Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.939
Filtrar
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 425-434, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38953267

RESUMEN

Alzheimer's disease (AD) is a severe threat to human health and one of the three major causes of human death.Double-stranded RNA-dependent protein kinase (PKR) is an interferon-induced protein kinase involved in innate immunity.In the occurrence and development of AD,PKR is upregulated and continuously activated.On the one hand,the activation of PKR triggers an integrated stress response in brain cells.On the other hand,it indirectly upregulates the expression of ß-site amyloid precursor protein cleaving enzyme 1 and facilitates the accumulation of amyloid-ß protein (Aß),which could activate PKR activator to further activate PKR,thus forming a sustained accumulation cycle of Aß.In addition,PKR can promote Tau phosphorylation,thereby reducing microtubule stability in nerve cells.Inflammation in brain tissue,neurotoxicity resulted from Aß accumulation,and disruption of microtubule stability led to the progression of AD and the declines of memory and cognitive function.Therefore,PKR is a key molecule in the development and progression of AD.Effective PKR detection can aid in the diagnosis and prediction of AD progression and provide opportunities for clinical treatment.The inhibitors targeting PKR are expected to control the activity of PKR,thereby controlling the progression of AD.Therefore,PKR could be a target for the development of therapeutic drugs for AD.


Asunto(s)
Enfermedad de Alzheimer , eIF-2 Quinasa , Enfermedad de Alzheimer/metabolismo , Humanos , eIF-2 Quinasa/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Fosforilación , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
2.
Sci Transl Med ; 16(754): eadj5958, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959324

RESUMEN

Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD). These aggregates are prevalent within intracellular compartments. Current tau immunotherapies have shown limited efficacy in clearing intracellular tau aggregates and improving cognition in clinical trials. In this study, we developed toxic tau conformation-specific monoclonal antibody-2 (TTCM2), which selectively recognized pathological tau aggregates in brain tissues from patients with AD, dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). TTCM2 potently inhibited tau-seeding activity, an essential mechanism underlying tauopathy progression. To effectively target intracellular tau aggregates and ensure rapid delivery to the brain, TTCM2 was loaded in micelles (TTCM2-ms) and administered through the intranasal route. We found that intranasally administered TTCM2-ms efficiently entered the brain in hTau-tauopathy mice, targeting pathological tau in intracellular compartments. Moreover, a single intranasal dose of TTCM2-ms effectively cleared pathological tau, elevated synaptic proteins, and improved cognitive functions in aged tauopathy mice. Mechanistic studies revealed that TTCM2-ms cleared intracellular, synaptic, and seed-competent tau aggregates through tripartite motif-containing 21 (TRIM21), an intracellular antibody receptor and E3 ubiquitin ligase known to facilitate proteasomal degradation of cytosolic antibody-bound proteins. TRIM21 was found to be essential for TTCM2-ms-mediated clearance of tau pathology. Our study collectively provides evidence of the effectiveness of nasal tau immunotherapy in targeting and clearing intracellular tau pathology through TRIM21 and enhancing cognition in aged tauopathy mice. This study could be valuable in designing effective tau immunotherapies for AD and other tauopathies.


Asunto(s)
Administración Intranasal , Cognición , Inmunoterapia , Ratones Transgénicos , Tauopatías , Proteínas tau , Animales , Proteínas tau/metabolismo , Tauopatías/terapia , Tauopatías/patología , Tauopatías/metabolismo , Inmunoterapia/métodos , Humanos , Ratones , Envejecimiento/patología , Encéfalo/patología , Encéfalo/metabolismo , Anticuerpos Monoclonales/farmacología , Modelos Animales de Enfermedad , Agregado de Proteínas/efectos de los fármacos
3.
Sci Transl Med ; 16(754): eadq6489, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959325

RESUMEN

Nasal delivery of an oligomeric tau antibody loaded into micelles reduces pathology and ameliorates cognition in a mouse model of tauopathy.


Asunto(s)
Administración Intranasal , Tauopatías , Proteínas tau , Animales , Proteínas tau/metabolismo , Ratones , Tauopatías/metabolismo , Tauopatías/patología , Humanos , Modelos Animales de Enfermedad , Micelas , Nariz , Anticuerpos/uso terapéutico , Anticuerpos/inmunología
4.
Adv Protein Chem Struct Biol ; 141: 467-493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960483

RESUMEN

In Alzheimer's disease, the microtubule-associated protein, Tau misfolds to form aggregates and filaments in the intra- and extracellular region of neuronal cells. Microglial cells are the resident brain macrophage cells involved in constant surveillance and activated by the extracellular deposits. Purinergic receptors are involved in the chemotactic migration of microglial cells towards the site of inflammation. From our recent study, we have observed that the microglial P2Y12 receptor is involved in phagocytosis of full-length Tau species such as monomers, oligomers and aggregates by actin-driven chemotaxis. This study shows the interaction of repeat-domain of Tau (TauRD) with the microglial P2Y12 receptor and the corresponding residues for interaction have been analyzed by various in-silico approaches. In the cellular studies, TauRD was found to interact with microglial P2Y12R and induces its cellular expression confirmed by co-immunoprecipitation and western blot analysis. Furthermore, the P2Y12R-mediated TauRD internalization has demonstrated activation of microglia with an increase in the Iba1 level, and TauRD becomes accumulated at the peri-nuclear region for the degradation.


Asunto(s)
Tauopatías , Humanos , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Microglía/metabolismo , Microglía/patología , Receptores Purinérgicos P2Y12/metabolismo , Animales , Receptores Acoplados a Proteínas G/metabolismo
5.
Methods Mol Biol ; 2816: 117-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977593

RESUMEN

In Alzheimer's disease, the synaptic loss is prominent due to the accumulation of Amyloid ßeta (Aß) protein in synapses, which affect neurotransmission, and thus ultimately causes neuronal loss. Tau, a microtubule-associated protein, is a vital protein of intracellular neurofibrillary tangles (NFTs) in AD. Along with the accumulation of aberrant proteins, glial cells, mainly astrocytes and microglia, play a major role in impairing neuronal network. Microglia have the ability to phagocytose Tau and rerelease in exosomes, which causes further spreading of Tau. Reduction in exosome synthesis can reduce spreading of Tau. Modulating microglia to clear the extracellular Tau seeds by its imported degradation would resolve the disease condition in Alzheimer's disease. In this study, we have shown the ability of α-linolenic acid (ALA) to inhibit the Tau aggregation and modulate their internalization property in microglial cells.


Asunto(s)
Microglía , Ácido alfa-Linolénico , Proteínas tau , Proteínas tau/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/metabolismo , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Exosomas/metabolismo
6.
Cells ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38994964

RESUMEN

Aggregation of the microtubule-associated protein tau (MAPT) is the hallmark pathology in a spectrum of neurodegenerative disorders collectively called tauopathies. Physiologically, tau is an inherent neuronal protein that plays an important role in the assembly of microtubules and axonal transport. However, disease-associated mutations of this protein reduce its binding to the microtubule components and promote self-aggregation, leading to formation of tangles in neurons. Tau is also expressed in oligodendrocytes, where it has significant developmental roles in oligodendrocyte maturation and myelin synthesis. Oligodendrocyte-specific tau pathology, in the form of fibrils and coiled coils, is evident in major tauopathies including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Multiple animal models of tauopathy expressing mutant forms of MAPT recapitulate oligodendroglial tau inclusions with potential to cause degeneration/malfunction of oligodendrocytes and affecting the neuronal myelin sheath. Till now, mechanistic studies heavily concentrated on elucidating neuronal tau pathology. Therefore, more investigations are warranted to comprehensively address tau-induced pathologies in oligodendrocytes. The present review provides the current knowledge available in the literature about the intricate relations between tau and oligodendrocytes in health and diseases.


Asunto(s)
Oligodendroglía , Tauopatías , Proteínas tau , Humanos , Tauopatías/metabolismo , Tauopatías/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Animales , Proteínas tau/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
7.
Cells ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995015

RESUMEN

The emergence of sustained neuropsychiatric symptoms (NPS) among non-demented individuals in later life, defined as mild behavioral impairment (MBI), is linked to a higher risk of cognitive decline. However, the underlying pathophysiological mechanisms remain largely unexplored. A growing body of evidence has shown that MBI is associated with alterations in structural and functional neuroimaging studies, higher genetic predisposition to clinical diagnosis of Alzheimer's disease (AD), as well as amyloid and tau pathology assessed in the blood, cerebrospinal fluid, positron-emission tomography (PET) imaging and neuropathological examination. These findings shed more light on the MBI-related potential neurobiological mechanisms, paving the way for the development of targeted pharmacological approaches. In this review, we aim to discuss the available clinical evidence on the role of amyloid and tau pathology in MBI and the potential underlying pathophysiological mechanisms. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, disruption of neurotrophic factors, such as the brain-derived neurotrophic factor (BDNF), abnormal neuroinflammatory responses including the kynurenine pathway, dysregulation of transforming growth factor beta (TGF-ß1), epigenetic alterations including micro-RNA (miR)-451a and miR-455-3p, synaptic dysfunction, imbalance in neurotransmitters including acetylcholine, dopamine, serotonin, gamma-aminobutyric acid (GABA) and norepinephrine, as well as altered locus coeruleus (LC) integrity are some of the potential mechanisms connecting MBI with amyloid and tau pathology. The elucidation of the underlying neurobiology of MBI would facilitate the design and efficacy of relative clinical trials, especially towards amyloid- or tau-related pathways. In addition, we provide insights for future research into our deeper understanding of its underlying pathophysiology of MBI, and discuss relative therapeutic implications.


Asunto(s)
Proteínas tau , Humanos , Proteínas tau/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo
8.
Alzheimers Res Ther ; 16(1): 148, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961512

RESUMEN

BACKGROUND: Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR. METHODS: We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aß, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women). RESULTS: The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline. CONCLUSION: These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Femenino , Masculino , Anciano , Proteínas tau/metabolismo , Estudios Longitudinales , Estudios Transversales , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Cognición/fisiología , Persona de Mediana Edad , Reserva Cognitiva/fisiología , Biomarcadores , Neuroimagen/métodos
9.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000276

RESUMEN

Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer's pathology. Studies in brain organoids revealed that SARS-CoV-2 alters the phosphorylation and distribution of Tau in infected neurons, but the mechanisms are currently unknown. We hypothesize that these pathological changes are due to the recruitment of Tau into stress granules (SGs) operated by the nucleocapsid protein (NCAP) of SARS-CoV-2. To test this hypothesis, we investigated whether NCAP interacts with Tau and localizes to SGs in hippocampal neurons in vitro and in vivo. Mechanistically, we tested whether SUMOylation, a posttranslational modification of NCAP and Tau, modulates their distribution in SGs and their pathological interaction. We found that NCAP and Tau colocalize and physically interact. We also found that NCAP induces hyperphosphorylation of Tau and causes cognitive impairment in mice infected with NCAP in their hippocampus. Finally, we found that SUMOylation modulates NCAP SG formation in vitro and cognitive performance in infected mice. Our data demonstrate that NCAP induces Tau pathological changes both in vitro and in vivo. Moreover, we demonstrate that SUMO2 ameliorates NCAP-induced Tau pathology, highlighting the importance of the SUMOylation pathway as a target of intervention against neurotoxic insults, such as Tau oligomers and viral infection.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Hipocampo , Neuronas , SARS-CoV-2 , Sumoilación , Proteínas tau , Proteínas tau/metabolismo , Animales , Ratones , Humanos , Hipocampo/metabolismo , Hipocampo/patología , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , SARS-CoV-2/patogenicidad , SARS-CoV-2/metabolismo , Fosforilación , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Gránulos de Estrés/metabolismo , Ratones Endogámicos C57BL , Fosfoproteínas/metabolismo , Masculino , Proteínas de la Nucleocápside/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/virología
10.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000459

RESUMEN

Accumulation of hyper-phosphorylated tau and amyloid beta (Aß) are key pathological hallmarks of Alzheimer's disease (AD). Increasing evidence indicates that in the early pre-clinical stages of AD, phosphorylation and build-up of tau drives impairments in hippocampal excitatory synaptic function, which ultimately leads to cognitive deficits. Consequently, limiting tau-related synaptic abnormalities may have beneficial effects in AD. There is now significant evidence that the hippocampus is an important brain target for the endocrine hormone leptin and that leptin has pro-cognitive properties, as activation of synaptic leptin receptors markedly influences higher cognitive processes including learning and memory. Clinical studies have identified a link between the circulating leptin levels and the risk of AD, such that AD risk is elevated when leptin levels fall outwith the physiological range. This has fuelled interest in targeting the leptin system therapeutically. Accumulating evidence supports this possibility, as numerous studies have shown that leptin has protective effects in a variety of models of AD. Recent findings have demonstrated that leptin has beneficial effects in the preclinical stages of AD, as leptin prevents the early synaptic impairments driven by tau protein and amyloid ß. Here we review recent findings that implicate the leptin system as a potential novel therapeutic target in AD.


Asunto(s)
Enfermedad de Alzheimer , Leptina , Sinapsis , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Leptina/metabolismo , Animales , Sinapsis/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Receptores de Leptina/metabolismo , Hipocampo/metabolismo
11.
Zool Res ; 45(4): 857-874, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39004863

RESUMEN

Emerging evidence indicates that sleep deprivation (SD) can lead to Alzheimer's disease (AD)-related pathological changes and cognitive decline. However, the underlying mechanisms remain obscure. In the present study, we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD. Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis, elevated NLRP3 inflammasome expression, GSK-3ß activation, autophagy dysfunction, and tau hyperphosphorylation in the hippocampus. Colonization with the "SD microbiota" replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice. Remarkably, both the deletion of NLRP3 in NLRP3 -/- mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux, suppressed tau hyperphosphorylation, and ameliorated cognitive deficits induced by chronic SD, while GSK-3ß activity was not regulated by the NLRP3 inflammasome in chronic SD. Notably, deletion of NLRP3 reversed NLRP3 inflammasome activation, autophagy deficits, and tau hyperphosphorylation induced by GSK-3ß activation in primary hippocampal neurons, suggesting that GSK-3ß, as a regulator of NLRP3-mediated autophagy dysfunction, plays a significant role in promoting tau hyperphosphorylation. Thus, gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction, ultimately leading to cognitive deficits. Overall, these findings highlight GSK-3ß as a regulator of NLRP3-mediated autophagy dysfunction, playing a critical role in promoting tau hyperphosphorylation.


Asunto(s)
Autofagia , Disbiosis , Microbioma Gastrointestinal , Proteína con Dominio Pirina 3 de la Familia NLR , Privación de Sueño , Proteínas tau , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Microbioma Gastrointestinal/fisiología , Privación de Sueño/metabolismo , Privación de Sueño/fisiopatología , Privación de Sueño/complicaciones , Ratones , Autofagia/fisiología , Proteínas tau/metabolismo , Proteínas tau/genética , Masculino , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Inflamasomas/metabolismo
12.
Neurobiol Aging ; 141: 160-170, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964013

RESUMEN

Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify genes that underpin sex-associated risk of AD. PIN1 is a key regulator of the tau phosphorylation signaling pathway; however, potential differences in PIN1 expression, in males and females, are still unknown. We analyzed brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels in an aging and AD cohort, which revealed reduced PIN1 levels primarily within females. We validated this observation in an independent dataset (ROS/MAP), which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again driven predominantly by female subjects. Histochemical analysis of PIN1 in AD and control male and female neocortex revealed an overall decrease in axonal PIN1 protein levels in females. These findings emphasize the importance of considering sex differences in AD research.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Disfunción Cognitiva , Peptidilprolil Isomerasa de Interacción con NIMA , Neocórtex , Ovillos Neurofibrilares , Caracteres Sexuales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Humanos , Femenino , Neocórtex/patología , Neocórtex/metabolismo , Masculino , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Anciano , Anciano de 80 o más Años , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo , Fenotipo , Sistema Límbico/patología , Sistema Límbico/metabolismo , Expresión Génica , Envejecimiento/patología , Envejecimiento/genética , Envejecimiento/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilación
13.
Sci Rep ; 14(1): 15636, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972885

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized primarily by cognitive impairment. The motivation of this paper is to explore the impact of the visual information transmission pathway (V-H pathway) on AD, and the following feature were observed: Hemoglobin expression on the V-H pathway becomes dysregulated as AD occurs so as to the pathway becomes dysfunctional. According to the feature, the following conclusion was proposed: As AD occurs, abnormal tau proteins penetrate bloodstream and arrive at the brain regions of the pathway. Then the tau proteins or other toxic substances attack hemoglobin molecules. Under the attack, hemoglobin expression becomes more dysregulated. The dysfunction of V-H pathway has an impact on early symptoms of AD, such as spatial recognition disorder and face recognition disorder.


Asunto(s)
Enfermedad de Alzheimer , Hemoglobinas , Enfermedad de Alzheimer/metabolismo , Humanos , Hemoglobinas/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Vías Visuales/metabolismo
14.
Open Biol ; 14(7): 230419, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39013416

RESUMEN

The mechanisms responsible for neuronal death causing cognitive loss in Alzheimer's disease (AD) and many other dementias are not known. Serum amyloid P component (SAP) is a constitutive plasma protein, which is cytotoxic for cerebral neurones and also promotes formation and persistence of cerebral Aß amyloid and neurofibrillary tangles. Circulating SAP, which is produced exclusively by the liver, is normally almost completely excluded from the brain. Conditions increasing brain exposure to SAP increase dementia risk, consistent with a causative role in neurodegeneration. Furthermore, neocortex content of SAP is strongly and independently associated with dementia at death. Here, seeking genomic evidence for a causal link of SAP with neurodegeneration, we meta-analysed three genome-wide association studies of 44 288 participants, then conducted cis-Mendelian randomization assessment of associations with neurodegenerative diseases. Higher genetically instrumented plasma SAP concentrations were associated with AD (odds ratio 1.07, 95% confidence interval (CI) 1.02; 1.11, p = 1.8 × 10-3), Lewy body dementia (odds ratio 1.37, 95%CI 1.19; 1.59, p = 1.5 × 10-5) and plasma tau concentration (0.06 log2(ng l-1) 95%CI 0.03; 0.08, p = 4.55 × 10-6). These genetic findings are consistent with neuropathogenicity of SAP. Depletion of SAP from the blood and the brain, by the safe, well tolerated, experimental drug miridesap may thus be neuroprotective.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedades Neurodegenerativas , Componente Amiloide P Sérico , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/etiología , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Análisis de la Aleatorización Mendeliana , Biomarcadores , Proteínas tau/metabolismo , Proteínas tau/genética , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/metabolismo , Masculino , Femenino
15.
J Neuroinflammation ; 21(1): 180, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044290

RESUMEN

This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aß) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3ß and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Privación de Sueño , Animales , Ratones , Privación de Sueño/metabolismo , Privación de Sueño/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Ratones Endogámicos C57BL , Proteínas tau/metabolismo , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Sueño REM/fisiología , Péptidos beta-Amiloides/metabolismo
16.
Alzheimers Res Ther ; 16(1): 164, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044293

RESUMEN

BACKGROUND: Altered thyroid hormone levels have been associated with increased risk of Alzheimer's disease (AD) dementia and related cognitive decline. However, the neuropathological substrates underlying the link between thyroid hormones and AD dementia are not yet fully understood. We first investigated the association between serum thyroid hormone levels and in vivo AD pathologies including both beta-amyloid (Aß) and tau deposition measured by positron emission tomography (PET). Given the well-known relationship between Aß and tau pathology in AD, we additionally examined the moderating effects of thyroid hormone levels on the association between Aß and tau deposition. METHODS: This cross-sectional study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) cohort. This study included a total of 291 cognitively normal adults aged 55 to 90. All participants received comprehensive clinical assessments, measurements for serum total triiodothyronine (T3), free triiodothyronine (fT3), free thyroxine (fT4), and thyroid-stimulating hormone (TSH), and brain imaging evaluations including [11C]-Pittsburgh compound B (PiB)- PET and [18F] AV-1451 PET. RESULTS: No associations were found between either thyroid hormones or TSH and Aß and tau deposition on PET. However, fT4 (p = 0.002) and fT3 (p = 0.001) exhibited significant interactions with Aß on tau deposition: The sensitivity analyses conducted after the removal of an outlier showed that the interaction effect between fT4 and Aß deposition was not significant, whereas the interaction between fT3 and Aß deposition remained significant. However, further subgroup analyses demonstrated a more pronounced positive relationship between Aß and tau in both the higher fT4 and fT3 groups compared to the lower group, irrespective of outlier removal. Meanwhile, neither T3 nor TSH had any interaction with Aß on tau deposition. CONCLUSION: Our findings suggest that serum thyroid hormones may moderate the relationship between cerebral Aß and tau pathology. Higher levels of serum thyroid hormones could potentially accelerate the Aß-dependent tau deposition in the brain. Further replication studies in independent samples are needed to verify the current results.


Asunto(s)
Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Hormonas Tiroideas , Proteínas tau , Humanos , Masculino , Femenino , Anciano , Proteínas tau/sangre , Proteínas tau/metabolismo , Estudios Transversales , Hormonas Tiroideas/sangre , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/sangre , Persona de Mediana Edad , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Tiroxina/sangre , Tirotropina/sangre , Estudios de Cohortes
17.
J Prev Alzheimers Dis ; 11(4): 831-837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044491

RESUMEN

BACKGROUND: Individuals from diverse racial and ethnic groups are severely underrepresented in Alzheimer's disease trials in part due to disproportionate biomarker ineligibility. Evidence from recent studies support plasma phosphorylated tau 217 (P-tau217) as an early marker for brain Aß pathology and a reliable marker in predicting elevated brain amyloid PET in cognitively unimpaired adults. OBJECTIVES: To examine whether the relationship between P-tau217 and 18-F florbetapir PET standard uptake value ratios (SUVR) is influenced by race and ethnicity in the Anti-Amyloid treatment in Asymptomatic Alzheimer's disease (A4) preclinical AD studies. DESIGN: We conducted a retrospective analysis of A4 clinical trial and the LEARN natural history companion study data to evaluate the relationship between baseline P-tau217 and PET SUVR concentration levels by race and ethnicity. SETTING: The analysis was conducted on samples from participants enrolled across 65 study sites in the United States and Canada. PARTICIPANTS: Cognitively unimpaired adults aged 65-85 enrolled at North American sites in the A4 preclinical AD trial, pre-dose, (N=1018), and the LEARN (N=480) study. Participants were grouped into 2 categories, racial and ethnic underrepresented group (RE-URG) and non-RE-URG (nRE-URG) based on self-identification. MEASUREMENTS: A mixed-effects regression model was fit to determine differences in the relationship between P-tau217 and PET SUVR by race and ethnicity, adjusting for age, and APOE ε4 carrier status. RESULTS: Results from the linear mixed-effects model support that there was no statistically significant effect of race and ethnicity on the relationship between P-tau217 and PET SUVR. CONCLUSION: These findings suggest that the relationship between plasma P-tau217 and PET SUVR is the same across race and ethnicity. Future analyses should corroborate these findings in a larger sample and examine whether plasma P-tau217 reflects the differential amyloid prevalence previously reported for other biomarkers of amyloid.


Asunto(s)
Enfermedad de Alzheimer , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Anciano , Femenino , Masculino , Proteínas tau/metabolismo , Proteínas tau/sangre , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Anciano de 80 o más Años , Estudios Retrospectivos , Compuestos de Anilina , Etnicidad , Biomarcadores/sangre , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Grupos Raciales , Estados Unidos , Canadá , Glicoles de Etileno , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/sangre , Fosforilación
18.
J Prev Alzheimers Dis ; 11(4): 966-974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044507

RESUMEN

BACKGROUND: Declining ability to independently perform instrumental activities of daily living (IADL) is a hallmark of early-stage Alzheimer's disease (AD). Financial capacity, an aspect of IADL, includes financial skills such as balancing a checkbook and making change and is potentially sensitive to early decline in cognitive abilities, raising the question of how financial capacity is affected by buildup of cerebral tau and amyloid-hallmarks of AD pathology. OBJECTIVES: This study aimed to examine the relationship between cerebral tau, amyloid, and their interaction with change in financial capacity over time. DESIGN: Participants were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to have at least one yearly follow-up Financial Capacity Instrument-Short Form (FCI-SF) exam and a flortaucipir (tau) PET scan within 6 months of baseline (and in a subset, a florbetapir (amyloid) PET scan within a year of baseline). SETTING: Multi-center international cohort study. PARTICIPANTS: Sample size was 507-322 cognitively normal (CN) and 185 with amnestic mild cognitive impairment (MCI). Sixty-two percent (N=316) had amyloid data. MEASUREMENTS: Linear mixed-effects models predicted FCI-SF total score from baseline tau, age, gender, premorbid intelligence, executive function, memory, and the interaction of each with time. Regions of interest included inferior temporal, entorhinal cortex, precuneus, posterior cingulate, supramarginal, and dorsolateral prefrontal (DLPF). Additional models examined amyloid and its interaction with tau. Results were adjusted for multiple comparisons. RESULTS: Among the whole sample and in CN participants alone, higher baseline tau in all regions, most prominently in the inferior temporal, entorhinal cortex, and supramarginal regions, was significantly associated with worse performance on the FCI-SF over time. Among MCI participants alone, this relationship was significant in the entorhinal cortex (unstandardized b = 0.27, t = 3.71, adjusted p = 0.001), inferior temporal (b = 0.27, t = 3.96, p < 0.001), precuneus (b = 0.27, t = 3.04, p = 0.01), and supramarginal (b = 0.27, t = 2.74, p = 0.02) regions. Amyloid alone was significantly associated with worse FCI-SF performance in only the whole sample (b = 0.15, t = 2.37, p = 0.04), and a three-way interaction between tau, amyloid, and time was only present for entorhinal cortex tau in CN individuals (b = -1.61, t = -2.61, p = 0.03). CONCLUSIONS: Early tau accumulation is linked to worsening financial capacity over time in CN older adults and MCI. Declining financial capacity may signal pathological buildup and serve as an early warning sign for AD, and future research should continue to investigate the longitudinal relationship between tau, financial capacity, and other IADL.


Asunto(s)
Actividades Cotidianas , Disfunción Cognitiva , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Disfunción Cognitiva/metabolismo , Femenino , Anciano , Masculino , Proteínas tau/metabolismo , Estudios Longitudinales , Cognición/fisiología , Anciano de 80 o más Años , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Compuestos de Anilina , Carbolinas , Péptidos beta-Amiloides/metabolismo , Glicoles de Etileno , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen
19.
PeerJ ; 12: e17732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035166

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that causes physical damage to neuronal connections, leading to brain atrophy. This disruption of synaptic connections results in mild to severe cognitive impairments. Unfortunately, no effective treatment is currently known to prevent or reverse the symptoms of AD. The aim of this study was to investigate the effects of three synthetic peptides, i.e., KLVFF, RGKLVFFGR and RIIGL, on an AD in vitro model represented by differentiated SH-SY5Y neuroblastoma cells exposed to retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). The results demonstrated that RIIGL peptide had the least significant cytotoxic activity to normal SH-SY5Y while exerting high cytotoxicity against the differentiated cells. The mechanism of RIIGL peptide in the differentiated SH-SY5Y was investigated based on changes in secretory proteins compared to another two peptides. A total of 380 proteins were identified, and five of them were significantly detected after treatment with RIIGL peptide. These secretory proteins were found to be related to microtubule-associated protein tau (MAPT) and amyloid-beta precursor protein (APP). RIIGL peptide acts on differentiated SH-SY5Y by regulating amyloid-beta formation, neuron apoptotic process, ceramide catabolic process, and oxidative phosphorylation and thus has the potentials to treat AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Factor Neurotrófico Derivado del Encéfalo , Diferenciación Celular , Neuroblastoma , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Neuroblastoma/patología , Neuroblastoma/metabolismo , Neuroblastoma/tratamiento farmacológico , Línea Celular Tumoral , Diferenciación Celular/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas tau/metabolismo , Tretinoina/farmacología , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
20.
ACS Appl Mater Interfaces ; 16(28): 37255-37264, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38979642

RESUMEN

Preventing nonspecific binding is essential for sensitive surface-based quantitative single-molecule microscopy. Here we report a much-simplified RainX-F127 (RF-127) surface with improved passivation. This surface achieves up to 100-fold less nonspecific binding from protein aggregates compared to commonly used polyethylene glycol (PEG) surfaces. The method is compatible with common single-molecule techniques including single-molecule pull-down (SiMPull), super-resolution imaging, antibody-binding screening and single exosome visualization. This method is also able to specifically detect alpha-synuclein (α-syn) and tau aggregates from a wide range of biofluids including human serum, brain extracts, cerebrospinal fluid (CSF) and saliva. The simplicity of this method further allows the functionalization of microplates for robot-assisted high-throughput single-molecule experiments. Overall, this simple but improved surface offers a versatile platform for quantitative single-molecule microscopy without the need for specialized equipment or personnel.


Asunto(s)
Imagen Individual de Molécula , alfa-Sinucleína , Proteínas tau , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Proteínas tau/metabolismo , Proteínas tau/química , Imagen Individual de Molécula/métodos , Propiedades de Superficie , Polietilenglicoles/química , Agregado de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...