Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351.781
Filtrar
1.
FASEB J ; 38(13): e23769, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958951

RESUMEN

Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.


Asunto(s)
Apigenina , Glucuronatos , Sistema de Señalización de MAP Quinasas , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Ratones , Apigenina/farmacología , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Inflamación/patología
2.
FASEB J ; 38(13): e23663, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958986

RESUMEN

This study delves into the unexplored realm of castration-resistant prostate cancer (CRPC) by investigating the role of TRIM28 and its intricate molecular mechanisms using high-throughput single-cell transcriptome sequencing and advanced bioinformatics analysis. Our comprehensive examination unveiled dynamic TRIM28 expression changes, particularly in immune cells such as macrophages and CD8+ T cells within CRPC. Correlation analyses with TCGA data highlighted the connection between TRIM28 and immune checkpoint expression and emphasized its pivotal influence on the quantity and functionality of immune cells. Using TRIM28 knockout mouse models, we identified differentially expressed genes and enriched pathways, unraveling the potential regulatory involvement of TRIM28 in the cGAS-STING pathway. In vitro, experiments further illuminated that TRIM28 knockout in prostate cancer cells induced a notable anti-tumor immune effect by inhibiting M2 macrophage polarization and enhancing CD8+ T cell activity. This impactful discovery was validated in an in situ transplant tumor model, where TRIM28 knockout exhibited a deceleration in tumor growth, reduced proportions of M2 macrophages, and enhanced infiltration of CD8+ T cells. In summary, this study elucidates the hitherto unknown anti-tumor immune role of TRIM28 in CRPC and unravels its potential regulatory mechanism via the cGAS-STING signaling pathway. These findings provide novel insights into the immune landscape of CRPC, offering promising directions for developing innovative therapeutic strategies.


Asunto(s)
Linfocitos T CD8-positivos , Proteínas de la Membrana , Ratones Noqueados , Neoplasias de la Próstata Resistentes a la Castración , Proteína 28 que Contiene Motivos Tripartito , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética , Animales , Ratones , Humanos , Masculino , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Ratones Endogámicos C57BL , Transducción de Señal
3.
FASEB J ; 38(13): e23776, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958998

RESUMEN

This study aimed to explore how mechanical stress affects osteogenic differentiation via the miR-187-3p/CNR2 pathway. To conduct this study, 24 female C57BL/6 mice, aged 8 weeks, were used and divided into four groups. The Sham and OVX groups did not undergo treadmill exercise, while the Sham + EX and OVX + EX groups received a 8-week treadmill exercise. Post-training, bone marrow and fresh femur samples were collected for further analysis. Molecular biology analysis, histomorphology analysis, and micro-CT analysis were conducted on these samples. Moreover, primary osteoblasts were cultured under osteogenic conditions and divided into GM group and CTS group. The cells in the CTS group underwent a sinusoidal stretching regimen for either 3 or 7 days. The expression of early osteoblast markers (Runx2, OPN, and ALP) was measured to assess differentiation. The study findings revealed that mechanical stress has a regulatory impact on osteoblast differentiation. The expression of miR-187-3p was observed to decrease, facilitating osteogenic differentiation, while the expression of CNR2 increased significantly. These observations suggest that mechanical stress, miR-187-3p, and CNR2 play crucial roles in regulating osteogenic differentiation. Both in vivo and in vitro experiments have confirmed that mechanical stress downregulates miR-187-3p and upregulates CNR2, which leads to the restoration of distal femoral bone mass and enhancement of osteoblast differentiation. Therefore, mechanical stress promotes osteoblasts, resulting in improved osteoporosis through the miR-187-3p/CNR2 signaling pathway. These findings have broad prospect and provide molecular biology guidance for the basic research and clinical application of exercise in the prevention and treatment of PMOP.


Asunto(s)
Diferenciación Celular , Ratones Endogámicos C57BL , MicroARNs , Osteoblastos , Osteogénesis , Osteoporosis Posmenopáusica , Estrés Mecánico , Animales , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/metabolismo , Femenino , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/terapia , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/patología , Ratones , Osteogénesis/fisiología , Humanos , Transducción de Señal , Células Cultivadas
4.
Oncoimmunology ; 13(1): 2373526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948931

RESUMEN

Prostate cancer (PCa) is characterized as a "cold tumor" with limited immune responses, rendering the tumor resistant to immune checkpoint inhibitors (ICI). Therapeutic messenger RNA (mRNA) vaccines have emerged as a promising strategy to overcome this challenge by enhancing immune reactivity and significantly boosting anti-tumor efficacy. In our study, we synthesized Tetra, an mRNA vaccine mixed with multiple tumor-associated antigens, and ImmunER, an immune-enhancing adjuvant, aiming to induce potent anti-tumor immunity. ImmunER exhibited the capacity to promote dendritic cells (DCs) maturation, enhance DCs migration, and improve antigen presentation at both cellular and animal levels. Moreover, Tetra, in combination with ImmunER, induced a transformation of bone marrow-derived dendritic cells (BMDCs) to cDC1-CCL22 and up-regulated the JAK-STAT1 pathway, promoting the release of IL-12, TNF-α, and other cytokines. This cascade led to enhanced proliferation and activation of T cells, resulting in effective killing of tumor cells. In vivo experiments further revealed that Tetra + ImmunER increased CD8+T cell infiltration and activation in RM-1-PSMA tumor tissues. In summary, our findings underscore the promising potential of the integrated Tetra and ImmunER mRNA-LNP therapy for robust anti-tumor immunity in PCa.


Asunto(s)
Adyuvantes Inmunológicos , Antígenos de Neoplasias , Vacunas contra el Cáncer , Células Dendríticas , Neoplasias de la Próstata , ARN Mensajero , Animales , Masculino , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/tratamiento farmacológico , Antígenos de Neoplasias/inmunología , Ratones , Células Dendríticas/inmunología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Humanos , Ratones Endogámicos C57BL , Línea Celular Tumoral , Vacunas de ARNm , Linfocitos T CD8-positivos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inmunoterapia/métodos , Activación de Linfocitos/efectos de los fármacos
5.
J Vis Exp ; (208)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949310

RESUMEN

Sepsis is a major cause of in-hospital deaths. Improvements in treatment result in a greater number of sepsis survivors. Approximately 75% of the survivors develop muscle weakness and atrophy, increasing the incidence of hospital readmissions and mortality. However, the available preclinical models of sepsis do not address skeletal muscle disuse, a key component for the development of sepsis-induced myopathy. Our objective in this protocol is to provide a step-by-step guideline for a mouse model that reproduces the clinical setting experienced by a bedridden septic patient. Male C57Bl/6 mice were used to develop this model. Mice underwent cecal ligation and puncture (CLP) to induce sepsis. Four days post-CLP, mice were subjected to hindlimb suspension (HLS) for seven days. Results were compared with sham-matched surgeries and/or animals with normal ambulation (NA). Muscles were dissected for in vitro muscle mechanics and morphological assessments. The model results in marked muscle atrophy and weakness, a similar phenotype observed in septic patients. The model represents a platform for testing potential therapeutic strategies for the mitigation of sepsis-induced myopathy.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades Musculares , Sepsis , Animales , Sepsis/complicaciones , Ratones , Masculino , Enfermedades Musculares/etiología , Enfermedades Musculares/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Músculo Esquelético , Suspensión Trasera
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 481-487, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38952086

RESUMEN

Objective To elucidate the role of chaperone-mediated autophagy (CMA) in alleviating emotional dysfunction in mice with sepsis-associated encephalopathy (SAE). Methods The SAE mouse model was established by cecal ligation and perforation (CLP). The severity of sepsis was assessed using the sepsis severity score (MSS). Emotional function in SAE mice was assessed by the open-field test and elevated plus-maze. The expression levels of cognitive heat shock cognate protein 70 (HSC70), lysosomal-associated membrane protein 2A (LAMP2A) and high mobility group box 1 protein B1 (HMGB1) were detected using Western blotting. Co-localization of LAMP2A in the hippocampal neurons was observed by immunofluorescence. The release of inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) was measured using ELISA. Following 12 hours post-CLP, mice were orally administered resveratrol at a dose of 30 mg/kg once daily until day 14. Results The mortality rate of CLP mice was 45.83% 24 days post CLP, and all surviving mice exhibited emotional disturbances. 24 hours after CLP, a significant decrease in HSC70 and LAMP2A expression in hippocampal neurons was observed, indicating impaired CMA activity. Meanwhile, HMGB1 and inflammatory cytokines (IL-6 and TNF-α) levels increased. After resveratrol treatment, an increase of HSC70 and LAMP2A expression, and a decrease of HMGB1 expression and inflammatory cytokine release were observed, suggesting enhanced CMA activity and reduced neuroinflammation. Behavioral tests showed that emotional dysfunction was improved in SAE mice after resveratrol treatment. Conclusion CMA activity of hippocampal neurons in SAE mice is significantly reduced, leading to emotional dysfunction. Resveratrol can alleviate neuroinflammation and emotional dysfunction in SAE mice by promoting CMA and inhibiting the expression of HMGB1 and the release of inflammatory factors.


Asunto(s)
Autofagia Mediada por Chaperones , Proteína HMGB1 , Resveratrol , Encefalopatía Asociada a la Sepsis , Animales , Ratones , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/fisiopatología , Encefalopatía Asociada a la Sepsis/metabolismo , Masculino , Resveratrol/farmacología , Proteína HMGB1/metabolismo , Autofagia Mediada por Chaperones/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Interleucina-6/metabolismo , Estilbenos/farmacología , Proteínas del Choque Térmico HSC70/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Sepsis/fisiopatología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
7.
Physiol Rep ; 12(13): e16103, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38946587

RESUMEN

Cancer cachexia is a multifactorial syndrome associated with advanced cancer that contributes to mortality. Cachexia is characterized by loss of body weight and muscle atrophy. Increased skeletal muscle mitochondrial reactive oxygen species (ROS) is a contributing factor to loss of muscle mass in cachectic patients. Mice inoculated with Lewis lung carcinoma (LLC) cells lose weight, muscle mass, and have lower muscle sirtuin-1 (sirt1) expression. Nicotinic acid (NA) is a precursor to nicotinamide dinucleotide (NAD+) which is exhausted in cachectic muscle and is a direct activator of sirt1. Mice lost body and muscle weight and exhibited reduced skeletal muscle sirt1 expression after inoculation with LLC cells. C2C12 myotubes treated with LLC-conditioned media (LCM) had lower myotube diameter. We treated C2C12 myotubes with LCM for 24 h with or without NA for 24 h. C2C12 myotubes treated with NA maintained myotube diameter, sirt1 expression, and had lower mitochondrial superoxide. We then used a sirt1-specific small molecule activator SRT1720 to increase sirt1 activity. C2C12 myotubes treated with SRT1720 maintained myotube diameter, prevented loss of sirt1 expression, and attenuated mitochondrial superoxide production. Our data provides evidence that NA may be beneficial in combating cancer cachexia by maintaining sirt1 expression and decreasing mitochondrial superoxide production.


Asunto(s)
Caquexia , Fibras Musculares Esqueléticas , Estrés Oxidativo , Sirtuina 1 , Animales , Caquexia/etiología , Caquexia/metabolismo , Caquexia/patología , Caquexia/prevención & control , Sirtuina 1/metabolismo , Sirtuina 1/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Ratones , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/complicaciones , Masculino , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Línea Celular , Niacina/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
8.
PLoS One ; 19(7): e0303786, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38950046

RESUMEN

A prevailing animal model currently used to study severe human diseases like obstructive cholestasis, primary biliary or sclerosing cholangitis, biliary atresia, and acute liver injury is the common bile duct ligation (cBDL). Modifications of this model include ligation of the left hepatic bile duct (pBDL) or ligation of the left bile duct with the corresponding left hepatic artery (pBDL+pAL). Both modifications induce cholestasis only in the left liver lobe. After induction of total or partial cholestasis in mice, the well-being of these animals was evaluated by assessing burrowing behavior, body weight, and a distress score. To compare the pathological features of these animal models, plasma levels of liver enzymes, bile acids, bilirubin, and within the liver tissue, necrosis, fibrosis, inflammation, as well as expression of genes involved in the synthesis or transport of bile acids were assessed. The survival rate of the animals and their well-being was comparable between pBDL+pAL and pBDL. However, surgical intervention by pBDL+pAL caused confluent necrosis and collagen depositions at the edge of necrotic tissue, whereas pBDL caused focal necrosis and fibrosis in between portal areas. Interestingly, pBDL animals had a higher survival rate and their well-being was significantly improved compared to cBDL animals. On day 14 after cBDL liver aspartate, as well as alanine aminotransferase, alkaline phosphatase, glutamate dehydrogenase, bile acids, and bilirubin were significantly elevated, but only glutamate dehydrogenase activity was increased after pBDL. Thus, pBDL may be primarily used to evaluate local features such as inflammation and fibrosis or regulation of genes involved in bile acid synthesis or transport but does not allow to study all systemic features of cholestasis. The pBDL model also has the advantage that fewer mice are needed, because of its high survival rate, and that the well-being of the animals is improved compared to the cBDL animal model.


Asunto(s)
Colestasis , Modelos Animales de Enfermedad , Hígado , Animales , Ligadura , Ratones , Colestasis/metabolismo , Colestasis/patología , Hígado/metabolismo , Hígado/patología , Conductos Biliares/cirugía , Conductos Biliares/patología , Conductos Biliares/metabolismo , Ácidos y Sales Biliares/metabolismo , Masculino , Bilirrubina/sangre , Bilirrubina/metabolismo , Ratones Endogámicos C57BL , Conducto Colédoco/cirugía
9.
PeerJ ; 12: e17539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952964

RESUMEN

The association between sleep and the immune-endocrine system is well recognized, but the nature of that relationship is not well understood. Sleep fragmentation induces a pro-inflammatory response in peripheral tissues and brain, but it also activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing glucocorticoids (GCs) (cortisol in humans and corticosterone in mice). It is unclear whether this rapid release of glucocorticoids acts to potentiate or dampen the inflammatory response in the short term. The purpose of this study was to determine whether blocking or suppressing glucocorticoid activity will affect the inflammatory response from acute sleep fragmentation (ASF). Male C57BL/6J mice were injected i.p. with either 0.9% NaCl (vehicle 1), metyrapone (a glucocorticoid synthesis inhibitor, dissolved in vehicle 1), 2% ethanol in polyethylene glycol (vehicle 2), or mifepristone (a glucocorticoid receptor antagonist, dissolved in vehicle 2) 10 min before the start of ASF or no sleep fragmentation (NSF). After 24 h, samples were collected from brain (prefrontal cortex, hypothalamus, hippocampus) and periphery (liver, spleen, heart, and epididymal white adipose tissue (EWAT)). Proinflammatory gene expression (TNF-α and IL-1ß) was measured, followed by gene expression analysis. Metyrapone treatment affected pro-inflammatory cytokine gene expression during ASF in some peripheral tissues, but not in the brain. More specifically, metyrapone treatment suppressed IL-1ß expression in EWAT during ASF, which implies a pro-inflammatory effect of GCs. However, in cardiac tissue, metyrapone treatment increased TNF-α expression in ASF mice, suggesting an anti-inflammatory effect of GCs. Mifepristone treatment yielded more significant results than metyrapone, reducing TNF-α expression in liver (only NSF mice) and cardiac tissue during ASF, indicating a pro-inflammatory role. Conversely, in the spleen of ASF-mice, mifepristone increased pro-inflammatory cytokines (TNF-α and IL-1ß), demonstrating an anti-inflammatory role. Furthermore, irrespective of sleep fragmentation, mifepristone increased pro-inflammatory cytokine gene expression in heart (IL-1ß), pre-frontal cortex (IL-1ß), and hypothalamus (IL-1ß). The results provide mixed evidence for pro- and anti-inflammatory functions of corticosterone to regulate inflammatory responses to acute sleep loss.


Asunto(s)
Glucocorticoides , Metirapona , Ratones Endogámicos C57BL , Mifepristona , Privación de Sueño , Animales , Masculino , Metirapona/farmacología , Privación de Sueño/metabolismo , Privación de Sueño/tratamiento farmacológico , Ratones , Mifepristona/farmacología , Glucocorticoides/farmacología , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Corticosterona/sangre , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/genética
10.
Front Immunol ; 15: 1425938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953020

RESUMEN

Introduction: P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems. Methods: Here, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis. Results: No detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4 -/- mice. Discussion: In summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo.


Asunto(s)
Pulmón , Ratones Noqueados , Ratones Transgénicos , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Animales , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Ratones , Pulmón/metabolismo , Pulmón/inmunología , Ratones Endogámicos C57BL , Unión Proteica
11.
Front Immunol ; 15: 1405210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947315

RESUMEN

In bone marrow transplantation (BMT), hematopoiesis-reconstituting cells are introduced following myeloablative treatment, which eradicates existing hematopoietic cells and disrupts stroma within the hematopoietic tissue. Both hematopoietic cells and stroma then undergo regeneration. Our study compares the outcomes of a second BMT administered to mice shortly after myeloablative treatment and the first BMT, with those of a second BMT administered to mice experiencing robust hematopoietic regeneration after the initial transplant. We evaluated the efficacy of the second BMT in terms of engraftment efficiency, types of generated blood cells, and longevity of function. Our findings show that regenerating hematopoiesis readily accommodates newly transplanted stem cells, including those endowed with a robust capacity for generating B and T cells. Importantly, our investigation uncovered a window for preferential engraftment of transplanted stem cells coinciding with the resumption of blood cell production. Repeated BMT could intensify hematopoiesis reconstitution and enable therapeutic administration of genetically modified autologous stem cells.


Asunto(s)
Trasplante de Médula Ósea , Hematopoyesis , Animales , Trasplante de Médula Ósea/métodos , Ratones , Células Madre Hematopoyéticas/inmunología , Ratones Endogámicos C57BL , Reconstitución Inmune , Regeneración
12.
Front Immunol ; 15: 1408710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947320

RESUMEN

Background: Interleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses. Methods: We generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells. Results: IL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function. Conclusion: IL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.


Asunto(s)
Interleucina-17 , Ratones Noqueados , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Interleucina-17/metabolismo , Ratones , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Modelos Animales de Enfermedad
13.
Front Immunol ; 15: 1359494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947328

RESUMEN

Sialic acids are found as terminal sugars on glycan structures on cellular surfaces. T cells carry these sialoglycans abundantly, and they are thought to serve multiple functions in cell adhesion, cell migration, and protection from complement attack. We studied the role of sialoglycans on T cells in a mouse model with a T cell-specific deletion of cytidine monophosphate-sialic acid synthase (CMAS), the enzyme that is crucial for the synthesis of sialoglycans. These mice showed a T-cell deficiency in peripheral lymphoid organs. Many T cells with an undeleted Cmas allele were found in the periphery, suggesting that they escaped the Cre-mediated deletion. The remaining peripheral T cells of T cell-specific Cmas KO mice had a memory-like phenotype. Additional depletion of the complement factor C3 could not rescue the phenotype, showing that the T-cell defect was not caused by a host complement activity. Cmas-deficient T cells showed a high level of activated caspase 3, indicating an ongoing apoptosis. In bone marrow chimeric cellular transfer experiments, we observed a strong competitive disadvantage of Cmas-deficient T cells compared to wild-type T cells. These results show that sialoglycans on the surface of T cells are crucial for T-cell survival and maintenance. This function has not been recognized before and is similar to the function of sialoglycans on B cells.


Asunto(s)
Ratones Noqueados , Ácidos Siálicos , Linfocitos T , Animales , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ácidos Siálicos/metabolismo , Supervivencia Celular , Ratones Endogámicos C57BL , Apoptosis , Complemento C3/metabolismo , Complemento C3/inmunología , Complemento C3/genética , Oxigenasas de Función Mixta
14.
J Immunotoxicol ; 21(1): 2340495, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38946256

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic organofluorine compounds that persist indefinitely in the environment and bioaccumulate throughout all trophic levels. Biomonitoring efforts have detected multiple PFAS in the serum of most people. Immune suppression has been among the most consistent effects of exposure to PFAS. PFAS often co-occur as mixtures in the environment, however, few studies have examined immunosuppression of PFAS mixtures or determined whether PFAS exposure affects immune function in the context of infection. In this study, mixtures containing two or four different PFAS and a mouse model of infection with influenza A virus (IAV) were used to assess immunotoxicity of PFAS mixtures. PFAS were administered via the drinking water as either a binary mixture of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) or quaternary mixture of PFOS, PFOA, perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA). The results indicated that the binary mixture affected the T-cell response, while the quaternary mixture affected the B-cell response to infection. These findings indicate that the immunomodulatory effects of PFAS mixtures are not simply additive, and that the sensitivity of immune responses to PFAS varies by cell type and mixture. The study also demonstrates the importance of studying adverse health effects of PFAS mixtures.


Asunto(s)
Ácidos Alcanesulfónicos , Caprilatos , Fluorocarburos , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Fluorocarburos/efectos adversos , Fluorocarburos/toxicidad , Animales , Ratones , Virus de la Influenza A/inmunología , Ácidos Alcanesulfónicos/toxicidad , Ácidos Alcanesulfónicos/efectos adversos , Infecciones por Orthomyxoviridae/inmunología , Caprilatos/toxicidad , Caprilatos/efectos adversos , Humanos , Femenino , Ratones Endogámicos C57BL , Gripe Humana/inmunología , Modelos Animales de Enfermedad , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos
15.
Clin Transl Med ; 14(7): e1749, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951127

RESUMEN

During myocardial ischaemia‒reperfusion injury (MIRI), the accumulation of damaged mitochondria could pose serious threats to the heart. The migrasomes, newly discovered mitocytosis-mediating organelles, selectively remove damaged mitochondria to provide mitochondrial quality control. Here, we utilised low-intensity pulsed ultrasound (LIPUS) on MIRI mice model and demonstrated that LIPUS reduced the infarcted area and improved cardiac dysfunction. Additionally, we found that LIPUS alleviated MIRI-induced mitochondrial dysfunction. We provided new evidence that LIPUS mechanical stimulation facilitated damaged mitochondrial excretion via migrasome-dependent mitocytosis. Inhibition the formation of migrasomes abolished the protective effect of LIPUS on MIRI. Mechanistically, LIPUS induced the formation of migrasomes by evoking the RhoA/Myosin II/F-actin pathway. Meanwhile, F-actin activated YAP nuclear translocation to transcriptionally activate the mitochondrial motor protein KIF5B and Drp1, which are indispensable for LIPUS-induced mitocytosis. These results revealed that LIPUS activates mitocytosis, a migrasome-dependent mitochondrial quality control mechanism, to protect against MIRI, underlining LIPUS as a safe and potentially non-invasive treatment for MIRI.


Asunto(s)
Modelos Animales de Enfermedad , Daño por Reperfusión Miocárdica , Animales , Ratones , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/terapia , Ondas Ultrasónicas , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo
16.
Commun Biol ; 7(1): 796, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951162

RESUMEN

The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified "skeleton" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.


Asunto(s)
Microscopía Electrónica , Fibras Nerviosas , Sinapsis , Animales , Ratones , Microscopía Electrónica/métodos , Fibras Nerviosas/ultraestructura , Sinapsis/ultraestructura , Axones/ultraestructura , Dendritas/ultraestructura , Encéfalo/ultraestructura , Corteza Somatosensorial/ultraestructura , Ratones Endogámicos C57BL , Masculino , Programas Informáticos , Hipocampo/ultraestructura , Hipocampo/citología , Microscopía Electrónica de Volumen
17.
Nat Commun ; 15(1): 5501, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951486

RESUMEN

While light can affect emotional and cognitive processes of the medial prefrontal cortex (mPFC), no light-encoding was hitherto identified in this region. Here, extracellular recordings in awake mice revealed that over half of studied mPFC neurons showed photosensitivity, that was diminished by inhibition of intrinsically photosensitive retinal ganglion cells (ipRGCs), or of the upstream thalamic perihabenular nucleus (PHb). In 15% of mPFC photosensitive neurons, firing rate changed monotonically along light-intensity steps and gradients. These light-intensity-encoding neurons comprised four types, two enhancing and two suppressing their firing rate with increased light intensity. Similar types were identified in the PHb, where they exhibited shorter latency and increased sensitivity. Light suppressed prelimbic activity but boosted infralimbic activity, mirroring the regions' contrasting roles in fear-conditioning, drug-seeking, and anxiety. We posit that prefrontal photosensitivity represents a substrate of light-susceptible, mPFC-mediated functions, which could be ultimately studied as a therapeutical target in psychiatric and addiction disorders.


Asunto(s)
Luz , Ratones Endogámicos C57BL , Neuronas , Corteza Prefrontal , Células Ganglionares de la Retina , Animales , Corteza Prefrontal/fisiología , Corteza Prefrontal/efectos de la radiación , Corteza Prefrontal/citología , Ratones , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Masculino , Neuronas/fisiología , Neuronas/metabolismo , Neuronas/efectos de la radiación , Estimulación Luminosa , Potenciales de Acción/fisiología
18.
Commun Biol ; 7(1): 787, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951550

RESUMEN

Adipose tissue development begins in the fetal period, and continues to expand after birth. Dysregulation of adipose tissue during weaning may predispose individuals to lifelong metabolic disorders. However, the developmental remodeling of adipose tissue during weaning remains largely unexplored. Here we comprehensively compare the changes in mouse subcutaneous white adipose tissue from 7 days after birth to 7 days after weaning using single-cell RNA sequencing along with other molecular and histologic assays. We characterize the developmental trajectory of preadipocytes and indicate the commitment of preadipocytes with beige potential during weaning. Meanwhile, we find immune cells unique to weaning period, whose expression of extracellular matrix proteins implies potential regulation on preadipocyte. Finally, the strongest cell-cell interaction during weaning determined by the TGFß ligand-receptor pairs is between preadipocytes and endotheliocytes. Our results provide a detailed and unbiased cellular landscape and offer insights into the potential regulation of adipose tissue remodeling during weaning.


Asunto(s)
Tejido Adiposo Blanco , Análisis de la Célula Individual , Grasa Subcutánea , Destete , Animales , Ratones , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/citología , Grasa Subcutánea/metabolismo , Grasa Subcutánea/citología , Ratones Endogámicos C57BL , Adipocitos/metabolismo , Adipocitos/citología , Masculino , Femenino
19.
Commun Biol ; 7(1): 784, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951577

RESUMEN

Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.


Asunto(s)
Química Clic , Ratones Endogámicos C57BL , Rickettsia , Animales , Rickettsia/genética , Rickettsia/fisiología , Ratones , Química Clic/métodos , Estómago/microbiología , Modelos Animales de Enfermedad , Rickettsiosis Exantemáticas/microbiología , Femenino , Infecciones por Rickettsia/microbiología , Azidas/química
20.
Lipids Health Dis ; 23(1): 207, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951816

RESUMEN

BACKGROUND: Ketogenic diets are increasingly popular for addressing obesity, but their impacts on the gut microbiota and metabolome remain unclear. This paper aimed to investigate how a ketogenic diet affects intestinal microorganisms and metabolites in obesity. METHODS: Male mice were provided with one of the following dietary regimens: normal chow, high-fat diet, ketogenic diet, or high-fat diet converted to ketogenic diet. Body weight and fat mass were measured weekly using high-precision electronic balances and minispec body composition analyzers. Metagenomics and non-targeted metabolomics data were used to analyze differences in intestinal contents. RESULTS: Obese mice on the ketogenic diet exhibited notable improvements in weight and body fat. However, these were accompanied by a significant decrease in intestinal microbial diversity, as well as an increase in Firmicutes abundance and a 247% increase in the Firmicutes/Bacteroidetes ratio. The ketogenic diet also altered multiple metabolic pathways in the gut, including glucose, lipid, energy, carbohydrate, amino acid, ketone body, butanoate, and methane pathways, as well as bacterial secretion and colonization pathways. These changes were associated with increased intestinal inflammation and dysbiosis in obese mice. Furthermore, the ketogenic diet enhanced the secretion of bile and the synthesis of aminoglycoside antibiotics in obese mice, which may impair the gut microbiota and be associated with intestinal inflammation and immunity. CONCLUSIONS: The study suggest that the ketogenic diet had an unfavorable risk-benefit trade-off and may compromise metabolic homeostasis in obese mice.


Asunto(s)
Dieta Alta en Grasa , Dieta Cetogénica , Microbioma Gastrointestinal , Metagenómica , Obesidad , Dieta Cetogénica/efectos adversos , Animales , Masculino , Ratones , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Metagenómica/métodos , Metabolómica/métodos , Disbiosis/microbiología , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Metaboloma , Peso Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...