Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.976
Filtrar
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 286-293, 2024 Jun 17.
Artículo en Chino | MEDLINE | ID: mdl-38952315

RESUMEN

OBJECTIVE: To investigate the involvement of the high mobility group box protein B1 (HMGB1)-Toll-like receptor 2 (TLR2)/TLR4-nuclear factor κB (NF-κB) pathway in the intestinal mucosal injury induced by Cryptosporidium parvum infection, and to examine the effect of oxymatrine (OMT) on C. parvum infection in mice. METHODS: Forty SPF 4-week-old BALB/c mice were randomly divided into four groups, including the control group, infection group, glycyrrhizin (GA) group and OMT group. Each mouse was orally administered with 1 × 105 C. parvum oocysts one week in the infection, GA and OMT groups following dexamethasone-induced immunosuppression to model C. parvum intestinal infections in mice. Upon successful modeling, mice in the GA group were intraperitoneally injected with GA at a daily dose of 25.9 mL/kg for successive two weeks, and animals in the OMT group were orally administered OMT at a daily dose of 50 mg/kg for successive two weeks, while mice in the control group were given normal food and water. All mice were sacrificed two weeks post-treatment, and proximal jejunal tissues were sampled. The pathological changes of mouse intestinal mucosal specimens were observed using hematoxylin-eosin (HE) staining, and the mouse intestinal villous height, intestinal crypt depth and the ratio of intestinal villous height to intestinal crypt depth were measured. The occludin and zonula occludens protein 1 (ZO1) expression was determined in mouse intestinal epithelial cells using immunohistochemistry, and the relative expression of HMGB1, TLR2, TLR4, myeloid differentiation primary response gene 88 (MyD88) and NF-κB p65 mRNA was quantified in mouse jejunal tissues using quantitative real-time PCR (qPCR) assay. RESULTS: HE staining showed that the mouse intestinal villi were obviously atrophic, shortened, and detached, and the submucosal layer of the mouse intestine was edematous in the infection group as compared with the control group, while the mouse intestinal villi tended to be structurally intact and neatly arranged in the GA and OMT groups. There were significant differences among the four groups in terms of the mouse intestinal villous height (F = 6.207, P = 0.000 5), intestinal crypt depth (F = 6.903, P = 0.000 3) and the ratio of intestinal villous height to intestinal crypt depth (F = 37.190, P < 0.000 1). The mouse intestinal villous height was lower in the infection group than in the control group [(321.9 ± 41.1) µm vs. (399.5 ± 30.9) µm; t = 4.178, P < 0.01] and the GA group [(321.9 ± 41.1) µm vs. (383.7 ± 42.7) µm; t = 3.130, P < 0.01], and the mouse intestinal crypt depth was greater in the infection group [(185.0 ± 35.9) µm] than in the control group [(128.4 ± 23.6) µm] (t = 3.877, P < 0.01) and GA group [(143.3 ± 24.7) µm] (t = 2.710, P < 0.05). The mouse intestinal villous height was greater in the OMT group [(375.3 ± 22.9) µm] than in the infection group (t = 3.888, P < 0.01), and there was no significant difference in mouse intestinal villous height between the OMT group and the control group (t = 1.989, P > 0.05). The mouse intestinal crypt depth was significantly lower in the OMT group [(121.5 ± 27.3) µm] than in the infection group (t = 4.133, P < 0.01), and there was no significant difference in mouse intestinal crypt depth between the OMT group and the control group (t = 0.575, P > 0.05). The ratio of the mouse intestinal villous height to intestinal crypt depth was significantly lower in the infection group (1.8 ± 0.2) than in the control group (3.1 ± 0.3) (t = 10.540, P < 0.01) and the GA group (2.7 ± 0.3) (t = 7.370, P < 0.01), and the ratio of the mouse intestinal villous height to intestinal crypt depth was significantly higher in the OMT group (3.1 ± 0.2) than in the infection group (t = 15.020, P < 0.01); however, there was no significant difference in the ratio of the mouse intestinal villous height to intestinal crypt depth between the OMT group and the control group (t = 0.404, P > 0.05). Immunohistochemical staining showed significant differences among the four groups in terms of occludin (F = 28.031, P < 0.000 1) and ZO1 expression (F = 14.122, P < 0.000 1) in mouse intestinal epithelial cells. The proportion of positive occluding expression was significantly lower in mouse intestinal epithelial cells in the infection group than in the control group [(14.3 ± 4.5)% vs. (28.3 ± 0.5)%; t = 3.810, P < 0.01], and the proportions of positive occluding expression were significantly higher in mouse intestinal epithelial cells in the GA group [(30.3 ± 1.3)%] and OMT group [(25.8 ± 1.5)%] than in the infection group (t = 7.620 and 5.391, both P values < 0.01); however, there was no significant differences in the proportion of positive occluding expression in mouse intestinal epithelial cells between the GA or OMT groups and the control group (t = 1.791 and 2.033, both P values > 0.05). The proportion of positive ZO1 expression was significantly lower in mouse intestinal epithelial cells in the infection group than in the control group [(14.4 ± 1.8)% vs. (24.2 ± 2.8)%; t = 4.485, P < 0.01], and the proportions of positive ZO1 expression were significantly higher in mouse intestinal epithelial cells in the GA group [(24.1 ± 2.3)%] (t = 5.159, P < 0.01) and OMT group than in the infection group [(22.5 ± 1.9)%] (t = 4.441, P < 0.05); however, there were no significant differences in the proportion of positive ZO1 expression in mouse intestinal epithelial cells between the GA or OMT groups and the control group (t = 0.037 and 0.742, both P values > 0.05). qPCR assay showed significant differences among the four groups in terms of HMGB1 (F = 21.980, P < 0.000 1), TLR2 (F = 20.630, P < 0.000 1), TLR4 (F = 17.000, P = 0.000 6), MyD88 (F = 8.907, P = 0.000 5) and NF-κB p65 mRNA expression in mouse jejunal tissues (F = 8.889, P = 0.000 7). The relative expression of HMGB1 [(5.97 ± 1.07) vs. (1.05 ± 0.07); t = 6.482, P < 0.05] 、TLR2 [(5.92 ± 1.29) vs. (1.10 ± 0.14); t = 5.272, P < 0.05] 、TLR4 [(5.96 ± 1.50) vs. (1.02 ± 0.03); t = 4.644, P < 0.05] 、MyD88 [(3.00 ± 1.26) vs. (1.02 ± 0.05); t = 2.734, P < 0.05] and NF-κB p65 mRNA [(2.33 ± 0.72) vs. (1.04 ± 0.06); t = 2.665, P < 0.05] was all significantly higher in mouse jejunal tissues in the infection group than in the control group. A significant reduction was detected in the relative expression of HMGB1 (0.63 ± 0.01), TLR2 (0.42 ± 0.10), TLR4 (0.35 ± 0.07), MyD88 (0.70 ± 0.11) and NF-κB p65 mRNA (0.75 ± 0.01) in mouse jejunal tissues in the GA group relative to the control group (t = 8.629, 5.830, 11.500, 4.729 and 6.898, all P values < 0.05), and the relative expression of HMGB1, TLR2, TLR4, MyD88 and NF-κB p65 mRNA significantly reduced in mouse jejunal tissues in the GA group as compared to the infection group (t = 7.052, 6.035, 4.084, 3.165 and 3.274, all P values < 0.05). In addition, the relative expression of HMGB1 (1.14 ± 0.60), TLR2 (1.00 ± 0.24), TLR4 (1.14 ± 0.07), MyD88 (0.96 ± 0.25) and NF-κ B p65 mRNA (1.12 ± 0.17) was significantly lower in mouse jejunal tissues in the OMT group than in the infection group (t = 7.059, 5.320, 3.510, 3.466 and 3.273, all P values < 0.05); however, there were no significant differences between the OMT and control groups in terms of relative expression of HMGB1, TLR2, TLR4, MyD88 or NF-κB p65 mRNA in mouse jejunal tissues (t = 0.239, 0.518, 1.887, 0.427 and 0.641, all P values > 0.05). CONCLUSIONS: C. parvum infection causes intestinal inflammatory responses and destruction of intestinal mucosal barrier through up-regulating of the HMGB1-TLR2/TLR4-NF-κB pathway. OMT may suppress the intestinal inflammation and repair the intestinal mucosal barrier through inhibiting the activity of the HMGB1-TLR2/TLR4-NF-κB pathway.


Asunto(s)
Alcaloides , Criptosporidiosis , Cryptosporidium parvum , Proteína HMGB1 , Ratones Endogámicos BALB C , FN-kappa B , Quinolizinas , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Animales , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/parasitología , Quinolizinas/farmacología , Cryptosporidium parvum/efectos de los fármacos , Cryptosporidium parvum/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Ratones , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Alcaloides/farmacología , Alcaloides/administración & dosificación , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Transducción de Señal/efectos de los fármacos , Masculino , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/parasitología , Mucosa Intestinal/metabolismo , Matrinas
2.
Sci Rep ; 14(1): 15175, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956251

RESUMEN

In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.


Asunto(s)
Cobre , Disulfiram , Homeostasis , Inflamación , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Disulfiram/farmacología , Ratones , Cobre/metabolismo , Homeostasis/efectos de los fármacos , Masculino , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Regulación hacia Abajo/efectos de los fármacos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Modelos Animales de Enfermedad , Proteínas Hierro-Azufre/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptor Toll-Like 4/metabolismo
3.
J Cell Mol Med ; 28(13): e18509, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957035

RESUMEN

Pruritus is often accompanied with bacterial infections, but the underlying mechanism is not fully understood. Although previous studies revealed that lipopolysaccharides (LPS) could directly activate TRPV4 channel and TRPV4 is involved in the generation of both acute itch and chronic itch, whether and how LPS affects TRPV4-mediated itch sensation remains unclear. Here, we showed that LPS-mediated TRPV4 sensitization exacerbated GSK101-induced scratching behaviour in mice. Moreover, this effect was compromised in TLR4-knockout mice, suggesting LPS acted through a TLR4-dependent mechanism. Mechanistically, LPS enhanced GSK101-evoked calcium influx in mouse ear skin cells and HEK293T cells transfected with TRPV4. Further, LPS sensitized TRPV4 channel through the intracellular TLR4-PI3K-AKT signalling. In summary, our study found a modulatory role of LPS in TRPV4 function and highlighted the TLR4-TRPV4 interaction in itch signal amplification.


Asunto(s)
Lipopolisacáridos , Fosfatidilinositol 3-Quinasas , Prurito , Transducción de Señal , Canales Catiónicos TRPV , Receptor Toll-Like 4 , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Animales , Receptor Toll-Like 4/metabolismo , Prurito/metabolismo , Prurito/inducido químicamente , Prurito/patología , Lipopolisacáridos/farmacología , Humanos , Ratones , Células HEK293 , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Masculino , Calcio/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
J Infect Dev Ctries ; 18(6): 950-956, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38991001

RESUMEN

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the world. We aimed to investigate the associations between toll-like receptors 2 and 4 (TLR-2 and TLR-4) and ß-lactam antibiotics in COPD patients complicated with pulmonary infections. METHODOLOGY: A total of 156 COPD patients complicated with pulmonary infections were included. Their blood gas, airway resistance, health status, expression levels of TLR-2 and TLR-4, and pulmonary function were analyzed after treatment with ß-lactam antibiotics. RESULTS: Blood gas indices oxygen saturation, partial pressure of oxygen, and partial pressure of carbon dioxide at one day before treatment, on the fifteenth day of treatment, and on the first day after the end of treatment showed significant differences (p < 0.01). Significant differences were also detected in airway resistance indices (p < 0.01). The differences in the mRNA expression levels of TLR-2 and TLR-4 were significant (p < 0.05). Downward trends were observed in the clinical pulmonary infection score and acute physiology and chronic health evaluation II score, which indicated alleviation of the disease. Pulmonary function indices recorded vital capacity (VC)/predicted VC (%), recorded forced vital capacity at 1 s (FEV1)/predicted FEV1 (%), and residual volume/total lung capacity were significantly different (p < 0.05). CONCLUSIONS: ß-Lactam antibiotics had obvious therapeutic effects on COPD patients complicated with pulmonary infections, probably by suppressing or attenuating TLR-2- and TLR-4-mediated inflammatory responses. It is necessary to comprehensively evaluate and choose appropriate antibiotics, aiming for maximum relief of the pain to help patients recover quickly.


Asunto(s)
Antibacterianos , Enfermedad Pulmonar Obstructiva Crónica , Receptor Toll-Like 2 , Receptor Toll-Like 4 , beta-Lactamas , Humanos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Masculino , Receptor Toll-Like 2/genética , Femenino , Anciano , Antibacterianos/uso terapéutico , beta-Lactamas/uso terapéutico , Persona de Mediana Edad , Receptor Toll-Like 4/genética , Pruebas de Función Respiratoria , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Anciano de 80 o más Años , Análisis de los Gases de la Sangre , Antibióticos Betalactámicos
5.
Egypt J Immunol ; 31(3): 161-169, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38996074

RESUMEN

Pregnancy results in an increase in immune cells, especially monocytes, which enhances the innate immune system. The increase of inflammatory cytokines in pregnant women's amniotic fluid, can cause uterine contraction, is linked to preterm labor. These inflammatory responses are controlled by Toll-like receptors (TLRs), which are largely expressed on neutrophils and monocytes. This study aimed to determine the role of neutrophils and monocyte subsets, as well as their expression of TLR-2 and TLR-4 in women with preterm and full-term delivery. The study involved a total of 74 women, comprising of 29 preterm labor, 25 full-term labor, and 20 non-pregnant women. The distribution of three monocyte subsets, namely (CD14++CD16-), (CD14+CD16+), and (CD14-/dim CD16++) was measured. Also, the expression of TLR2 and TLR4 in monocytes and neutrophils was analyzed using flow cytometry. Non-classical monocytes and intermediate monocytes were significantly higher in the preterm group than the control and full-term groups (p=0.041, p=0.043, and p=0.004, p= 0.049, respectively). Women in the preterm group showed significantly TLR2 expression on nonclassical monocytes compared to the control and full-term groups (p=0.002, and p=0.010, respectively). Also, preterm group expression of TLR4 was significantly higher in classical monocytes and nonclassical monocytes in comparison to the control group (p=0.019, and p≤0.0001, respectively). Besides, TLR4 expression was significantly up regulated in the preterm group compared to full-term in non-classical monocyte subset (p < 0.0001). Moreover, the expression of TLR-4 in neutrophils from the preterm group was statistically higher than expression from the full-term labor and control groups (p < .0001 for both). Such findings highlight the important role of monocyte subsets and neutrophils in activating the innate immune system and initiating strong pro-inflammatory responses that induce preterm labor. Additionally, TLR4 and TLR2 expressions on non-classical monocytes may be used as a marker to assess the probability of preterm labor.


Asunto(s)
Monocitos , Neutrófilos , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Humanos , Femenino , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Embarazo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Adulto , Nacimiento Prematuro/inmunología , Nacimiento a Término/inmunología , Trabajo de Parto Prematuro/inmunología , Trabajo de Parto Prematuro/metabolismo , Adulto Joven , Receptores de Lipopolisacáridos/metabolismo
6.
Pediatr Surg Int ; 40(1): 185, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997605

RESUMEN

PURPOSE: This study aimed to investigate the impact of hepatocyte growth factor (HGF) on colonic morphology and gut microbiota in a rat model of short bowel syndrome (SBS). METHODS: SD rats underwent jugular vein catheterization for total parenteral nutrition (TPN) and 90% small bowel resection [TPN + SBS (control group) or TPN + SBS + intravenous HGF (0.3 mg/kg/day, HGF group)]. Rats were harvested on day 7. Colonic morphology, gut microflora, tight junction, and Toll-like receptor-4 (TLR4) were evaluated. RESULTS: No significant differences were observed in the colonic morphological assessment. No significant differences were observed in the expression of tight junction-related genes in the proximal colon. However, the claudin-1 expression tended to increase and the claudin-3 expression tended to decrease in the distal colon of the HGF group. The Verrucomicrobiota in the gut microflora of the colon tended to increase in the HGF group. The abundance of most LPS-producing microbiota was lower in the HGF group than in the control group. The gene expression of TLR4 was significantly downregulated in the distal colon of the HGF group. CONCLUSION: HGF may enhance the mucus barrier through the tight junctions or gut microbiome in the distal colon.


Asunto(s)
Colon , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Factor de Crecimiento de Hepatocito , Ratas Sprague-Dawley , Síndrome del Intestino Corto , Animales , Ratas , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/genética , Microbioma Gastrointestinal/efectos de los fármacos , Colon/microbiología , Colon/patología , Síndrome del Intestino Corto/metabolismo , Síndrome del Intestino Corto/microbiología , Masculino , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Claudina-1/metabolismo , Claudina-1/genética
7.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000291

RESUMEN

Urinary bladder cancer (BC) inflicts a significant impairment of life quality and poses a high mortality risk. Schistosoma haematobium infection can cause BC, and the urinary microbiota of BC patients differs from healthy controls. Importantly, intravesical instillation of the bacterium Bacillus Calmette-Guerin stands as the foremost therapy for non-muscle invasive BC. Hence, studying the receptors and signaling molecules orchestrating bacterial recognition and the cellular response in the context of BC is of paramount importance. Thus, we challenged Toll-like receptor 4 (Tlr4) and myeloid differentiation factor 88 (Myd88) knock-out (KO) mice with N-butyl-N-(4-hydroxylbutyl)-nitrosamine (BBN), a well-known urinary bladder carcinogen. Gut microbiota, gene expression, and urinary bladder pathology were followed. Acute exposure to BBN did not reveal a difference in bladder pathology despite differences in the animal's ability to recognize and react to bacteria. However, chronic treatment resulted in reduced cancer invasiveness among Myd88KO mice while the absence of functional Tlr4 did not influence BC development or progression. These differences correlate with a heightened abundance of the Faecalibaculum genus and the lowest microbial diversity observed among Myd88KO mice. The presented data underscore the important role of microbiota composition and MyD88-mediated signaling during bladder carcinogenesis.


Asunto(s)
Microbioma Gastrointestinal , Ratones Noqueados , Factor 88 de Diferenciación Mieloide , Transducción de Señal , Receptor Toll-Like 4 , Neoplasias de la Vejiga Urinaria , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/microbiología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Ratones , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Butilhidroxibutilnitrosamina/toxicidad , Carcinogénesis , Vejiga Urinaria/patología , Vejiga Urinaria/microbiología , Vejiga Urinaria/metabolismo , Femenino , Ratones Endogámicos C57BL , Microbiota , Humanos
8.
J Extracell Vesicles ; 13(7): e12474, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001704

RESUMEN

Gut microbiome dysbiosis is a major contributing factor to several pathological conditions. However, the mechanistic understanding of the communication between gut microbiota and extra-intestinal organs remains largely elusive. Extracellular vesicles (EVs), secreted by almost every form of life, including bacteria, could play a critical role in this inter-kingdom crosstalk and are the focus of present study. Here, we present a novel approach for isolating lipopolysaccharide (LPS)+ bacterial extracellular vesicles (bEVLPS) from complex biological samples, including faeces, plasma and the liver from lean and diet-induced obese (DIO) mice. bEVLPS were extensively characterised using nanoparticle tracking analyses, immunogold labelling coupled with transmission electron microscopy, flow cytometry, super-resolution microscopy and 16S sequencing. In liver tissues, the protein expressions of TLR4 and a few macrophage-specific biomarkers were assessed by immunohistochemistry, and the gene expressions of inflammation-related cytokines and their receptors (n = 89 genes) were measured using a PCR array. Faecal samples from DIO mice revealed a remarkably lower concentration of total EVs but a significantly higher percentage of LPS+ EVs. Interestingly, DIO faecal bEVLPS showed a higher abundance of Proteobacteria by 16S sequencing. Importantly, in DIO mice, a higher number of total EVs and bEVLPS consistently entered the hepatic portal vein and subsequently reached the liver, associated with increased expression of TLR4, macrophage markers (F4/80, CD86 and CD206), cytokines and receptors (Il1rn, Ccr1, Cxcl10, Il2rg and Ccr2). Furthermore, a portion of bEVLPS escaped liver and entered the peripheral circulation. In conclusion, bEV could be the key mediator orchestrating various well-established biological effects induced by gut bacteria on distant organs.


Asunto(s)
Vesículas Extracelulares , Microbioma Gastrointestinal , Lipopolisacáridos , Hígado , Vena Porta , Animales , Vesículas Extracelulares/metabolismo , Hígado/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Vena Porta/metabolismo , Ratones Endogámicos C57BL , Masculino , Bacterias/metabolismo , Receptor Toll-Like 4/metabolismo , Obesidad/metabolismo , Obesidad/microbiología , Heces/microbiología , Disbiosis/metabolismo , Disbiosis/microbiología
9.
Arch Virol ; 169(8): 163, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990396

RESUMEN

Antigenically divergent H7N9 viruses pose a potential threat to public health, with the poor immunogenicity of candidate H7N9 vaccines demonstrated in clinical trials underscoring the urgent need for more-effective H7N9 vaccines. In the present study, mice were immunized with various doses of a suspended-MDCK-cell-derived inactivated H7N9 vaccine, which was based on a low-pathogenic H7N9 virus, to assess cross-reactive immunity and cross-protection against antigenically divergent H7N9 viruses. We found that the CRX-527 adjuvant, a synthetic TLR4 agonist, significantly enhanced the humoral immune responses of the suspended-MDCK-cell-derived H7N9 vaccine, with significant antigen-sparing and immune-enhancing effects, including robust virus-specific IgG, hemagglutination-inhibiting (HI), neuraminidase-inhibiting (NI), and virus-neutralizing (VN) antibody responses, which are crucial for protection against influenza virus infection. Moreover, the CRX-527-adjuvanted H7N9 vaccine also elicited cross-protective immunity and cross-protection against a highly pathogenic H7N9 virus with a single vaccination. Notably, NI and VN antibodies might play an important role in cross-protection against lethal influenza virus infections. This study showed that a synthetic TLR4 agonist adjuvant has a potent immunopotentiating effect, which might be considered worth further development as a means of increasing vaccine effectiveness.


Asunto(s)
Anticuerpos Antivirales , Inmunidad Humoral , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae , Receptor Toll-Like 4 , Vacunas de Productos Inactivados , Animales , Subtipo H7N9 del Virus de la Influenza A/inmunología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Ratones , Anticuerpos Antivirales/inmunología , Perros , Células de Riñón Canino Madin Darby , Vacunas de Productos Inactivados/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Femenino , Anticuerpos Neutralizantes/inmunología , Protección Cruzada/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Adyuvantes de Vacunas , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre
10.
Mol Biol Rep ; 51(1): 789, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990383

RESUMEN

BACKGROUND: Syringin, a phenylpropanoid glycoside, has exhibited numerous biological properties including inhibitory activities against various immune and inflammatory disorders. In this study, syringin isolated from Tinospora crispa was evaluated for its ability to down-regulate activated nuclear factor-kappa B (NF-κB), phosphoinositide-3-kinase-Akt (PI3K-Akt) and mitogen-activated protein kinases (MAPKs) signal transducing networks in U937 macrophages activated by lipopolysaccharide. METHODS: The attenuating effects of syringin on the productions of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α), and the expressions of signaling molecules of the signaling pathways were investigated by using ELISA, Western blot, and qRT-PCR. RESULTS: Syringin downregulated the NF-κB, MAPKs, and PI3K-Akt signal networks by significantly reducing PGE2 production in the macrophages via suppression of COX-2 gene and protein expression levels. It also reduced TNF-α and IL-1ß secretion and their mRNA expression, suppressed phosphorylation of NF-κB (p65), IKKα/ß, and IκBα, and restored ability of IκBα to degrade. Syringin dose-dependently attenuated Akt, p38 MAPKs, JNK, and ERK phosphorylation. Also, the expression of corresponding upstream signaling molecules toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) were down-regulated in response to syringin treatment. CONCLUSION: The suppressive effect of syringin on the inflammatory signaling molecules in MyD88-dependent pathways suggested it's potential as a drug candidate for development into an agent for treatment of various immune-mediated inflammatory disorders.


Asunto(s)
Glucósidos , Lipopolisacáridos , Macrófagos , Factor 88 de Diferenciación Mieloide , FN-kappa B , Fenilpropionatos , Transducción de Señal , Tinospora , Humanos , Factor 88 de Diferenciación Mieloide/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lipopolisacáridos/farmacología , Transducción de Señal/efectos de los fármacos , Tinospora/química , Glucósidos/farmacología , Fenilpropionatos/farmacología , FN-kappa B/metabolismo , Células U937 , Dinoprostona/metabolismo , Interleucina-1beta/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Mediadores de Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 4/metabolismo
11.
Chem Biol Drug Des ; 104(1): e14579, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39013775

RESUMEN

Sepsis-induced acute lung injury (ALI) is a severe complication of sepsis. Karanjin, a natural flavonoid compound, has been proved to have anti-inflammatory function, but its role in sepsis-stimulated ALI is uncertain. Herein, the effect of karanjin on sepsis-stimulated ALI was investigated. We built a mouse model of lipopolysaccharide (LPS)-stimulated ALI. The histopathological morphology of lung tissues was scrutinized by hematoxylin-eosin (H&E) staining. The lung injury score and lung wet/dry weight ratio were detected. The myeloperoxidase (MPO) activity and malondialdehyde (MDA) content were scrutinized by commercial kits. Murine alveolar lung epithelial (MLE-12) cells were treated with LPS to mimic a cellular model of ALI. The cell viability was scrutinized by the CCK-8 assay. The contents of proinflammatory cytokines were scrutinized by qRT-PCR and ELISA. The TLR4 and MyD88 contents were scrutinized by qRT-PCR and western blotting. Results showed that karanjin alleviated LPS-stimulated ALI in mice by inhibiting lung tissue lesions, edema, and oxidative stress. Moreover, karanjin inhibited LPS-stimulated inflammation and TLR4 pathway activation in mice. However, treatment with GSK1795091, an agonist of TLR4, attenuated the effects of karanjin on LPS-induced ALI. Furthermore, karanjin repressed LPS-stimulated inflammatory response and TLR4 pathway activation in MLE-12 cells. Overexpression of TLR4 attenuated karanjin effects on LPS-stimulated inflammatory responses in MLE-12 cells. In conclusion, karanjin repressed sepsis-stimulated ALI in mice by suppressing the TLR4 pathway.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Sepsis , Transducción de Señal , Receptor Toll-Like 4 , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Receptor Toll-Like 4/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Sepsis/complicaciones , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Línea Celular , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Peroxidasa/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Malondialdehído/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Supervivencia Celular/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Sulfonamidas
12.
J Cell Mol Med ; 28(14): e18542, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046369

RESUMEN

This study aims to investigate the relationship between toxoplasmosis and this pathway, which may be effective in the formation of epilepsy by acting through the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy. In the study, four different experimental groups were formed by selecting Toxoplasma gondii IgG positive and negative patients with idiopathic epilepsy and healthy controls. Experimental groups were as follows: Group 1: Epilepsy+/Toxo- (E+, T-) (n = 10), Group 2: Epilepsy-/Toxo- (E-, T-) (n = 10), Group 3: Epilepsy-/Toxo+ (E-, T+) (n = 10), Group 4: Epilepsy+/Toxo+ (E+, T+) (n = 10). HMGB1, RAGE, TLR4, TLR1, TLR2, TLR3, IRAK1, IRAK2, IKBKB, IKBKG, BCL3, IL1ß, IL10, 1 L8 and TNFα mRNA expression levels in the HMGB/RAGE/TLR4/NF-κB signalling pathway were determined by quantitative simultaneous PCR (qRT-PCR) after collecting blood samples from all patients in the groups. Statistical analysis was performed by one-way ANOVA followed by LSD post-hoc tests, and p < 0.05 was considered to denote statistical significance. The gene expression levels of HMGB1, TLR4, IL10, IL1B, IL8, and TLR2 were significantly higher in the G1 group than in the other groups (p < 0.05). In the G3 group, RAGE and BCL3 gene expression levels were significantly higher than in the other groups (p < 0.05). In the G4 group, however, IRAK2, IKBKB, and IKBKG gene expression levels were significantly higher than in the other groups (p < 0.05). HMGB1, TLR4, IRAK2, IKBKB, IL10, IL1B, IL1B, and IL8 in this signalling pathway are highly expressed in epilepsy patients in G1 and seizures occur with the stimulation of excitatory mechanisms by acting through this pathway. The signalling pathway in epilepsy may be activated by HMGB1, TLR4, and TLR2, which are considered to increase the level of proinflammatory cytokines. In T. gondii, this pathway is activated by RAGE and BCL3.


Asunto(s)
Epilepsia , Proteína HMGB1 , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Toxoplasmosis , Humanos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Masculino , Femenino , Epilepsia/metabolismo , Epilepsia/genética , Epilepsia/parasitología , Adulto , Toxoplasmosis/parasitología , Toxoplasmosis/metabolismo , Toxoplasmosis/complicaciones , Toxoplasmosis/sangre , Toxoplasmosis/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Estudios de Casos y Controles , Adulto Joven , Persona de Mediana Edad , Antígenos de Neoplasias , Proteínas Quinasas Activadas por Mitógenos
13.
Am J Reprod Immunol ; 92(1): e13902, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39042556

RESUMEN

PROBLEM: Lipopolysaccharide (LPS) from gram-negative bacteria has reportedly been associated with infectious diseases like metritis, which has a substantial adverse effect on animal reproductive performance and causes serious financial losses for the dairy sector. The current work aimed to establish the impact of LPS on in vitro oocyte maturation and subsequent in vitro developmental competence of oocytes, as well as to investigate the explanatory molecular mechanism underlying this effect. METHOD OF STUDY: Buffalo cumulus-oocyte complexes (COCs) were challenged with 0, 5, 10 and 20 µg/mL LPS during IVM followed by IVF and IVC. Cytoplasmic and nuclear maturation, cleavage and blastocyst rate, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP, ΔΨm) and transcript abundance of genes related to inflammation, antioxidation and apoptosis were evaluated. RESULTS: The maturation and subsequent embryonic development competency were found to be significantly (p ≤ 0.05) reduced with the addition of 10 and 20 µg/mL LPS to IVM media. ROS production accompanied by a decreased ΔΨm was recorded in LPS-treated oocytes in comparison to the control group (p ≤ 0.05). Our results were further supported by the transcriptional expression of proinflammatory (TLR4, CD14 and RPS27A) and apoptotic gene (Caspase 3) which were found to be significantly increased while antioxidant genes (SOD2 and GPX1) were decreased significantly in matured oocytes and blastocyst after LPS exposure. CONCLUSIONS: The deleterious effects of LPS are mediated through ROS generation, which triggers inflammatory processes via the TLR4 pathway and impairs oocyte maturation and subsequent embryonic development.


Asunto(s)
Búfalos , Desarrollo Embrionario , Técnicas de Maduración In Vitro de los Oocitos , Lipopolisacáridos , Mitocondrias , Oocitos , Especies Reactivas de Oxígeno , Transducción de Señal , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células Cultivadas , Blastocisto/metabolismo , Blastocisto/efectos de los fármacos , Fertilización In Vitro
14.
Front Cell Infect Microbiol ; 14: 1392744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035356

RESUMEN

Background: Paracoccidioidomycosis (PCM) is a systemic endemic fungal disease prevalent in Latin America. Previous studies revealed that host immunity against PCM is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), regulatory T-cells (Tregs), and through the recruitment and activation of myeloid-derived suppressor cells (MDSCs). We have recently shown that Dectin-1, TLR2, and TLR4 signaling influence the IDO-1-mediated suppression caused by MDSCs. However, the contribution of these receptors in the production of important immunosuppressive molecules used by MDSCs has not yet been explored in pulmonary PCM. Methods: We evaluated the expression of PD-L1, IL-10, as well as nitrotyrosine by MDSCs after anti-Dectin-1, anti-TLR2, and anti-TLR4 antibody treatment followed by P. brasiliensis yeasts challenge in vitro. We also investigated the influence of PD-L1, IL-10, and nitrotyrosine in the suppressive activity of lung-infiltrating MDSCs of C57BL/6-WT, Dectin-1KO, TLR2KO, and TLR4KO mice after in vivo fungal infection. The suppressive activity of MDSCs was evaluated in cocultures of isolated MDSCs with activated T-cells. Results: A reduced expression of IL-10 and nitrotyrosine was observed after in vitro anti-Dectin-1 treatment of MDSCs challenged with fungal cells. This finding was further confirmed in vitro and in vivo by using Dectin-1KO mice. Furthermore, MDSCs derived from Dectin-1KO mice showed a significantly reduced immunosuppressive activity on the proliferation of CD4+ and CD8+ T lymphocytes. Blocking of TLR2 and TLR4 by mAbs and using MDSCs from TLR2KO and TLR4KO mice also reduced the production of suppressive molecules induced by fungal challenge. In vitro, MDSCs from TLR4KO mice presented a reduced suppressive capacity over the proliferation of CD4+ T-cells. Conclusion: We showed that the pathogen recognition receptors (PRRs) Dectin-1, TLR2, and TLR4 contribute to the suppressive activity of MDSCs by inducing the expression of several immunosuppressive molecules such as PD-L1, IL-10, and nitrotyrosine. This is the first demonstration of a complex network of PRRs signaling in the induction of several suppressive molecules by MDSCs and its contribution to the immunosuppressive mechanisms that control immunity and severity of pulmonary PCM.


Asunto(s)
Antígeno B7-H1 , Modelos Animales de Enfermedad , Interleucina-10 , Lectinas Tipo C , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide , Paracoccidioidomicosis , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Animales , Ratones , Interleucina-10/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Paracoccidioidomicosis/inmunología , Paracoccidioides/inmunología , Tirosina/análogos & derivados , Tirosina/metabolismo , Linfocitos T Reguladores/inmunología , Pulmón/inmunología , Pulmón/microbiología , Transducción de Señal , Masculino , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Ratones Noqueados
15.
J Agric Food Chem ; 72(29): 16484-16495, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38990698

RESUMEN

As a food contaminant that can be quickly absorbed through the gastrointestinal system, furan has been shown to disrupt the intestinal flora and barrier. Investigation of the intestinal toxicity mechanism of furan is of great significance to health. We previously identified the regulatory impact of salidroside (SAL) against furan-provoked intestinal damage, and the present work further explored whether the alleviating effect of SAL against furan-caused intestinal injury was based on the intestinal flora; three models, normal, pseudo-germ-free, and fecal microbiota transplantation (FMT), were established, and the changes in intestinal morphology, barrier, and inflammation were observed. Moreover, 16S rDNA sequencing observed the variation of the fecal flora associated with inflammation and short-chain fatty acids (SCFAs). Results obtained from the LC-MS/MS suggested that SAL increased furan-inhibited SCFA levels, activated the mRNA expressions of SCFA receptors (GPR41, GPR43, and GPR109A), and inhibited the furan-activated TLR4/MyD88/NF-κB signaling. Analysis of protein-protein interaction further confirmed the aforementioned effects of SAL, which inhibited furan-induced barrier damage and intestinal inflammation.


Asunto(s)
Bacterias , Ácidos Grasos Volátiles , Furanos , Microbioma Gastrointestinal , Glucósidos , Fenoles , Transducción de Señal , Receptor Toll-Like 4 , Microbioma Gastrointestinal/efectos de los fármacos , Glucósidos/farmacología , Fenoles/farmacología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Animales , Transducción de Señal/efectos de los fármacos , Furanos/farmacología , Masculino , Ácidos Grasos Volátiles/metabolismo , Humanos , Ratones , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , FN-kappa B/metabolismo , FN-kappa B/genética , Rhodiola/química , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BL
16.
Biol Res ; 57(1): 47, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033184

RESUMEN

BACKGROUND: MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS: Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1ß) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS: 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1ß, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION: 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.


Asunto(s)
Catecoles , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Dieta Alta en Grasa , Alcoholes Grasos , Inflamasomas , Metformina , MicroARNs , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Toll-Like 4 , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Alcoholes Grasos/farmacología , Masculino , Ratas , MicroARNs/metabolismo , MicroARNs/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Metformina/farmacología , Metformina/administración & dosificación , Catecoles/farmacología , Diabetes Mellitus Experimental/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estreptozocina , Hipoglucemiantes/farmacología , Ratas Sprague-Dawley , Quimioterapia Combinada , Transducción de Señal/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología
17.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3574-3582, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041129

RESUMEN

This study aimed to investigate the therapeutic effect of Shenfu Injection on mice with chronic heart failure(CHF) and its effect on macrophage polarization. C57BL/6J mice were randomly assigned to the normal and model groups. The CHF model was established by intraperitoneal injection of isoproterenol(ISO, 7.5 mg·kg~(-1), 28 d). The successful modeling was determined by asses-sing the cardiac function and N-terminal pro-brain natriuretic peptide(NT-proBNP). The modeled mice were randomly divided into the model group, Shenfu Injection group, and TAK-242 group, and were injected intraperitoneally with the corresponding drugs for 15 days. Cardiac function was evaluated using echocardiography. Hematoxylin-eosin(HE) staining was used to detect the pathomorphology. Enzyme-linked immunosorbent assay(ELISA) was used to detect the values of serum NT-proBNP, interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), IL-10, and arginase 1(Arg-1). Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. Quantitative polymerase chain reaction(qPCR) and Western blot were used to detect the changes in the Toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB) pathway-related mRNA and protein expressions. Compared with the normal group, mice in the model group had lower values of left ventricular ejection fraction(LVEF) and left ventricular fractional shorte-ning(LVFS), higher values of left ventricular internal diastolic end-diastolic(LVIDd), left ventricular internal diastolic end-systolic(LVIDs), NT-proBNP, TNF-α, and IL-6(P<0.01); the number of macrophages increased in cardiac tissues(P<0.05), and the values of M1-F4/80~+CD86~+ were increased(P<0.01), while the values of M2-F4/80~+CD163~+ decreased(P<0.05); the mRNA and protein expressions of TLR4, myeloid differentiation factor 88(MyD88), IκB kinase α(IKKα), and NF-κB p65 in myocardial tissues were significantly elevated(P<0.05, P<0.01). Compared with the model group, mice in the Shenfu Injection and TAK-242 groups showed elevated LVEF, LVFS, IL-10, and Arg-1 levels, and decreased LVIDd, LVIDs, NT-proBNP, TNF-α, and IL-6 levels(P<0.05, P<0.01); the cardiac F4/80~+CD11b~+(macrophage) and M1-F4/80~+ CD86~+ values were significantly down-regulated, while M2-F4/80~+CD163~+ values were increased(P<0.05, P<0.01); and the mRNA and protein expressions of TLR4, MyD88, IKKα, and NF-κB p65 in myocardial tissues were notably decreased(P<0.05, P<0.01). CHF mice have an imbalance of M1/M2 macrophage polarization, with M1-type macrophages predominating. Shenfu Injection promotes macrophage polarization towards M2, inhibits M1-type macrophage activation, and attenuates inflammatory responses in heart failure by regulating the TLR4/NF-κB signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Macrófagos , Ratones Endogámicos C57BL , FN-kappa B , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Humanos , Enfermedad Crónica , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3600-3607, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041132

RESUMEN

Based on the Toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)/nuclear factor kappaB(NF-κB) signaling pathway, this study observed the regulatory effect of ginsenoside Rb_1(Rb_1) on liver lipid metabolism in db/db obese mice and explored its potential mechanism. Thirty 6-week-old male db/db mice were randomly divided into a model group, a metformin group, and Rb_1 groups with low, medium, and high doses, with six mice in each group. Additionally, six age-matched male db/m mice were assigned to the normal group. The intervention lasted for five weeks. Body weight, fasting blood glucose, and food intake were mea-sured weekly. At the end of the experiment, serum lipid levels and liver function were detected. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in liver tissue. Real-time quantitative PCR and immunohistochemistry on paraffin sections were used to detect the mRNA and protein expression of TLR4, MyD88, and NF-κB p65. RESULTS:: showed that compared with the normal group, the model group exhibited significant increases in body weight, liver weight, liver index, epididymal fat mass, epididymal fat index, total cholesterol, low-density lipoprotein cholesterol, liver function parameters, and fasting blood glucose levels. Liver lipid accumulation significantly increased, along with elevated mRNA and protein expression of TLR4, MyD88, and NF-κB p65 in the liver. After Rb_1 treatment, the above-mentioned parameters in the intervention groups showed significant reversals. In conclusion, Rb_1 can improve obesity and obesity-related hepatic steatosis in mice while regulating abnormal lipid and glucose meta-bolism. Mechanistically, Rb_1 may improve liver steatosis in db/db obese mice by modulating the TLR4/MyD88/NF-κB signaling pathway.


Asunto(s)
Hígado Graso , Ginsenósidos , Factor 88 de Diferenciación Mieloide , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Animales , Ginsenósidos/farmacología , Ginsenósidos/administración & dosificación , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado Graso/genética , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/genética , Ratones Obesos , Hígado/metabolismo , Hígado/efectos de los fármacos , Humanos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología
19.
Nutrients ; 16(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999898

RESUMEN

Alpinia officinarum Hance is rich in carbohydrates and is flavored by natives. The polysaccharide fraction 30 is purified from the rhizome of A. officinarum Hance (AOP30) and shows excellent immunoregulatory ability when administered to regulate immunity. However, the effect of AOP30 on the intestinal epithelial barrier is not well understood. Therefore, the aim of this study is to investigate the protective effect of AOP30 on the intestinal epithelial barrier using a lipopolysaccharide (LPS)-induced intestinal epithelial barrier dysfunction model and further explore its underlying mechanisms. Cytotoxicity, transepithelial electrical resistance (TEER) values, and Fluorescein isothiocyanate (FITC)-dextran flux are measured. Simultaneously, the protein and mRNA levels of tight junction (TJ) proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1, are determined using Western blotting and reverse-transcription quantitative polymerase chain reaction methods, respectively. The results indicate that AOP30 restores the LPS-induced decrease in the TEER value and cell viability. Furthermore, it increases the mRNA and protein expression of ZO-1, Occludin, and Claudin-1. Notably, ZO-1 is the primary tight junction protein altered in response to LPS-induced intestinal epithelial dysfunction. Additionally, AOP30 downregulates the production of TNFα via the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Collectively, the findings of this study indicate that AOP30 can be developed as a functional food ingredient or natural therapeutic agent for addressing intestinal epithelial barrier dysfunction. It sheds light on the role of AOP30 in improving intestinal epithelial function.


Asunto(s)
Alpinia , Mucosa Intestinal , Lipopolisacáridos , FN-kappa B , Polisacáridos , Rizoma , Transducción de Señal , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Humanos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Rizoma/química , Polisacáridos/farmacología , Células CACO-2 , Alpinia/química , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
20.
PLoS One ; 19(7): e0305413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38976715

RESUMEN

Pancreatic ductal adenocarcinoma is the most prevalent pancreatic cancer, which is considered a significant global health concern. Chemotherapy and surgery are the mainstays of current pancreatic cancer treatments; however, a few cases are suitable for surgery, and most of the cases will experience recurrent episodes. Compared to DNA or peptide vaccines, mRNA vaccines for pancreatic cancer have more promise because of their delivery, enhanced immune responses, and lower proneness to mutation. We constructed an mRNA vaccine by analyzing S100 family proteins, which are all major activators of receptors for advanced glycation end products. We applied immunoinformatic approaches, including physicochemical properties analysis, structural prediction and validation, molecular docking study, in silico cloning, and immune simulations. The designed mRNA vaccine was estimated to have a molecular weight of 165023.50 Da and was highly soluble (grand average of hydropathicity of -0.440). In the structural assessment, the vaccine seemed to be a well-stable and functioning protein (Z score of -8.94). Also, the docking analysis suggested that the vaccine had a high affinity for TLR-2 and TLR-4 receptors. Additionally, the molecular mechanics with generalized Born and surface area solvation analysis of the "Vaccine-TLR-2" (-141.07 kcal/mol) and "Vaccine-TLR-4" (-271.72 kcal/mol) complexes also suggests a strong binding affinity for the receptors. Codon optimization also provided a high expression level with a GC content of 47.04% and a codon adaptation index score 1.0. The appearance of memory B-cells and T-cells was also observed over a while, with an increased level of helper T-cells and immunoglobulins (IgM and IgG). Moreover, the minimum free energy of the mRNA vaccine was predicted at -1760.00 kcal/mol, indicating the stability of the vaccine following its entry, transcription, and expression. This hypothetical vaccine offers a groundbreaking tool for future research and therapeutic development of pancreatic cancer.


Asunto(s)
Vacunas contra el Cáncer , Simulación del Acoplamiento Molecular , Neoplasias Pancreáticas , Neoplasias Pancreáticas/inmunología , Humanos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Vacunas de ARNm/inmunología , Biología Computacional/métodos , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Vacunología/métodos , Receptor Toll-Like 2/inmunología , Simulación por Computador , ARN Mensajero/genética , ARN Mensajero/inmunología , Inmunoinformática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...