Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.038
Filtrar
1.
ScientificWorldJournal ; 2024: 8991384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957454

RESUMEN

The medicinal plant Bredemeyera floribunda Willd. is used to treat cardiovascular disease, chronic fatigue, low libido, as well as increased diuresis. However, studies considering the toxicity of this plant are scarce. Develop an aqueous extract of B. floribunda considering traditional use and determine the average lethality (LD50), signs, and symptoms of toxicity. The B. floribunda extract was obtained by immersing the root bark in ultrapure water for 18 hours at 4°C, under constant stirring. The test extract was administered in a single dose of 2.000 mg/kg by gavage to rats. Signs and symptoms of toxicity were determined according to the Hippocratic screening test and compared with the control group. In addition, a necropsy was performed for macroscopic evaluation of the organs in the abdominal cavity. A powder was obtained from aqueous extracts that showed the same organoleptic characteristics and emulsification capacity as those presented by the fresh root when prepared according to popular tradition. The LD50 was greater than the test dose with three animals surviving. On the other hand, necropsy of dead rats showed necrosis and reduction in lung mass, in addition to the presence of foam and excessive distension of the stomach and intestines. The main symptoms of toxicity were anesthesia, ataxia, sedation, loss of muscle strength, and excessive drowsiness in the first 24 hours. There was no difference between the control and extract groups with regard to body mass, food, and water intake, as well as in macroscopy of the heart, liver, lungs, intestines, spleen, pancreas, and kidneys. The aqueous extract of the B. floribunda was considered nontoxic or of very low toxicity. However, it is capable of altering the activity of the central nervous system and causing disorders in the respiratory and digestive systems.


Asunto(s)
Corteza de la Planta , Extractos Vegetales , Raíces de Plantas , Animales , Extractos Vegetales/toxicidad , Extractos Vegetales/química , Ratas , Corteza de la Planta/química , Masculino , Raíces de Plantas/química , Dosificación Letal Mediana , Femenino , Pruebas de Toxicidad Aguda , Ratas Wistar , Modelos Animales
2.
Sci Adv ; 10(28): eadl3591, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985863

RESUMEN

The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.


Asunto(s)
Carbohidratos , Hidrógeno , Hojas de la Planta , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hidrógeno/análisis , Carbohidratos/química , Carbohidratos/análisis , Almidón/química , Nicotiana/química , Lípidos/análisis , Lípidos/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Metabolismo de los Hidratos de Carbono , Deuterio/química , Alcanos/análisis , Alcanos/química , Agua/química
3.
Sci Rep ; 14(1): 16027, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992035

RESUMEN

Pfaffia glomerata (Spreng.) Pedersen has among its main bioactive compounds saponins, with the phytoestroid ß-ecdysone as its chemical marker. In this study, pressurized liquid extraction (PLE), a green extraction technique used to obtain bioactive compounds from plants, was employed to extract beta-ecdysone from P. glomerata leaves, stems, and roots. The 22 factorial design was used with the variables temperature (333 K and 353 K) and flow rate (1.5 and 2 mL min-1), pressure (300 Bar), time (60 min), and solvent [ethanol and distilled water (70:30 (v/v)] were kept constant for all parts of the plant. The results of experimental responses demonstrated that the factors temperature and flow rate significantly interfere with the yields of leaf (0.499%), root (0.65%) and stem (0.764%) extracts. The latter presented presents the highest yield compared to the other parts of the plant. HPLC results showed the presence of beta-ecdysone in all parts of the plant with concentrations of ß-ecdysone 86.82, 76.53 and 195.86 mg L-1 to leaf, root and stem, respectively. FT Raman results exhibited typical peaks of beta-ecdysone, such as 3310 cm-1, 1654 cm-1, and 1073 cm-1 for all plant parts. Another interesting result was the presence of the peak at 1460 cm-1 in the PLE root extract can be associated with selenium. This foundational knowledge confirms that the PLE extraction process was efficient in obtaining the chemical marker of Pfaffia glomerata in all plant parts.


Asunto(s)
Extractos Vegetales , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Extractos Vegetales/análisis , Raíces de Plantas/química , Hojas de la Planta/química , Extracción Líquido-Líquido/métodos , Tallos de la Planta/química , Presión , Temperatura , Amaranthaceae/química
4.
J Agric Food Chem ; 72(29): 16390-16402, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38994823

RESUMEN

MicroRNAs (miRNAs) are the processing products of primary miRNAs (pri-miRNAs) that regulate the expression of target genes. Recent studies have demonstrated that some pri-miRNAs can encode small peptides (miPEPs) that perform significant biological functions. The function of miPEPs in tomatoes, an important model horticultural crop, remains to be investigated. Here, we characterized the primary sequence of tomato miR396a using 5' RACE and confirmed the presence of miPEP396a in tomato by verifying the translational activity of the start codon. It primarily resides in the nucleus to exert its function and additionally regulates the expression of pri-miR396a, miR396a, and its target genes. Transcriptomic and metabolomic analyses showed that in vitro synthesis of miPEP396a significantly increased the expression of genes related to phenylpropanoid biosynthesis and hormones in tomato. Meanwhile, our in vitro application of miPEP396a in tomato significantly inhibited the elongation of tomato primary roots. In conclusion, our results indicate that miPEP396a regulates root growth in tomato by specifically promoting miR396a expression, provide insight into the function of miPEPs in tomato and potential applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Plantas , Raíces de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Péptidos/metabolismo , Péptidos/genética , Péptidos/química , ARN de Planta/genética , ARN de Planta/metabolismo
5.
BMC Complement Med Ther ; 24(1): 272, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026301

RESUMEN

BACKGROUND: Cymbopogon is a member of the family Poaceae and has been explored for its phytochemicals and bioactivities. Although the antimicrobial activities of Cymbopogon spp. extracts have been extensively studied, comprehensive analyses are required to identify promising compounds for the treatment of antimicrobial resistance. Therefore, this study investigated the antioxidant and antimicrobial properties of Cymbopogon spp. ethanolic extracts in every single organ. METHODS: Ethanolic extracts were obtained from three Indonesian commercial species of Cymbopogon spp., namely Cymbopogon citratus (L.) Rendle, Cymbopogon nardus (DC.) Spatf., and Cymbopogon winterianus Jowitt. The leaf, stem, and root extracts were evaluated via metabolite profiling using gas chromatography-mass spectrometry (GC-MS). In silico and in vitro analyses were used to evaluate the antioxidant and antimicrobial properties of the Cymbopogon spp. ethanolic extracts. In addition, bioactivity was measured using cytotoxicity assays. Antioxidant assays were performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid (ABTS) to determine toxicity to Huh7it-1 cells using a tetrazolium bromide (MTT) assay. Finally, the antimicrobial activity of these extracts was evaluated against Candida albicans, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli using a well diffusion assay. RESULTS: GC-MS analysis revealed 53 metabolites. Of these, 2,5-bis(1,1-dimethylethyl)- phenol (27.87%), alpha-cadinol (26.76%), and 1,2-dimethoxy-4-(1-propenyl)-benzene (20.56%) were the predominant compounds. C. winterianus and C. nardus leaves exhibited the highest antioxidant activity against DPPH and ABTS, respectively. Contrastingly, the MTT assay showed low cytotoxicity. C. nardus leaf extract exhibited the highest antimicrobial activity against E. coli and S. aureus, whereas C. winterianus stem extract showed the highest activity against B. substilis. Furthermore, computational pathway analysis predicted that antimicrobial activity mechanisms were related to antioxidant activity. CONCLUSIONS: These findings demonstrate that the leaves had strong antioxidant activity, whereas both the leaves and stems showed great antimicrobial activity. Furthermore, all Cymbopogon spp. ethanolic extracts showed low toxicity. These findings provide a foundation for future studies that assess the clinical safety of Cymbopogon spp. as novel drug candidates.


Asunto(s)
Antiinfecciosos , Antioxidantes , Cymbopogon , Extractos Vegetales , Hojas de la Planta , Raíces de Plantas , Antioxidantes/farmacología , Antioxidantes/química , Cymbopogon/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Tallos de la Planta/química , Pruebas de Sensibilidad Microbiana , Humanos , Cromatografía de Gases y Espectrometría de Masas , Indonesia
6.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3252-3257, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041086

RESUMEN

The aim of this paper is to study the malonyl ginsenosides in the fresh roots of Panax ginseng. D101 macroporous adsorption resin, ODS, and preparative HPLC were employed to separate the chemical components from the 70% ethanol extract of the fresh roots of P. ginseng, and the structures of the separated compounds were identified based on the data of high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Two malonyl ginsenosides were isolated from the fresh roots of P. ginseng and identified as 3-O-\[6-O-malonyl-ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranosyl\]-20-O-\[ ß-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-ß-D-glucopyranosyl\]-dammar-24-ene-3ß,12ß,20S-triol(1) and 3-O-\[6-O-malonyl-ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranosyl\]-20-O-\[ ß-D-xylopyranosyl-(1→2)-α-L-arabinofuranosyl-(1→6)-ß-D-glucopyranosyl\]-dammar-24-ene-3ß,12ß,20S-triol(2), respectively. Compounds 1 and 2 are new compounds isolated from fresh roots of P. ginseng for the first time and named as malonyl ginsenoside-Ra_1 and malonyl ginsenoside-Ra_2, respectively.


Asunto(s)
Ginsenósidos , Panax , Raíces de Plantas , Panax/química , Ginsenósidos/química , Ginsenósidos/aislamiento & purificación , Raíces de Plantas/química , Estructura Molecular , Espectroscopía de Resonancia Magnética , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación
7.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3484-3492, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041120

RESUMEN

This study aims to reveal the differences in the species and relative content of metabolites in the leaf and root tuber of Fallopia multiflora and improve the comprehensive utilization rate of F. multiflora resources. The metabolites in the root tubers and leaves of F. multiflora were detected by widely targeted metabolomics based on ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). The principal component analysis, hierarchical cluster analysis, and orthogonal partial least squares-discriminant analysis were carried out to screen the differential metabolites between the leaf and root tuber of F. multiflora. The result showed that a total of 1 942 metabolites in 15 categories were detected in the leaf and root tuber of F. multiflora, including 1 861 metabolites in the root tuber, 1 901 metabolites in the leaf, and 1 820 metabolites in both. The metabolites were mainly phenolic acids, flavonoids, amino acids and derivatives, and alkaloids. A total of 1 200 differential metabolites were screened out, accounting for 65.9% of the total metabolites. Among these differential metabolites, 813 and 387 showed higher content in the leaf and root tuber, respectively. Flavonoids were the metabolites with the largest number and the most significant differences between the leaf and root tuber, and stilbenes and anthraquinones as the main active compounds mainly existed in the root tuber. The KEGG enrichment results suggested that the differential metabolites were mainly enriched in flavonoid and flavonol biosynthesis pathways and linoleic acid metabolism pathway. This study discovered abundant metabolites in F. multiflora. The metabolites were similar but had great differences in the content between the leaf and root tuber. The research results provide theoretical guidance for the development and utilization of F. multiflora resources.


Asunto(s)
Fallopia multiflora , Metabolómica , Hojas de la Planta , Raíces de Plantas , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Cromatografía Líquida de Alta Presión , Fallopia multiflora/química , Fallopia multiflora/metabolismo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/química , Espectrometría de Masas en Tándem , Flavonoides/metabolismo , Flavonoides/análisis
8.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2889-2896, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041148

RESUMEN

To determine the optimal harvesting period and rational medicinal parts of Zanthoxylum nitidum, the main effective components of cultivated Z. nitidum samples, which originate from various growth years, harvesting months, and different parts were analyzed and compared with the wild samples. HPLC was performed on a Kinetex C18 column(4. 6 mm×100 mm, 2. 6 µm) with the gradient elution of 0. 3% phosphoric acid solution-acetonitrile(80 ∶ 20) containing 0. 2% triethylamine. The flow rate was 1. 0 m L·min-1, and the detection wavelength was 273 nm. The column temperature was 30 ℃. Nitidine chloride and chelerythrine, the main effective components, were determined as the markers. The results showed there was no significant difference in the contents of the main effective components among the roots of wild and cultivated Z. nitidum, as well as the roots and roots + stems of cultivated Z. nitidum. The statistical results of HCA and PCA indicated that the roots and stems could be clearly distinguished, but no distinction could be made between wild and cultivated products, which was consistent with the results of the significance analysis. The total contents of nitidine chloride and chelerythrine in roots and stems of Z. nitidum of 1-6 years old were 0. 114%-0. 256% and 0. 030%-0. 133%, respectively. These results suggested a positive correlation between the content of the main effective components and the growth years. No significant difference was observed between the contents of samples harvested in different seasons, indicating that the harvest season had no effect on the content of the main effective components of the Z. nitidum samples. The total contents of nitidine chloride and chelerythrine of the dried Z. nitidum samples(excluding branches) from three plantation bases were 0. 308%±0. 123% in Yunfu, 0. 192%±0. 025% in Maoming, and 0. 197%±0. 052% in Nanning, respectively, and they were all not less than 0. 15%, or in other words, the roots(including fibrous roots, taproots, and underground stems) and stems(aboveground stems) of Z. nitidum transplanted for more than 2. 5 years can meet the medical requirements. This study demonstrates that the cultivated Z. nitidum could be used as a valid substitute for the wild Z. nitidum, which provides a guarantee for the sustainable development and the application of Z. nitidum resources. The stems and roots could be considered medicinal parts of Z. nitidum. It is recommended to revise the medicinal parts of Z. nitidum to dried roots and stems in the next edition of Chinese Pharmacopoeia, and the medicinal parts can be harvested all year round. In order to ensure the content of effective components and clinical effectiveness, the root and stem should be harvested for medical use after the seedlings of Z. nitidum have been transplanted for more than three years.


Asunto(s)
Benzofenantridinas , Medicamentos Herbarios Chinos , Zanthoxylum , Zanthoxylum/química , Zanthoxylum/crecimiento & desarrollo , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Cromatografía Líquida de Alta Presión , Benzofenantridinas/análisis , Benzofenantridinas/química , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo
9.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999006

RESUMEN

Arsenic (As) speciation analysis is scientifically relevant due to the pivotal role the As chemical form plays in toxicity, which, in turn, directly influences the effect it has on the environment. The objective of this study was to develop and optimize a method tailored for studying As compounds in plant samples. Different extraction procedures and HPLC methods were explored to assess their efficiency, determine mass balance, and improve the resolution of compounds in the chromatograms. Conventionally applied anion-exchange chromatography facilitated the separation of well-documented As compounds in the extracts corresponding to 19 to 82% of As present in extracts. To gain insight into compounds which remain undetectable by anion chromatography (18 to 81% of As in the extracts), but still possibly metabolically relevant, we explored an alternative chromatographic approach. The procedure of sample purification and preconcentration through solid-phase extraction, facilitating the detection of those minor As compounds, was developed. The system was further refined to achieve an online 2D-RP-HPLC system, which was employed to analyze the extracts more comprehensively with ICP and ESI MS. Using this newly developed method, As(III)-phytochelatins, along with other arseno-thio-compounds, were detected and identified in extracts derived from the tree roots of seedlings grown in the presence of As(III) and As(V), and a group of arseno lipids was detected in the roots of plants exposed to As(V).


Asunto(s)
Arsénico , Espectrometría de Masa por Ionización de Electrospray , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Arsénico/análisis , Arsénico/aislamiento & purificación , Extracción en Fase Sólida/métodos , Arsenicales/análisis , Arsenicales/química , Arsenicales/aislamiento & purificación , Extractos Vegetales/química , Raíces de Plantas/química , Plantas/química , Fitoquelatinas/química , Fitoquelatinas/metabolismo
10.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999001

RESUMEN

The root of Adenophora tetraphylla (Thunb.) Fisch. is a common Chinese materia medica and the polysaccharides which have been isolated from the plant are important active components for medicinal purposes. The objective of the current study was to optimize the extraction parameters and evaluate the glucose consumption activity for Adenophorae root polysaccharides (ARPs). The optimization of ARP extraction was evaluated with preliminary experiments and using response surface methodology (RSM). The conditions investigated were 35-45 °C extraction temperature, 20-30 (v/w) water-to-solid ratio, and 3-5 h extraction time. The antidiabetic effects of ARPs for the glucose consumption activity were evaluated in HepG2 cells. The statistical analyses of the experiments indicated that temperature, water-to-solid ratio, and extraction time significantly affected ARP yield (p < 0.01). The correlation analysis revealed that the experimental data were well-aligned with a quadratic polynomial model, as evidenced by the mathematical regression model's fit. The optimal conditions for maximum ARP yield were 45 °C extraction temperature and 28.47:1 (mL/g) water-to-solid ratio with a 4.60 h extraction time. Extracts from these conditions showed significant activity of promoting cell proliferation from 11.26% (p < 0.001) to 32.47% (p < 0.001) at a dose of 50 µg/mL to 800 µg/mL and increasing glucose consumption to 75.86% (p < 0.001) at 250 µg/mL on HepG2 cells. This study provides a sustainable alternative for the industry since it allowed simplified handling and a specific quantity of ARPs. Furthermore, ARPs might directly stimulate the glucose consumption in the liver and showed no cytotoxicity; therefore, ARPs probably could be taken as a potential natural source of antidiabetic materials.


Asunto(s)
Glucosa , Raíces de Plantas , Polisacáridos , Agua , Humanos , Células Hep G2 , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Glucosa/metabolismo , Raíces de Plantas/química , Agua/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Solubilidad , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación
11.
PLoS One ; 19(7): e0305910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38976654

RESUMEN

This study quantified the fatty acid profile and total chlorogenic acid content of various Ethiopian cultivars of the Plectranthus edulis tuber, traditionally known as 'Agew Dinich'. Lipid extraction utilized the Folch method and the acid-catalyzed derivatization method to derivatize the fatty acids into fatty acid methyl ester (FAME) were used. Whereas maceration was used to extract chlorogenic acid from the fresh and freeze- dried tuber samples. Analysis revealed a total of thirteen fatty acids in all P. edulis samples, with nine classified as saturated and four as unsaturated. Palmitic acid was the most abundant fatty acid in P. edulis and accounted for 40.57%-50.21% of the total fatty acid content. The second and third most abundant fatty acids in the P. edulis sample were stearic and linoleic acids, which accounted for 8.38%-12.92% and 8.12%-11.28%, respectively. We reported chlorogenic acid for the first time in this potato species and found it to contain a concentration of 211± 4.2-300±24.7 mg/100g of dry weight basis when the determination was made using fresh samples. On the other hand, these samples yielded a chlorogenic acid concentration ranging from 115 ±8.6 mg/100g-175±3.9 mg/100g of freeze-dried powder samples. These findings suggest that P. edulis tubers could represent a significant dietary source of both chlorogenic acid and fatty acids.


Asunto(s)
Ácido Clorogénico , Ácidos Grasos , Tubérculos de la Planta , Plectranthus , Ácido Clorogénico/análisis , Ácidos Grasos/análisis , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo , Plectranthus/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo
12.
BMC Complement Med Ther ; 24(1): 271, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010091

RESUMEN

BACKGROUND: Onion waste was reported to be a valuable source of bioactive constituents with potential health-promoting benefits. This sparked a surge of interest among scientists for its valorization. This study aims to investigate the chemical profiles of peel and root extracts of four onion cultivars (red, copper-yellow, golden yellow and white onions) and evaluate their erectogenic and anti-inflammatory potentials. METHODS: UPLC-QqQ-MS/MS analysis and chemometric tools were utilized to determine the chemical profiles of onion peel and root extracts. The erectogenic potential of the extracts was evaluated using the PDE-5 inhibitory assay, while their anti-inflammatory activity was determined by identifying their downregulating effect on the gene expression of IL-6, IL-1ß, IFN-γ, and TNF-α in LPS-stimulated WBCs. RESULTS: A total of 103 metabolites of diverse chemical classes were identified, with the most abundant being flavonoids. The organ's influence on the chemical profiles of the samples outweighed the influence of the cultivar, as evidenced by the close clustering of samples from the same organ compared to the distinct separation of root and peel samples from the same cultivar. Furthermore, the tested extracts demonstrated promising PDE-5 and anti-inflammatory potentials and effectively suppressed the upregulation of pro-inflammatory markers in LPS-stimulated WBCs. The anti-inflammatory activities exerted by peel samples surpassed those of root samples, highlighting the importance of selecting the appropriate organ to maximize activity. The main metabolites correlated with PDE-5 inhibition were cyanidin 3-O-(malonyl-acetyl)-glucoside and quercetin dimer hexoside, while those correlated with IL-1ß inhibition were γ-glutamyl-methionine sulfoxide, γ-glutamyl glutamine, sativanone, and stearic acid. Taxifolin, 3'-hydroxymelanettin, and oleic acid were highly correlated with IL-6 downregulation, while quercetin 4'-O-glucoside, isorhamnetin 4'-O-glucoside, and p-coumaroyl glycolic acid showed the highest correlation to IFN-γ and TNF-α inhibition. CONCLUSION: This study provides a fresh perspective on onion waste as a valuable source of bioactive constituents that could serve as the cornerstone for developing new, effective anti-PDE-5 and anti-inflammatory drug candidates.


Asunto(s)
Antiinflamatorios , Metabolómica , Cebollas , Extractos Vegetales , Cebollas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Humanos , Raíces de Plantas/química , Espectrometría de Masas en Tándem
13.
Environ Monit Assess ; 196(8): 752, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028326

RESUMEN

Metal uptake by vegetables is becoming a threat to the life of consumers. Therefore, continuous monitoring of metals in vegetables and soils is becoming a necessity. In this study, the occurrence of 18 metals in amadumbe (Colocasia esculenta L.), sweet potatoes (Ipomoea batatas L.), potatoes (Solanum tuberosum L.), and carrots (Daucus carrota L.) grown in small-scale South African agricultural farms was monitored using inductively coupled plasma-optical emission spectroscopy. All the 18 investigated elements were detected in soils and different vegetative plants parts. Bioaccumulation factors indicated the transfer of selected metals from soils into the plant roots. Toxic metals Cd, Cr, and Pb had their concentrations exceeding the maximum permissible levels set by the World Health Organization in the edible parts of all root vegetables. Cd and Pb varied between 18.89 and 19.19 mg kg-1 and 10.46 and 11.46 mg kg-1, respectively, while Cr remained constant at 16.78 mg kg-1. The exact metals together with As and Ni had their total hazard quotients exceeding the threshold value of 1, which indicated that the daily consumption of the investigated root vegetables is likely to pose health risks to both adults and children. Therefore, this study points out to a possibility of toxic health effects that could arise when these vegetables are consumed daily.


Asunto(s)
Monitoreo del Ambiente , Granjas , Contaminantes del Suelo , Verduras , Sudáfrica , Verduras/química , Verduras/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Medición de Riesgo , Monitoreo del Ambiente/métodos , Bioacumulación , Metales/metabolismo , Metales/análisis , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Humanos , Contaminación de Alimentos/análisis , Solanum tuberosum/metabolismo , Solanum tuberosum/química , Metales Pesados/análisis , Metales Pesados/metabolismo , Daucus carota/metabolismo , Daucus carota/química , Colocasia/metabolismo , Ipomoea batatas/metabolismo
14.
Anal Chem ; 96(29): 11809-11822, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38975729

RESUMEN

Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.


Asunto(s)
Campos Electromagnéticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Congelación , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Plantas/metabolismo , Plantas/química , Flores/metabolismo , Flores/química
15.
Mediators Inflamm ; 2024: 8233689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026629

RESUMEN

Dorstenia psilurus is a widely used plant spice in traditional African medicine to treat pain-related conditions. However, the anti-inflammatory mechanisms underlying this activity and the main active ingredients of D. psilurus have not yet been fully characterized. This study aimed to isolate and identify the main active anti-inflammatory constituents of the D. psilurus extract and to investigate the underlying anti-inflammatory mechanisms in murine macrophages. Chromatographic techniques and spectroscopic data were used for compound isolation and structure elucidation. The Griess reagent method and the ferrous oxidation-xylenol orange assay were used to evaluate the inhibition of NO production and 15-lipoxygenase activity, respectively. Cyclooxygenase activity was assessed using the fluorometric COX activity assay kit, and Th1/Th2 cytokine measurement was performed using a flow cytometer. The results indicated that the extract and fractions of D. psilurus inhibit NO production and proliferation of RAW 264.7 macrophage cells. Bioguided fractionation led to the identification of psoralen, a furocoumarin, as the main bioactive anti-inflammatory compound. Psoralen inhibited NO production and 15-lipoxygenase activity and reduced pro-inflammatory Th1 cytokines (IFN-γ, TNF-α, and IL-2) while increasing the secretion of anti-inflammatory cytokines (IL-4, IL-6, and IL-10) in activated RAW 264.7 macrophage cells. The encouraging results obtained in this study suggest that psoralen-based multiple modulation strategies could be a useful approach to address the treatment of inflammatory diseases.


Asunto(s)
Citocinas , Ficusina , Lipopolisacáridos , Macrófagos , Raíces de Plantas , Animales , Ratones , Células RAW 264.7 , Citocinas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Raíces de Plantas/química , Lipopolisacáridos/farmacología , Ficusina/farmacología , Ficusina/química , Células TH1/efectos de los fármacos , Células TH1/metabolismo , Células Th2/metabolismo , Células Th2/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Óxido Nítrico/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química
16.
Sci Rep ; 14(1): 16598, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025914

RESUMEN

Poultry manure (PM) has demonstrated its potential to enhance crop nutritional quality. Nevertheless, there remains a dearth of knowledge regarding its synergistic effects when combined with wood biochar (B) on the nutrient concentrations in sweet potato leaves (Ipomoea batatas L.) and the mineral content stored in sweet potato storage roots. Hence, a two-year field trial was undertaken during the 2019 and 2020 cropping seasons in southwestern Nigeria, spanning two locations (Owo-site A and Obasooto-site B), to jointly apply poultry manure and wood biochar as soil amendments aimed at enhancing the nutritional quality of sweet potato crop. Each year, the experiment involved different combinations of poultry manure at rates of 0, 5.0, and 10.0 t ha-1 and biochar at rates of 0, 10.0, 20.0, and 30.0 t ha-1, organized in a 3 × 4 factorial layout. The results of the present study demonstrated that the individual application of poultry manure (PM), biochar (B), or their combination had a significant positive impact on the nutrient composition of sweet potato leaves and minerals stored in the sweet potato storage roots, with notable synergistic effects between poultry manure and biochar (PM × B) in enhancing these parameters. This highlights the potential of biochar to enhance the efficiency of poultry manure utilization and improve nutrient utilization from poultry manure. The highest application rate of poultry manure at 10.0 t ha-1 and biochar at 30.0 t ha-1 (PM10 + B30), resulted in the highest leaf nutrient concentrations and mineral composition compared to other treatments at both sites. Averaged over two years, the highest application rate of poultry manure at 10.0 t ha-1 and biochar at 30.0 t ha-1 (PM10 + B30) significantly increased sweet potato leaf nutrient concentrations: nitrogen by 88.2%, phosphorus by 416.7%, potassium by 123.8%, calcium by 927.3%, and magnesium by 333.3%, compared to those in the control (PM0 + B0). The same treatment increased the concentration of sweet potato root storage minerals: phosphorus by 152.5%, potassium by 77.4%, calcium by 205.5%, magnesium by 294.6%, iron by 268.4%, zinc by 228.6%, and sodium by 433.3%, compared to the control. The highest application rate of poultry manure at 10.0 t ha-1 and biochar at 30.0 t ha-1 yielded the highest economic profitability in terms of gross margin (44,034 US$ ha-1), net return (30,038 US$ ha-1) and return rate or value-to-cost ratio (VCR) (263). The results suggested that the application of poultry manure at 10 t ha-1 and biochar at 30 t ha-1 is economically profitable in the study areas and under similar agroecological zones and soil conditions.


Asunto(s)
Carbón Orgánico , Ipomoea batatas , Estiércol , Minerales , Hojas de la Planta , Raíces de Plantas , Aves de Corral , Ipomoea batatas/metabolismo , Ipomoea batatas/química , Estiércol/análisis , Carbón Orgánico/química , Animales , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Minerales/análisis , Minerales/química , Fertilizantes/análisis , Suelo/química , Nutrientes/análisis , Fósforo/análisis , Nigeria
17.
J Mass Spectrom ; 59(7): e5063, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953332

RESUMEN

An unprecedented and direct PS-MS (paper spray ionization mass spectrometry) method was proposed for the detection of native peptides, that is, glutathiones (GSHs), homoglutathiones (hGSHs), and phytochelatins (PCs), in basil (Ocimum basilicum L.) roots before and after cadmium exposure. The roots were submitted to cold maceration followed by sonication with formic acid as the extractor solvent for sample preparation. PS-MS was used to analyze such extracts in the positive mode, and the results allowed for the detection of several GSHs, hGSHs, and PCs. Some of these PCs were not distinguished in the control samples, that is, basil roots not exposed to cadmium. Other PCs were noticed in both types of roots, uncontaminated and cadmium-contaminated, but the intensities were higher in the former samples. Moreover, long-time exposure to cadmium stimulated the formation of some of these PCs and their cadmium complexes. The results, therefore, provided some crucial insights into the defense mechanism of plants against an external stress condition due to exposure to a toxic heavy metal. The present study represents a promising alternative to investigate other crucial physiological processes in plants submitted to assorted stress conditions.


Asunto(s)
Cadmio , Ocimum basilicum , Fitoquelatinas , Raíces de Plantas , Fitoquelatinas/química , Fitoquelatinas/metabolismo , Raíces de Plantas/química , Cadmio/análisis , Ocimum basilicum/química , Espectrometría de Masas/métodos , Glutatión/análisis , Glutatión/metabolismo , Glutatión/química
18.
Curr Microbiol ; 81(9): 268, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003685

RESUMEN

Antibiotic success rates are decreasing as drug-resistant bacteria become more prevalent, prompting the development of new therapeutic drugs. Herein, we demonstrated the antimicrobial activity of sarsaparilla root extract fabricated silver nanoparticles (sAgNPs). The UV-Visible spectra revealed that the surface Plasmon resonance maxima of sAgNPs were at 415 nm. Transmission electron microscopy confirms that the particles are spherical with size of 12-35 nm. The minimum inhibitory concentration (MIC) of sAgNPs against Escherichia coli, uropathogenic Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus was 62.5, 62.5, 62.5, 62.5, 125 and 125 µM, respectively. At 1X MIC, sAgNPs induces excess reactive oxygen species (ROS) production and disturbs the bacteria membrane intergity, causing cytoplamic membrane depolarization. Interestingly, antibacterial activity of sAgNPs was considerably reduced in the presence of an antioxidant, N-acetyl cysteine, suggesting that ROS-induced membrane damage is a plausible cause of cell death. In contrast to many studies that only report the in vitro activity of NPs, we determined the in vivo antibacterial efficacy using the zebrafish model. It was found that sAgNPs protect fish from infection by inhibiting bacterial growth and eliminating them from the fish. In addition, the catalytic potential of sAgNPs for wastewater decontamination was demonstrated by degrading organic pollutants such as methyl orange, congo red, reactive black, and acid blue. The pollutants degraded in less than 10 min, and the reaction follows pseudo-first-order kinetics. As a proof of concept, the catalytic potential of sAgNPs in degrading mixed dyes to satisfy industrial wastewater treatment needs was established. In summary, sAgNPs have the potential to act as nanocatalysts and nano-drugs, addressing key challenges in medical and environmental research.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Raíces de Plantas , Plata , Pez Cebra , Animales , Plata/farmacología , Plata/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Raíces de Plantas/química , Raíces de Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Bacterias/efectos de los fármacos
19.
Molecules ; 29(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38893387

RESUMEN

The extraction of cannabinoids from the inflorescence and leaves of Cannabis sativa L. is gaining interest from researchers, in addition to addressing the under-utilization of the by-products in the stems and roots of the trees. The present study investigated the recovery of pectin from the left-over parts of hemp tress using an eco-friendly method with the aid of organic acids. Different cannabis cultivars-Chalotte's Angels (CHA) and Hang-Krarog (HKR)-were used as plant materials. The stems of both cannabis cultivars contained more pectin than the roots, and tartaric acid-aided extraction provided higher yields than from citric acid. Extracting the acid solution affected some characteristics, thereby differentiating the functional properties of the derived pectin. Extraction using tartaric acid provided pectin with a higher galacturonic acid content, whereas pectin with a higher methylation degree could be prepared using citric acid. The pectin samples extracted from the stems of CHA (P-CHA) and HKR (P-HKR) had low methoxyl pectin. P-CHA had better free radical scavenging capability, whereas P-HKR showed more potent reducibility. Considering the functional properties, P-CHA showed greater emulsion formability and foaming activity, whereas P-HKR possessed a better thickening effect. The present work suggests the feasible utilization of P-CHA and P-HKR as food additives with bioactivity.


Asunto(s)
Cannabis , Pectinas , Extractos Vegetales , Pectinas/química , Pectinas/aislamiento & purificación , Cannabis/química , Extractos Vegetales/química , Ácido Cítrico/química , Hojas de la Planta/química , Tallos de la Planta/química , Tartratos/química , Raíces de Plantas/química , Ácidos Hexurónicos/química , Ácidos Hexurónicos/análisis
20.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893423

RESUMEN

A chemical investigation of Anthriscus sylvestris roots led to the isolation and characterization of two new nitrogen-containing phenylpropanoids (1-2) and two new phenol glycosides (8-9), along with fifteen known analogues. Structure elucidation was based on HRESIMS, 1D and 2D NMR spectroscopy, and electronic circular dichroism (ECD). In addition, compounds 3, 6, 9-10, 12, and 17 exhibited inhibitory effects against the abnormal proliferation of pulmonary arterial smooth muscle cells with IC50 values ranging from 10.7 ± 0.6 to 57.1 ± 1.1 µM.


Asunto(s)
Proliferación Celular , Miocitos del Músculo Liso , Raíces de Plantas , Arteria Pulmonar , Raíces de Plantas/química , Proliferación Celular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Arteria Pulmonar/citología , Arteria Pulmonar/efectos de los fármacos , Animales , Estructura Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glicósidos/farmacología , Glicósidos/química , Glicósidos/aislamiento & purificación , Ratas , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...