUMEN

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.


Asunto(s)
Proteínas Bacterianas , Proteínas del Citoesqueleto , Unión Proteica , Conformación Proteica , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/química , Cristalografía por Rayos X , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/química , Modelos Moleculares
9.
Biochem Biophys Res Commun ; 714: 149947, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657442

RESUMEN

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proteínas del Citoesqueleto , Canal de Potasio KCNQ1 , Síndrome de QT Prolongado , Animales , Femenino , Humanos , Masculino , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/química , Células CHO , Cricetulus , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/química , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Modelos Moleculares , Mutación , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica
10.
Nat Struct Mol Biol ; 31(6): 874-883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459127

RESUMEN

Faithful chromosome segregation requires robust, load-bearing attachments of chromosomes to the mitotic spindle, a function accomplished by large macromolecular complexes termed kinetochores. In most eukaryotes, the constitutive centromere-associated network (CCAN) complex of the inner kinetochore recruits to centromeres the ten-subunit outer kinetochore KMN network that comprises the KNL1C, MIS12C and NDC80C complexes. The KMN network directly attaches CCAN to microtubules through MIS12C and NDC80C. Here, we determined a high-resolution cryo-EM structure of the human KMN network. This showed an intricate and extensive assembly of KMN subunits, with the central MIS12C forming rigid interfaces with NDC80C and KNL1C, augmented by multiple peptidic inter-subunit connections. We also observed that unphosphorylated MIS12C exists in an auto-inhibited state that suppresses its capacity to interact with CCAN. Ser100 and Ser109 of the N-terminal segment of the MIS12C subunit Dsn1, two key targets of Aurora B kinase, directly stabilize this auto-inhibition. Our study indicates how selectively relieving this auto-inhibition through Ser100 and Ser109 phosphorylation might restrict outer kinetochore assembly to functional centromeres during cell division.


Asunto(s)
Microscopía por Crioelectrón , Cinetocoros , Proteínas Asociadas a Microtúbulos , Modelos Moleculares , Proteínas Nucleares , Humanos , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Fosforilación , Aurora Quinasa B/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Conformación Proteica , Proteínas Cromosómicas no Histona
11.
Nat Struct Mol Biol ; 31(6): 861-873, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459128

RESUMEN

Biorientation of chromosomes during cell division is necessary for precise dispatching of a mother cell's chromosomes into its two daughters. Kinetochores, large layered structures built on specialized chromosome loci named centromeres, promote biorientation by binding and sensing spindle microtubules. One of the outer layer main components is a ten-subunit assembly comprising Knl1C, Mis12C and Ndc80C (KMN) subcomplexes. The KMN is highly elongated and docks on kinetochores and microtubules through interfaces at its opposite extremes. Here, we combine cryogenic electron microscopy reconstructions and AlphaFold2 predictions to generate a model of the human KMN that reveals all intra-KMN interfaces. We identify and functionally validate two interaction interfaces that link Mis12C to Ndc80C and Knl1C. Through targeted interference experiments, we demonstrate that this mutual organization strongly stabilizes the KMN assembly. Our work thus reports a comprehensive structural and functional analysis of this part of the kinetochore microtubule-binding machinery and elucidates the path of connections from the chromatin-bound components to the force-generating components.


Asunto(s)
Microscopía por Crioelectrón , Cinetocoros , Proteínas Asociadas a Microtúbulos , Modelos Moleculares , Proteínas Nucleares , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Unión Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Células HeLa
12.
Int J Biol Macromol ; 259(Pt 2): 129255, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199552

RESUMEN

Several harmful bacteria have evolved resistance to conventional antibiotics due to their extensive usage. FtsZ, a principal bacterial cell division protein, is considered as an important drug target to combat resistance. We identified a caffeoyl anilide derivative, (E)-N-(4-(3-(3,4-dihydroxyphenyl)acryloyl)phenyl)-1-adamantylamide (compound 11) as a new antimicrobial agent targeting FtsZ. Compound 11 caused cell elongation in Mycobacterium smegmatis, Bacillus subtilis, and Escherichia coli cells, indicating that it inhibits cell partitioning. Compound 11 inhibited the assembly of Mycobacterium smegmatis FtsZ (MsFtsZ), forming short and thin filaments in vitro. Interestingly, the compound increased the rate of GTP hydrolysis of MsFtsZ. Compound 11 also impeded the assembly of Mycobacterium tuberculosis FtsZ. Fluorescence and absorption spectroscopic analysis suggested that compound 11 binds to MsFtsZ and produces conformational changes in FtsZ. The docking analysis indicated that the compound binds at the interdomain cleft of MsFtsZ. Further, it caused delocalization of the Z-ring in Mycobacterium smegmatis and Bacillus subtilis without affecting DNA segregation. Notably, compound 11 did not inhibit tubulin polymerization, the eukaryotic homolog of FtsZ, suggesting its specificity on bacteria. The evidence indicated that compound 11 exerts its antibacterial effect by impeding FtsZ assembly and has the potential to be developed as a broad-spectrum antimicrobial agent.


Asunto(s)
Antibacterianos , Proteínas del Citoesqueleto , Proteínas del Citoesqueleto/química , Antibacterianos/química , División Celular , Proliferación Celular , Proteínas Bacterianas/química
13.
J Biomol Struct Dyn ; 42(5): 2653-2666, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37158088

RESUMEN

Earlier molecular dynamics studies of the FtsZ protein revealed that the protein has high intrinsic flexibility which the crystal structures cannot reveal. However, the input structure in these simulation studies was based on the available crystal structure data and therefore, the effect of the C-terminal Intrinsically Disordered Region (IDR) of FtsZ could not be observed in any of these studies. Recent investigations have revealed that the C-terminal IDR is crucial for FtsZ assembly in vitro and Z ring formation in vivo. Therefore, in this study, we simulated FtsZ with the IDR. Simulations of the FtsZ monomer in different nucleotide bound forms (without nucleotide, GTP, GDP) were performed. In the conformations of FtsZ monomer with GTP, GTP binds variably with the protein. Such a variable interaction with the monomer has not been observed in any previous simulation studies of FtsZ and not observed in crystal structures. We found that central helix bends towards the C-terminal domain in the GTP bound form, hence, making way for polymerization. A nucleotide dependent shift/rotation of the C-terminal domain was observed in simulation time averaged structures.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteínas Bacterianas , Simulación de Dinámica Molecular , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/química , Nucleótidos , Escherichia coli/metabolismo , Guanosina Trifosfato/química
14.
J Vis Exp ; (199)2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37811947

RESUMEN

A main event in bacterial cell division is the septation process, where the protein FtsZ is the key element. FtsZ polymerizes forming a ring-like structure (Z-ring) in the middle of the cell that serves as a scaffold for other division proteins. Super-resolution microscopy in bacterial models Escherichia coli and Bacillus subtilis showed that the Z-ring is discontinuous, while live cell imaging studies demonstrated that FtsZ moves along the ring by a mechanism known as treadmilling. To study the dynamics of FtsZ in vivo, a special cell placement in a vertical position is necessary for imaging the complete structure of the ring in the XY plane. In the case of FtsZ imaging in multicellular cyanobacteria, such as Anabaena sp. PCC7120, maintaining the filaments in a vertical position is challenging because of the size of the cells and the filaments' length. In this article, we describe a method that allows the vertical immobilization of Anabaena sp. PCC 7120 filaments using low melting point agarose and syringes, to record the Z-ring in a mutant that expresses a FtsZ-sfGFP fusion protein. This method is a rapid and inexpensive way to register protein dynamics at the division site using confocal microscopy.


Asunto(s)
Cianobacterias , Microscopía , Microscopía/métodos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/química , Imagen de Lapso de Tiempo , Proteínas Bacterianas/química , Escherichia coli/genética , Cianobacterias/metabolismo
15.
Nat Commun ; 14(1): 3543, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336883

RESUMEN

PEAK pseudokinases are molecular scaffolds which dimerize to regulate cell migration, morphology, and proliferation, as well as cancer progression. The mechanistic role dimerization plays in PEAK scaffolding remains unclear, as there are no structures of PEAKs in complex with their interactors. Here, we report the cryo-EM structure of dimeric PEAK3 in complex with an endogenous 14-3-3 heterodimer. Our structure reveals an asymmetric binding mode between PEAK3 and 14-3-3 stabilized by one pseudokinase domain and the SHED domain of the PEAK3 dimer. The binding interface contains a canonical phosphosite-dependent primary interaction and a unique secondary interaction not observed in previous structures of 14-3-3/client complexes. Additionally, we show that PKD regulates PEAK3/14-3-3 binding, which when prevented leads to PEAK3 nuclear enrichment and distinct protein-protein interactions. Altogether, our data demonstrate that PEAK3 dimerization forms an unusual secondary interface for 14-3-3 binding, facilitating 14-3-3 regulation of PEAK3 localization and interactome diversity.


Asunto(s)
Proteínas 14-3-3 , Proteínas del Citoesqueleto , Proteínas del Citoesqueleto/química , Proteínas 14-3-3/química , Multimerización de Proteína
16.
Protein Sci ; 32(5): e4638, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37027210

RESUMEN

Palladin is an actin binding protein that is specifically upregulated in metastatic cancer cells but also colocalizes with actin stress fibers in normal cells and is critical for embryonic development as well as wound healing. Of nine isoforms present in humans, only the 90 kDa isoform of palladin, comprising three immunoglobulin (Ig) domains and one proline-rich region, is ubiquitously expressed. Previous work has established that the Ig3 domain of palladin is the minimal binding site for F-actin. In this work, we compare functions of the 90 kDa isoform of palladin to the isolated actin binding domain. To understand the mechanism of action for how palladin can influence actin assembly, we monitored F-actin binding and bundling as well as actin polymerization, depolymerization, and copolymerization. Together, these results demonstrate that there are key differences between the Ig3 domain and full-length palladin in actin binding stoichiometry, polymerization, and interactions with G-actin. Understanding the role of palladin in regulating the actin cytoskeleton may help us develop means to prevent cancer cells from reaching the metastatic stage of cancer progression.


Asunto(s)
Actinas , Proteínas del Citoesqueleto , Humanos , Actinas/análisis , Actinas/química , Actinas/metabolismo , Proteínas del Citoesqueleto/química , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/química , Isoformas de Proteínas/metabolismo , Fosfoproteínas/química
17.
ACS Chem Biol ; 18(3): 629-642, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36854145

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant (MDR) bacterial pathogen of acute clinical significance. Resistance to current standard-of-care antibiotics, such as vancomycin and linezolid, among nosocomial and community-acquired MRSA clinical isolates is on the rise. This threat to global public health highlights the need to develop new antibiotics for the treatment of MRSA infections. Here, we describe a new benzamide FtsZ inhibitor (TXH9179) with superior antistaphylococcal activity relative to earlier-generation benzamides like PC190723 and TXA707. TXH9179 was found to be 4-fold more potent than TXA707 against a library of 55 methicillin-sensitive S. aureus (MSSA) and MRSA clinical isolates, including MRSA isolates resistant to vancomycin and linezolid. TXH9179 was also associated with a lower frequency of resistance relative to TXA707 in all but one of the MSSA and MRSA isolates examined, with the observed resistance being due to mutations in the ftsZ gene. TXH9179 induced changes in MRSA cell morphology, cell division, and FtsZ localization are fully consistent with its actions as a FtsZ inhibitor. Crystallographic studies demonstrate the direct interaction of TXH9179 with S. aureus FtsZ (SaFtsZ), while delineating the key molecular contacts that drive complex formation. TXH9179 was not associated with any mammalian cytotoxicity, even at a concentration 10-fold greater than that producing antistaphylococcal activity. In serum, the carboxamide prodrug of TXH9179 (TXH1033) is rapidly hydrolyzed to TXH9179 by serum acetylcholinesterases. Significantly, both intravenously and orally administered TXH1033 exhibited enhanced in vivo efficacy relative to the carboxamide prodrug of TXA707 (TXA709) in treating a mouse model of systemic (peritonitis) MRSA infection. Viewed as a whole, our results highlight TXH9179 as a promising new benzamide FtsZ inhibitor worthy of further development.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Profármacos , Infecciones Estafilocócicas , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/química , Benzamidas/farmacología , Benzamidas/uso terapéutico , Proteínas del Citoesqueleto/química , Linezolid/farmacología , Linezolid/uso terapéutico , Mamíferos , Meticilina/farmacología , Meticilina/uso terapéutico , Pruebas de Sensibilidad Microbiana , Profármacos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Vancomicina/farmacología
18.
Adv Biol (Weinh) ; 7(3): e2200172, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593513

RESUMEN

Mimicking bacterial cell division in well-defined cell-free systems has the potential to elucidate the minimal set of proteins required for cytoskeletal formation, membrane constriction, and final abscission. Membrane-anchored FtsZ polymers are often regarded as a sufficient system to realize this chain of events. By using purified FtsZ and its membrane-binding protein FtsA or the gain-of-function mutant FtsA* expressed in PURE (Protein synthesis Using Reconstituted Elements) from a DNA template, it is shown in this study that cytoskeletal structures are formed, and yield constricted liposomes exhibiting various morphologies. However, the resulting buds remain attached to the parental liposome by a narrow membrane neck. No division events can be monitored even after long-time tracking by fluorescence microscopy, nor when the osmolarity of the external solution is increased. The results provide evidence that reconstituted FtsA-FtsZ proto-rings coating the membrane necks are too stable to enable abscission. The prospect of combining a DNA-encoded FtsZ system with assisting mechanisms to achieve synthetic cell division is discussed.


Asunto(s)
Proteínas Bacterianas , Liposomas , Liposomas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/metabolismo , División Celular/genética
19.
FEBS J ; 290(14): 3527-3532, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36349414

RESUMEN

Self-assembling protein filaments are at the heart of cell function. Among them, tubulin-like proteins are essential for cell division, DNA segregation and cytoskeletal functions across the domains of life. FtsZ and tubulin share their core structures, a characteristic nucleotide-binding pocket and similar protofilament architecture. GTP hydrolysis between consecutive subunits drives their assembly dynamics. Two recent studies provide previously missing, filament atomic structures of bacterial FtsZ and a recently discovered archaeal tubulin in their nucleotide triphosphate-bound states. Both filament structures reveal strikingly conserved interfacial GTPase active sites, with Mg2+ and K+ /Na+ cations and an NxDxxD/E triad of catalytic residues, probably inherited from the common ancestor of FtsZs and tubulins. Moreover, both proteins exhibit nucleotide-regulated subunit association mediated by interfacial water bridges, as well as polymerization-induced structural changes, likely enabling related dynamic assembly mechanisms.


Asunto(s)
GTP Fosfohidrolasas , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas del Citoesqueleto/química , Archaea/genética , Archaea/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Nucleótidos , Guanosina Trifosfato/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(50): e2208227119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36490318

RESUMEN

The spatiotemporal regulation of cell division is a fundamental issue in cell biology. Bacteria have evolved a variety of different systems to achieve proper division site placement. In many cases, the underlying molecular mechanisms are still incompletely understood. In this study, we investigate the function of the cell division regulator MipZ from Caulobacter crescentus, a P-loop ATPase that inhibits the polymerization of the treadmilling tubulin homolog FtsZ near the cell poles, thereby limiting the assembly of the cytokinetic Z ring to the midcell region. We show that MipZ interacts with FtsZ in both its monomeric and polymeric forms and induces the disassembly of FtsZ polymers in a manner that is not dependent but enhanced by the FtsZ GTPase activity. Using a combination of biochemical and genetic approaches, we then map the MipZ-FtsZ interaction interface. Our results reveal that MipZ employs a patch of surface-exposed hydrophobic residues to interact with the C-terminal region of the FtsZ core domain. In doing so, it sequesters FtsZ monomers and caps the (+)-end of FtsZ polymers, thereby promoting their rapid disassembly. We further show that MipZ influences the conformational dynamics of interacting FtsZ molecules, which could potentially contribute to modulating their assembly kinetics. Together, our findings show that MipZ uses a combination of mechanisms to control FtsZ polymerization, which may be required to robustly regulate the spatiotemporal dynamics of Z ring assembly within the cell.


Asunto(s)
Caulobacter crescentus , Proteínas del Citoesqueleto , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/química , Polímeros , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Caulobacter crescentus/genética , División Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...