Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Radiat Biol ; 100(7): 1093-1103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843455

RESUMEN

AIMS: This study proposes to investigate the effects of microwave radiation and its thermal effects, compared to thermal effects alone, on the bioenergetics of mitochondria isolated from mouse liver. METHODS: The main parameters investigated in this study are mitochondrial respiration (coupled states: S3 and S4; uncoupled state), using a high-resolution respirometer, and swelling, using a spectrophotometer. RESULTS: Mitochondria irradiated at 2.45 GHz microwave with doses 0.085, 0.113 and 0.141 kJ/g, presented a decrease in S3 and uncoupled state, but an increase in S4. Conversely, mitochondria thermally treated at 40, 44 and 50 °C presented an increasing in S3 and S4, while uncoupled state was unaltered. Mitochondrial swelling increases as a function of the dose or temperature, indicating membrane damages in both cases. CONCLUSION: Microwave radiation and thermal effect alone indicated different bioenergetics mitochondria response. These results imply that the effects due to microwave in medical treatment are not exclusively due to the increase in temperature, but a combination of electromagnetic and thermal effects.


Asunto(s)
Metabolismo Energético , Microondas , Mitocondrias Hepáticas , Animales , Ratones , Metabolismo Energético/efectos de la radiación , Mitocondrias Hepáticas/efectos de la radiación , Mitocondrias Hepáticas/metabolismo , Masculino , Relación Dosis-Respuesta en la Radiación , Temperatura , Dilatación Mitocondrial/efectos de la radiación , Respiración de la Célula/efectos de la radiación
2.
Tree Physiol ; 35(6): 608-20, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25870320

RESUMEN

How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one--quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59-69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback in leaves. In three species, removal of three-quarters of phloem area did not cause leaf carbohydrates to accumulate nor did it change photosynthesis or respiration, suggesting that phloem transport is flexible and transport rate per unit phloem can rapidly increase under an increase in carbohydrate supply relative to phloem area. Leaf carbohydrate content thus may be decoupled from whole plant carbon balance by phloem transport in some species, and carbohydrate regulation of photosynthesis and respiration may not be as common in trees as previous girdling studies suggest. Further studies in carbohydrate regulation should avoid using girdling as girdling can decrease photosynthesis through unintended means without the tested mechanisms of accumulating leaf carbohydrates.


Asunto(s)
Carbohidratos/farmacología , Fotosíntesis/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo , Bosque Lluvioso , Árboles/fisiología , Clima Tropical , Carbono/farmacología , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/efectos de la radiación , Costa Rica , Fructosa/farmacología , Glucosa/farmacología , Luz , Modelos Biológicos , Nitrógeno/farmacología , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/efectos de la radiación , Especificidad de la Especie , Almidón/farmacología , Árboles/efectos de los fármacos , Árboles/efectos de la radiación
3.
Rio de Janeiro; s.n; 2013. 115 p. ilus, graf.
Tesis en Portugués | LILACS | ID: lil-719621

RESUMEN

Durante o tratamento radioterápico para tumores localizados na região torácica, parte do coração frequentemente é incluída no campo de tratamento e pode receber doses de radiação ionizante, significativas em relação à terapêutica. A irradiação do coração é capaz de causar importantes complicações cardíacas ao paciente, caracterizadas por alterações funcionais progressivas cerca de 10 a 20 anos após a exposição do órgão. Devido ao seu alto grau de contração e grande consumo energético, o tecido cardíaco é altamente dependente do metabolismo oxidativo que ocorre nas mitocôndrias. Danos as estas organelas podem levar ao decréscimo da produção de energia, tendo um impacto direto sobre a performance cardíaca. Ainda, ao interagir com as células, a radiação ionizante pode gerar uma série de eventos bioquímicos que conduzem a uma resposta celular complexa, em que muitas proteínas parecem estar envolvidas. Tendo em vista tais conhecimentos, o objetivo do estudo foi avaliar o aspecto ultraestrutural do tecido cardíaco, a bioenergética mitocondrial e a expressão diferencial de proteínas após irradiação. Os ensaios foram realizados em amostras de tecido cardíaco de ratos Wistar irradiados com dose única de 20 Gy direcionada ao coração. As análise tiveram início 4 e 32 semanas após irradiação. A análise ultraestrutural foi realizada através de microscopia eletrônica de transmissão. A respiração mitocondrial foi mensurada em oxígrafo, a partir das taxas de consumo de oxigênio pelas fibras cardíacas. A identificação de proteínas diferencialmente expressas foi investigada através de duas técnicas proteômicas: 2D-DIGE (2-D Fluorescence Difference Gel Electrophoresis) e uma abordagem label-free seguida de espectrometria de massas. Os resultados mostraram que os efeitos tardios da radiação incluem a degeneração das mitocôndrias e das unidades contráteis do tecido cardíaco, disfunções na cadeia respiratória mitocondrial e expressão diferencial de proteínas...


During radiotherapy for tumors located at toracic region, part of the heart is often included in the treatment field and may receive a significant ionizing radiation dose comparing to the therapeutics. Heart irradiation is able to cause substantial cardiac complications to patient, characterized by functional progressive changes from 10 to 20 years after the exposure of the organ. Because of its high level of contraction and large energetic consumption, cardiac tissue is highly depending on oxidative metabolism which happens at mitochondrias. Damage to these organelles can lead to decreased energy production, having a direct impact on cardiac performance. Even when interacting with cells, ionizing radiation can generate a series of biochemical events that lead to a complex cellular response, in many proteins seem to be involved. Given this knowledge, the aim of the study was to evaluate the ultrastructural appearance of cardiac tissue, mitochondrial bioenergetics and differential expression of proteins after irradiation. The tests were performed on samples of cardiac tissue of rats irradiated with single dose of 20 Gy directed to the heart. The analysis started 4 to 32 weeks after irradiation. The ultrastructural analysis was performed by transmission electron microscopy. Mitochondrial respiration was measured in oxigraph from rates of oxygen consumption by cardiac fibers. The identification of differentially expressed proteins was investigated using two proteomic techniques: 2D-DIGE (2-D Fluorescence Difference Gel Electrophoresis) and a label-free approach followed by mass spectrometry. The results showed that the late effects of radiation include degeneration of mitochondria and contractile units of cardiac tissue, dysfunction in the mitochondrial respiratory chain and differential expression of proteins involved in energy metabolism of carbohydrates, lipids and phosphocreatine. In general, the study showed that the cardiac irradiation damages...


Asunto(s)
Animales , Ratas , Corazón/efectos de la radiación , Metabolismo Energético , Mitocondrias Cardíacas/efectos de la radiación , Mitocondrias Cardíacas/metabolismo , Cardiopatías/radioterapia , Traumatismos por Radiación/etiología , Miocardio/ultraestructura , Neoplasias Torácicas/radioterapia , Proteoma/efectos de la radiación , Radiación Ionizante , Respiración de la Célula/efectos de la radiación
4.
J Sep Sci ; 35(1): 20-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22128110

RESUMEN

Determination of organic acids in intracellular extracts and in the cultivation media of marine microalgae aid investigations about metabolic routes related to assimilation of atmospheric carbon by these organisms, which are known by their role in the carbon dioxide sink. The separation of these acids was investigated by hydrophilic interaction liquid chromatography (HILIC) using isocratic elution with a mobile phase composed of 70:30 v/v acetonitrile/20 mmol/L ammonium acetate buffer (pH 6.8) and detection at 220 nm. HILIC allowed the determinations of glycolic acid, the most important metabolite for the evaluation of the photorespiration process in algae, to be made with better selectivity than that achieved by reversed phase liquid chromatography, but with less detectability. The concentration of glycolic acid was determined in the cultivation media and in intracellular extracts of the algae Tetraselmis gracilis and Phaeodactylum tricornutum submitted to different conditions of aeration: (i) without forced aeration, (ii) aeration with atmospheric air, and (iii) bubbling with N(2). The concentration of glycolic acid had a higher increase as the cultures were aerated with nitrogen, showing higher photorespiratory flux than that occurring in the cultures aerated with atmospheric air.


Asunto(s)
Chlorophyta/química , Chlorophyta/metabolismo , Cromatografía Liquida/métodos , Diatomeas/química , Diatomeas/metabolismo , Glicolatos/análisis , Microalgas/química , Microalgas/metabolismo , Respiración de la Célula/efectos de la radiación , Chlorophyta/efectos de la radiación , Diatomeas/efectos de la radiación , Glicolatos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Microalgas/efectos de la radiación
5.
Ann Bot ; 103(4): 645-53, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18708641

RESUMEN

BACKGROUND: In obligate Crassulacean acid metabolism (CAM), up to 99 % of CO(2) assimilation occurs during the night, therefore supporting the hypothesis that CAM is adaptive because it allows CO(2) fixation during the part of the day with lower evaporative demand, making life in water-limited environments possible. By comparison, in facultative CAM (inducible CAM, C(3)-CAM) and CAM-cycling plants drought-induced dark CO(2) fixation may only be, with few exceptions, a small proportion of C(3) CO(2) assimilation in watered plants and occur during a few days. From the viewpoint of survival the adaptive advantages, i.e. increased fitness, of facultative CAM and CAM-cycling are not obvious. Therefore, it is hypothesized that, if it is to increase fitness, CAM must aid in reproduction. Scope An examination of published reports of 23 facultative CAM and CAM-cycling species finds that, in 19 species, drought-induced dark CO(2) fixation represents on average 11 % of C(3) CO(2) assimilation of watered plants. Evidence is discussed on the impact of the operation of CAM in facultative and CAM-cycling plants on their survival--carbon balance, water conservation, water absorption, photo-protection of the photosynthetic apparatus--and reproductive effort. It is concluded that in some species, but not all, facultative and cycling CAM contribute, rather than to increase carbon balance, to increase water-use efficiency, water absorption, prevention of photoinhibition and reproductive output.


Asunto(s)
Carbono/metabolismo , Sequías , Agua/metabolismo , Respiración de la Célula/efectos de la radiación , Deshidratación , Luz , Reproducción/efectos de la radiación
6.
Oecologia ; 145(2): 252-7, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16025357

RESUMEN

In Chilean evergreen temperate forest, fern species of the genus Blechnum occur in diverse microhabitats ranging from large gaps to heavily shaded understoreys. We hypothesised that differences in the ecological breadth of three co-occurring Blechnum species would be associated with differences in magnitude of ecophysiological responses to light availability. We quantified the field distribution of each species in relation to diffuse light availability (% canopy openness), and measured in situ variation in photosynthetic capacity (A), dark respiration (R (d)) and specific leaf area (SLA) across the light gradient. The response of SLA of each species was also evaluated in a common garden in two light conditions (understorey and forest edge). The three Blechnum species differed significantly in the range of light environments occupied (breadth: B. chilense > B. hastatum > B. mochaenum). Despite significant interspecific differences in average A and R (d), the response of these traits to light availability did not differ among species. However, there was significant interspecific variation in both the mean value and the plasticity of SLA to light availability, the species with least ecological breadth (B. mochaenum) showing a flatter reaction norm (lower response) than its two congeners. This pattern was also found in the common garden experiment. The adjustment of leaf morphology (SLA) to light availability appears to be an important mechanism of acclimation in these Blechnum species. The narrow range of light environments occupied by B. mochaenum may be at least partly attributable to its inability to display phenotypic plasticity in SLA to changes in light availability.


Asunto(s)
Ecosistema , Helechos/fisiología , Helechos/efectos de la radiación , Luz , Adaptación Fisiológica/efectos de la radiación , Respiración de la Célula/efectos de la radiación , Chile , Helechos/clasificación , Fotosíntesis/efectos de la radiación , Especificidad de la Especie
7.
J Plant Physiol ; 160(6): 657-66, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12872488

RESUMEN

Three high-yielding wheat genotypes (T. aestivum L., c.v. Siete Cerros, Seri and Bacanora, released in 1966, 1982 and 1988, respectively) were grown under irrigation in two high radiation, low relative humidity environments (Tlaltizapan and Ciudad Obregon CIMMYT experimental stations, Mexico). Gas exchange and fluorescence parameters were assessed on the flag leaf during the day. Carbon isotope discrimination (delta) was analysed in flag leaf at anthesis and in grain at maturity. In both environments, gas exchange and fluorescence parameters varied markedly with irradiance and temperature. Analysis of their respective variation indicated the occurrence of photo-respiration and photo-inhibition, particularly in Tlaltizapan, the warmest environment, and in Siete Cerros. In Ciudad Obregon (high-yielding environment) lower Ci (internal CO2 concentration) and delta La (carbon isotope discrimination of the leaf) suggested a higher intrinsic photosynthetic capacity in the variety Bacanora. Higher yield of this genotype was also associated with higher Fv'/Fo' (ratio of photochemical and non photochemical rate constants in the light) and Fm'/Fm (ratio of the non photochemical rate constants in the dark and light adapted state).


Asunto(s)
Aclimatación/fisiología , Fotosíntesis/fisiología , Triticum/fisiología , Aclimatación/efectos de la radiación , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Respiración de la Célula/fisiología , Respiración de la Célula/efectos de la radiación , Variación Genética , Genotipo , Calor , Luz , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Semillas/fisiología , Semillas/efectos de la radiación , Triticum/genética , Triticum/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA