Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.949
Filtrar
1.
J Environ Sci (China) ; 147: 268-281, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003046

RESUMEN

The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS). The effect of the carbon source (∼9.5 ppmv) on (i) the bioreactors' performance (BR1: dosed with only cyclohexane as a single hydrocarbon versus BR2: dosed with a mixture of the 8 hydrocarbons) and (ii) the evolution of microbial communities over time were investigated. The results showed that cyclohexane reached a maximum removal efficiency (RE) of 53% ± 4% in BR1. In BR2, almost complete removal of toluene, m-xylene and ethylbenzene, being the most water-soluble and easy-to-degrade carbon sources, was observed. REs below 32% were obtained for the remaining compounds. By exposing the microbial consortium to only the five most recalcitrant hydrocarbons, REs between 45% ± 5% and 98% ± 1% were reached. In addition, we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed. The abundance of species belonging to the genus Rhodococcus was below 10% in all bioreactors at the end of the experiments. This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors, along with a systematic approach for the development of SIFT-MS methods.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Hidrocarburos , Rhodococcus , Rhodococcus/metabolismo , Reactores Biológicos/microbiología , Hidrocarburos/metabolismo , Carbono/metabolismo , Contaminantes Atmosféricos/metabolismo , Contaminantes Atmosféricos/análisis , Espectrometría de Masas , Tolueno/metabolismo , Xilenos/metabolismo , Butanos/metabolismo , Derivados del Benceno , Pentanos
2.
Bioresour Technol ; 409: 131240, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122129

RESUMEN

To promote the sustainability of hydrothermal liquefaction (HTL) for biofuel production, fungal fermentation was investigated to treat HTL aqueous phase (HTLAP) from corn stover. The most promising fungus, Aspergillus niger demonstrated superior tolerance to HTLAP and capability to produce oxalic acid as a value-added product. The fungal-bacterial co-culture of A. niger and Rhodococcus jostii was beneficial at low COD (chemical oxygen demand) loading of 3800 mg/L in HTLAP, achieving 69% COD removal while producing 0.5 g/L oxalic acid and 11% lipid content in microbial biomass. However, higher COD loading of 4500, 6040, and 7800 mg/L significantly inhibited R. jostii, but promoted A. niger growth with increased oxalic acid production while COD removal remained similar (58-65%). Additionally, most total organic carbon (TOC) in HTLAP was transformed into oxalic acid, representing 46-56% of the consumed TOC. These findings highlighted the potential of fungi for bio-upcycling of HTLAP into value-added products.


Asunto(s)
Aspergillus niger , Técnicas de Cocultivo , Zea mays , Zea mays/química , Aspergillus niger/metabolismo , Agua/química , Rhodococcus/metabolismo , Ácido Oxálico , Análisis de la Demanda Biológica de Oxígeno , Fermentación , Biomasa , Hongos/metabolismo , Biocombustibles
3.
Sci Total Environ ; 950: 175364, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117226

RESUMEN

Arsenic and PAHs impose environmental stress on soil microorganisms, yet their compound effects remain poorly understood. While soil microorganisms possess the ability to metabolize As and PAHs, the mechanisms of microbial response are not fully elucidated. In our study, we established two simulated soil systems using soil collected from Xixi Wetland Park grassland, Hangzhou, China. The As-600 Group was contaminated with 600 mg/kg sodium arsenite, while the As-600-PAHs-30 Group received both 600 mg/kg sodium arsenite and 30 mg/kg PAHs (phenanthrene:fluoranthene:benzo[a]pyrene = 1:1:1). These systems were operated continuously for 270 days, and microbial responses were assessed using high-throughput sequencing and metagenomic analysis. Our findings revealed that compound contamination significantly promoted the abundance of microbial defense-related genes, with general defense genes increasing by 11.07 % âˆ¼ 74.23 % and specific defense genes increasing by 44.13 % âˆ¼ 55.74 %. The dominate species Rhodococcus adopts these general and specific defense mechanisms to resist compound pollution stress and gain ecological niche advantages, making it a candidate strain for soil remediation. Our study contributes to the assessment of ecological damage caused by As and PAHs from a microbial perspective and provides valuable insights for soil remediation.


Asunto(s)
Arsénico , Hidrocarburos Policíclicos Aromáticos , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Arsénico/análisis , China , Suelo/química , Rhodococcus
4.
Appl Environ Microbiol ; 90(8): e0034024, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39082821

RESUMEN

Soil-dwelling Actinomycetes are a diverse and ubiquitous component of the global microbiome but largely lack genetic tools comparable to those available in model species such as Escherichia coli or Pseudomonas putida, posing a fundamental barrier to their characterization and utilization as hosts for biotechnology. To address this, we have developed a modular plasmid assembly framework, along with a series of genetic control elements for the previously genetically intractable Gram-positive environmental isolate Rhodococcus ruber C208, and demonstrate conserved functionality in 11 additional environmental isolates of Rhodococcus, Nocardia, and Gordonia. This toolkit encompasses five Mycobacteriale origins of replication, five broad-host-range antibiotic resistance markers, transcriptional and translational control elements, fluorescent reporters, a tetracycline-inducible system, and a counter-selectable marker. We use this toolkit to interrogate the carotenoid biosynthesis pathway in Rhodococcus erythropolis N9T-4, a weakly carotenogenic environmental isolate and engineer higher pathway flux toward the keto-carotenoid canthaxanthin. This work establishes several new genetic tools for environmental Mycobacteriales and provides a synthetic biology framework to support the design of complex genetic circuits in these species.IMPORTANCESoil-dwelling Actinomycetes, particularly the Mycobacteriales, include both diverse new hosts for sustainable biomanufacturing and emerging opportunistic pathogens. Rhodococcus, Gordonia, and Nocardia are three abundant genera with particularly flexible metabolisms and untapped potential for natural product discovery. Among these, Rhodococcus ruber C208 was shown to degrade polyethylene; Gordonia paraffinivorans can assimilate carbon from solid hydrocarbons; and Nocardia neocaledoniensis (and many other Nocardia spp.) possesses dual isoprenoid biosynthesis pathways. Many species accumulate high levels of carotenoid pigments, indicative of highly active isoprenoid biosynthesis pathways which may be harnessed for fermentation of terpenes and other commodity isoprenoids. Modular genetic toolkits have proven valuable for both fundamental and applied research in model organisms, but such tools are lacking for most Actinomycetes. Our suite of genetic tools and DNA assembly framework were developed for broad functionality and to facilitate rapid prototyping of genetic constructs in these organisms.


Asunto(s)
Nocardia , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Nocardia/genética , Nocardia/metabolismo , Bacteria Gordonia/metabolismo , Bacteria Gordonia/genética , Ingeniería Metabólica , Plásmidos/genética
5.
J Agric Food Chem ; 72(32): 18067-18077, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082634

RESUMEN

Propanil residues can contaminate habitats where microbial degradation is predominant. In this study, an efficient propanil-degrading strain C-1 was isolated from paddy and identified as Rhodococcus sp. It can completely degrade 10 µg/L-150 mg/L propanil within 0.33-10 h via the hydrolysis of the amide bond, forming 3,4-dichloroaniline. A novel bifunctional amidase, PamC, was identified in strain C-1. PamC can catalyze the hydrolysis of the amide bond of propanil to produce 3,4-dichloroaniline as well as the hydrolysis of the ester bonds of aryloxyphenoxypropionate herbicides (APPHs, clodinafop-propargyl, cyhalofop-butyl, fenoxaprop-p-ethyl, fluazifop-p-butyl, haloxyfop-p-methyl, and quizalofop-p-ethyl) to form aryloxyphenoxypropionic acids. Molecular docking and site-directed mutagenesis confirmed that the catalytic triad Lys82-Ser157-Ser181 was the active center for PamC to hydrolyze propanil and cyhalofop-butyl. This study presents a novel bifunctional amidase with capabilities for both amide and ester bond hydrolysis and enhances our understanding of the molecular mechanisms underlying the degradation of propanil and APPHs.


Asunto(s)
Amidohidrolasas , Proteínas Bacterianas , Biodegradación Ambiental , Herbicidas , Propanil , Rhodococcus , Rhodococcus/enzimología , Rhodococcus/genética , Rhodococcus/metabolismo , Herbicidas/metabolismo , Herbicidas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Propanil/metabolismo , Propanil/química , Amidohidrolasas/metabolismo , Amidohidrolasas/química , Amidohidrolasas/genética , Simulación del Acoplamiento Molecular , Hidrólisis , Biocatálisis
6.
Molecules ; 29(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39064956

RESUMEN

Terpenoids and steroids are secondary plant and animal metabolites and are widely used to produce highly effective pharmacologically significant compounds. One of the promising approaches to the transformation of these compounds to form bioactive metabolites is their transformation using microorganisms. Rhodococcus spp. are one of the most developed objects in biotechnology due to their exceptional metabolic capabilities and resistance to extreme environmental conditions. In this review, information on the processes of biotransformation of terpenoid and steroid compounds by actinomycetes of the genus Rhodococcus and their molecular genetic bases are most fully collected and analyzed for the first time. Examples of the use of both native whole-cell catalysts and mutant strains and purified enzyme systems for the production of derivatives of terpenoids and steroids are given.


Asunto(s)
Biotransformación , Rhodococcus , Esteroides , Terpenos , Rhodococcus/metabolismo , Rhodococcus/genética , Terpenos/metabolismo , Terpenos/química , Esteroides/metabolismo , Esteroides/química , Actinobacteria/metabolismo , Actinobacteria/genética
7.
Environ Sci Pollut Res Int ; 31(33): 46002-46022, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980484

RESUMEN

Mining-related lead (Pb) pollution of the soil poses serious hazards to ecosystems and living organisms, including humans. Improved heavy metal phytoremediation efficacy, achieved by using phytostabilizing plants assisted by plant-growth-promoting (PGP) microorganisms, has been presented as an effective strategy for remediating polluted soils. The objective of this research was to examine the response and potential of the plant-growth-promoting bacterium LMR356, a Rhodococcus qingshengii strain isolated from an abandoned mining soil, under lead stress conditions. Compared to non-contaminated culture media, the presence of lead induced a significant decrease in auxin production (from 21.17 to 2.65 µg mL-1) and phosphate solubilization (from 33.60 to 8.22 mg L-1), whereas other PGP traits increased drastically, such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity (from 38.17 to 71.37 nmol mg-1 h-1 α-ketobutyrate), siderophore production (from 69 to 83%), exopolysaccharide production (from 1952.28 to 3637.72 mg mL-1), biofilm formation, and motility. We, therefore, investigated the behavior of Sulla spinosissima L. in the presence or absence of this strain under a variety of experimental conditions. Under hydroponic conditions, Sulla plants showed endurance to varying lead concentrations (500-1000 µM). Inoculation of plants with Rhodococcus qingshengii strain LMR356 enhanced plant tolerance, as demonstrated by the increase in plant biomass (ranging from 14.41 to 79.12%) compared to non-inoculated Pb-stressed and non-stressed control plants. Antioxidant enzyme activities (increasing by -42.71 to 126.8%) and chlorophyll (383.33%) and carotenoid (613.04%) content were also augmented. In addition to its impact on plant lead tolerance, strain LMR356 showed a growth-promoting effect on Sulla plants when cultivated in sterilized non-contaminated sand. Parameters such as plant biomass (16.57%), chlorophyll (24.14%), and carotenoid (30%) contents, as well as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, were all elevated compared to non-inoculated plants. Furthermore, when the same plant species was cultivated in highly polluted soil, inoculation increased plant biomass and improved its physiological properties. These findings demonstrate that LMR356 is a phytobeneficial bacterial strain capable of enhancing Sulla growth under normal conditions and improving its heavy metal tolerance in multi-polluted soils. Thus, it can be considered a promising biofertilizer candidate for growing Sulla spinosissima L. or other selected plants intended for application in restoration and stabilization initiatives aimed at reviving and safeguarding environmentally compromised and polluted soils after mining activities.


Asunto(s)
Biodegradación Ambiental , Plomo , Rhodococcus , Contaminantes del Suelo , Rhodococcus/metabolismo , Microbiología del Suelo , Desarrollo de la Planta/efectos de los fármacos
8.
Microbes Environ ; 39(3)2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085141

RESUMEN

Polyethylene (PE), a widely used recalcitrant synthetic polymer, is a major global pollutant. PE has very low biodegradability due to its rigid C-C backbone and high hydrophobicity. Although microorganisms have been suggested to possess PE-degrading enzymes, our understanding of the PE biodegradation process and its overall applicability is still lacking. In the present study, we used an artificial bacterial consortium for PE biodegradation to compensate for the enzyme availability and metabolic capabilities of individual bacterial strains. Consortium members were selected based on available literature and preliminary screening for PE-degrading enzymes, including laccases, lipases, esterases, and alkane hydroxylases. PE pellets were incubated with the consortium for 200 days. A next-generation sequencing ana-lysis of the consortium community of the culture broth and on the PE pellet identified Rhodococcus as the dominant bacteria. Among the Rhodococcus strains in the consortium, Rhodococcus erythropolis was predominant. Scanning electron microscopy (SEM) revealed multilayered biofilms with bacteria embedded on the PE surface. SEM micrographs of PE pellets after biofilm removal showed bacterial pitting and surface deterioration. Multicellular biofilm structures and surface biodeterioration were observed in an incubation of PE pellets with R. erythropolis alone. The present study demonstrated that PE may be biodegraded by an artificially constructed bacterial consortium, in which R. erythropolis has emerged as an important player. The results showing the robust colonization of hydrophobic PE by R. erythropolis and that it naturally possesses and extracellularly expresses several target enzymes suggest its potential as a host for further improved PE biodeterioration by genetic engineering technology using a well-studied host-vector system.


Asunto(s)
Biodegradación Ambiental , Biopelículas , Consorcios Microbianos , Polietileno , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Polietileno/metabolismo , Polietileno/química , Biopelículas/crecimiento & desarrollo , Microscopía Electrónica de Rastreo
9.
Mol Biol Rep ; 51(1): 817, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012451

RESUMEN

BACKGROUND: Nitrile Hydratase (NHase) is one of the most important industrial enzyme widely used in the petroleum exploitation field. The enzyme, composed of two unrelated α- and ß-subunits, catalyzes the conversion of acrylonitrile to acrylamide, releasing a significant amount of heat and generating the organic solvent product, acrylamide. Both the heat and acrylamide solvent have an impact on the structural stability of NHase and its catalytic activity. Therefore, enhancing the stress resistance of NHase to toxic substances is meaningful for the petroleum industry. METHODS AND RESULTS: To improve the thermo-stability and acrylamide tolerance of NHase, the two subunits were fused in vivo using SpyTag and SpyCatcher, which were attached to the termini of each subunit in various combinations. Analysis of the engineered strains showed that the C-terminus of ß-NHase is a better fusion site than the N-terminus, while the C-terminus of α-NHase is the most suitable site for fusion with a larger protein. Fusion of SpyTag and SpyCatcher to the C-terminus of ß-NHase and α-NHase, respectively, led to improved acrylamide tolerance and a slight enhancement in the thermo-stability of one of the engineered strains, NBSt. CONCLUSION: These results indicate that in vivo ligation of different subunits using SpyTag/SpyCatcher is a valuable strategy for enhancing subunit interaction and improving stress tolerance.


Asunto(s)
Hidroliasas , Rhodococcus , Rhodococcus/enzimología , Rhodococcus/genética , Hidroliasas/metabolismo , Hidroliasas/genética , Hidroliasas/química , Estabilidad de Enzimas , Estrés Fisiológico , Acrilamida/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética
10.
J Hazard Mater ; 474: 134776, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38852255

RESUMEN

Phthalate esters (PAEs) are widely used as plasticizers and cause serious complex pollution problem in environment. Thus, strains with efficient ability to simultaneously degrade various PAEs are required. In this study, a newly isolated strain Rhodococcus sp. AH-ZY2 can degrade 500 mg/L Di-n-octyl phthalate completely within 16 h and other 500 mg/L PAEs almost completely within 48 h at 37 °C, 180 rpm, and 2 % (v/v) inoculum size of cultures with a OD600 of 0.8. OD600 = 0.8, 2 % (v/v). Twenty genes in its genome were annotated as potential esterase and four of them (3963, 4547, 5294 and 5359) were heterogeneously expressed and characterized. Esterase 3963 and 4547 is a type I PAEs esterase that hydrolyzes PAEs to phthalate monoesters. Esterase 5294 is a type II PAEs esterase that hydrolyzes phthalate monoesters to phthalate acid (PA). Esterase 5359 is a type III PAEs esterase that simultaneously degrades various PAEs to PA. Molecular docking results of 5359 suggested that the size and indiscriminate binding feature of spacious substrate binding pocket may contribute to its substrate versatility. AH-ZY2 is a potential strain for efficient remediation of PAEs complex pollution in environment. It is first to report an esterase that can efficiently degrade mixed various PAEs.


Asunto(s)
Biodegradación Ambiental , Esterasas , Ésteres , Simulación del Acoplamiento Molecular , Ácidos Ftálicos , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Rhodococcus/enzimología , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Esterasas/metabolismo , Esterasas/genética , Ésteres/metabolismo , Ésteres/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Plastificantes/metabolismo
11.
Bioprocess Biosyst Eng ; 47(9): 1533-1545, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38888622

RESUMEN

Rhodococcus erythropolis bacterium is known for its remarkable resistance characteristics that can be useful in several biotechnological processes, such as bioremediation. However, there is scarce knowledge concerning the behavior of this strain against different metals. This study sought to investigate the behavior of R. erythropolis ATCC 4277 against the residue of chalcopyrite and e-waste to verify both resistive capacities to the metals present in these residues and their potential use for biomining processes. These tests were carried out in a stirred tank bioreactor for 48 h, at 24ºC, pH 7.0, using a total volume of 2.0 L containing 2.5% (v/v) of a bacterial pre-culture. The pulp density of chalcopyrite was 5% (w/w), and agitation and oxygen flow rates were set to 250 rpm and 1.5 LO2 min-1, respectively. On the other hand, we utilized a waste of computer printed circuit board (WPCB) with a pulp density of 10% (w/w), agitation at 400 rpm, and an oxygen flow rate of 3.0 LO2 min-1. Metal concentration analyses post-fermentation showed that R. erythropolis ATCC 4277 was able to leach about 38% of the Cu present in the chalcopyrite residue (in ~ 24 h), and 49.5% of Fe, 42.3% of Ni, 27.4% of Al, and 15% Cu present in WPCB (in ~ 24 h). In addition, the strain survived well in the environment containing such metals, demonstrating the potential of using this bacterium for waste biomining processes as well as in other processes with these metals.


Asunto(s)
Reactores Biológicos , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/crecimiento & desarrollo , Cobre/química , Metales/química , Biodegradación Ambiental , Residuos Electrónicos
12.
J Hazard Mater ; 476: 135045, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944990

RESUMEN

Isoprocarb (IPC), a representative monocyclic carbamate insecticide, poses risks of environmental contamination and harm to non-target organisms. However, its degradation mechanism has not been reported. In this study, a newly IPC-degrading strain D-6 was isolated from the genus Rhodococcus, and its degradation characteristics and pathway of IPC were analyzed. A novel hydrolase IpcH, responsible for hydrolyzing IPC to 2-isopropylphenol (IPP), was identified. IpcH exhibited low similarity (< 27 %) with other reported hydrolases, including previously characterized carbamate insecticides hydrolases, indicating its novelty. The Km and kcat values of IpcH towards IPC were 69.99 ± 8.33 µM and 95.96 ± 4.02 s-1, respectively. Also, IpcH exhibited catalytic activity towards various types of carbamate insecticides, including monocyclic carbamates (IPC, fenobucarb and propoxur), bicyclic carbamates (carbaryl and carbofuran), and linear carbamates (oxamyl and aldicarb). The molecular docking and site-directed mutagenesis revealed that His254, His256, His329 and His376 were essential for IpcH activity. Strain D-6 can effectively reduce the toxicity of IPC and IPP towards sensitive organisms through its degradation ability. This study presents the initial report on IPC degradation pathway and molecular mechanism of IPC degradation, and provides a good potential strain for bioremediating IPC and IPP-contaminated environments.


Asunto(s)
Biodegradación Ambiental , Hidrolasas , Insecticidas , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Hidrolasas/metabolismo , Hidrolasas/genética , Insecticidas/metabolismo , Insecticidas/química , Insecticidas/toxicidad , Simulación del Acoplamiento Molecular , Uretano/metabolismo , Uretano/química
13.
Arch Microbiol ; 206(7): 300, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861201

RESUMEN

Microorganisms produce diverse classes of metabolites under various physiological conditions. Many bacterial strains have been reported to carry out the process of desulfurization in a cost-effective manner by converting dibenzothiophene (DBT) into 2-hydroxybiphenyl (2-HBP) and then using the 2-HBP as a carbon source for growth and development. Key rate-limiting factors and an increased concentration of 2HBP (400 µM) affect the biodesulfurization activity of bacteria through the produced metabolites. Thus, this study was designed to explore the nature of the metabolites produced by Rhodococcus erythropolis in the presence of DBT and 2HBP supplemented with a culture medium. A total of 330 metabolites were detected, and the key metabolites identified were 11Z-eicosaenoyl-EA, 1-carboxyethylisoleucine, 1(3)-glyceryl-PGF2alpha, taurine, 2-hydroxynicotinic acid, 4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholest-8-en-3beta-ol, and 10-nitrooleic acid. The supplementation of DBT and DBT-2HBP resulted in the differential regulation of these metabolites, either through downregulation or overexpression. Furthermore, at high concentrations of 2-HBP, 1-carboxyethylisoleucine, taurine, 2-hydroxynicotinic acid, and nicotinic acid were upregulated. This work proposes that the identified metabolites may play a role in bacteria-mediated desulphurization and could be beneficial in developing a cost-effective method of desulphurization for refining petroleum.


Asunto(s)
Compuestos de Bifenilo , Petróleo , Rhodococcus , Tiofenos , Rhodococcus/metabolismo , Rhodococcus/crecimiento & desarrollo , Petróleo/metabolismo , Compuestos de Bifenilo/metabolismo , Tiofenos/metabolismo , Biodegradación Ambiental , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Azufre/metabolismo
14.
Arch Microbiol ; 206(7): 313, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900186

RESUMEN

Phenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13T, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields. Based on the physiological properties and genomic features, strain Z13T is considered as a novel species of the genus Rhodococcus, for which the name Rhodococcus sacchari sp. nov. is proposed. The type strain is Z13T (= CCTCC AB 2022327T = JCM 35797T). This strain can use phenol as its sole carbon source. Z13T was able to completely degrade 1200 mg/L phenol within 20 h; the maximum specific growth rate was µmax = 0.93174 h-1, and the maximum specific degradation rate was qmax = 0.47405 h-1. Based on whole-genome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, strain Z13T contains a series of phenol degradation genes, including dmpP, CatA, dmpB, pcaG, and pcaH, and can metabolize aromatic compounds. Moreover, the potential of strain Z13T for soil remediation was investigated by introducing Z13T into simulated phenol-contaminated soil, and the soil microbial diversity was analyzed. The results showed that 100% of the phenol in the soil was removed within 7.5 d. Furthermore, microbial diversity analysis revealed an increase in the relative species richness of Oceanobacillus, Chungangia, and Bacillus.


Asunto(s)
Biodegradación Ambiental , Fenol , Filogenia , ARN Ribosómico 16S , Rhodococcus , Microbiología del Suelo , Contaminantes del Suelo , Rhodococcus/metabolismo , Rhodococcus/genética , Rhodococcus/clasificación , Rhodococcus/crecimiento & desarrollo , Rhodococcus/aislamiento & purificación , Contaminantes del Suelo/metabolismo , Fenol/metabolismo , ARN Ribosómico 16S/genética , Saccharum/metabolismo , Saccharum/microbiología , Saccharum/crecimiento & desarrollo , Suelo/química , Genoma Bacteriano
15.
Arch Microbiol ; 206(7): 328, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935150

RESUMEN

Marine hydrocarbonoclastic bacteria can use polycyclic aromatic hydrocarbons as carbon and energy sources, that makes these bacteria highly attractive for bioremediation in oil-polluted waters. However, genomic and metabolic differences between species are still the subject of study to understand the evolution and strategies to degrade PAHs. This study presents Rhodococcus ruber MSA14, an isolated bacterium from marine sediments in Baja California, Mexico, which exhibits adaptability to saline environments, a high level of intrinsic pyrene tolerance (> 5 g L- 1), and efficient degradation of pyrene (0.2 g L- 1) by 30% in 27 days. Additionally, this strain demonstrates versatility by using naphthalene and phenanthrene as individual carbon sources. The genome sequencing of R. ruber MSA14 revealed a genome spanning 5.45 Mbp, a plasmid of 72 kbp, and three putative megaplasmids, lengths between 110 and 470 Kbp. The bioinformatics analysis of the R. ruber MSA14 genome revealed 56 genes that encode enzymes involved in the peripheral and central pathways of aromatic hydrocarbon catabolism, alkane, alkene, and polymer degradation. Within its genome, R. ruber MSA14 possesses genes responsible for salt tolerance and siderophore production. In addition, the genomic analysis of R. ruber MSA14 against 13 reference genomes revealed that all compared strains have at least one gene involved in the alkanes and catechol degradation pathway. Overall, physiological assays and genomic analysis suggest that R. ruber MSA14 is a new haloalkalitolerant and hydrocarbonoclastic strain toward a wide range of hydrocarbons, making it a promising candidate for in-depth characterization studies and bioremediation processes as part of a synthetic microbial consortium, as well as having a better understanding of the catabolic potential and functional diversity among the Rhodococci group.


Asunto(s)
Biodegradación Ambiental , Genoma Bacteriano , Genómica , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Sedimentos Geológicos/microbiología , Naftalenos/metabolismo , Filogenia , Fenantrenos/metabolismo , Tolerancia a la Sal , Pirenos
16.
Appl Environ Microbiol ; 90(7): e0041624, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38837369

RESUMEN

Ethylene glycol (EG) is a widely used industrial chemical with manifold applications and also generated in the degradation of plastics such as polyethylene terephthalate. Rhodococcus jostii RHA1 (RHA1), a potential biocatalytic chassis, grows on EG. Transcriptomic analyses revealed four clusters of genes potentially involved in EG catabolism: the mad locus, predicted to encode mycofactocin-dependent alcohol degradation, including the catabolism of EG to glycolate; two GCL clusters, predicted to encode glycolate and glyoxylate catabolism; and the mft genes, predicted to specify mycofactocin biosynthesis. Bioinformatic analyses further revealed that the mad and mft genes are widely distributed in mycolic acid-producing bacteria such as RHA1. Neither ΔmadA nor ΔmftC RHA1 mutant strains grew on EG but grew on acetate. In resting cell assays, the ΔmadA mutant depleted glycolaldehyde but not EG from culture media. These results indicate that madA encodes a mycofactocin-dependent alcohol dehydrogenase that initiates EG catabolism. In contrast to some mycobacterial strains, the mad genes did not appear to enable RHA1 to grow on methanol as sole substrate. Finally, a strain of RHA1 adapted to grow ~3× faster on EG contained an overexpressed gene, aldA2, predicted to encode an aldehyde dehydrogenase. When incubated with EG, this strain accumulated lower concentrations of glycolaldehyde than RHA1. Moreover, ecotopically expressed aldA2 increased RHA1's tolerance for EG further suggesting that glycolaldehyde accumulation limits growth of RHA1 on EG. Overall, this study provides insights into the bacterial catabolism of small alcohols and aldehydes and facilitates the engineering of Rhodococcus for the upgrading of plastic waste streams.IMPORTANCEEthylene glycol (EG), a two-carbon (C2) alcohol, is produced in high volumes for use in a wide variety of applications. There is burgeoning interest in understanding and engineering the bacterial catabolism of EG, in part to establish circular economic routes for its use. This study identifies an EG catabolic pathway in Rhodococcus, a genus of bacteria well suited for biocatalysis. This pathway is responsible for the catabolism of methanol, a C1 feedstock, in related bacteria. Finally, we describe strategies to increase the rate of degradation of EG by increasing the transformation of glycolaldehyde, a toxic metabolic intermediate. This work advances the development of biocatalytic strategies to transform C2 feedstocks.


Asunto(s)
Proteínas Bacterianas , Glicol de Etileno , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Glicol de Etileno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Glicolatos/metabolismo , Glioxilatos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/genética , Péptidos
17.
Artículo en Inglés | MEDLINE | ID: mdl-38841989

RESUMEN

Opinion 130 deals with a Request for an Opinion asking the Judicial Commission to clarify whether the genus name Rhodococcus Zopf 1891 (Approved Lists 1980) is illegitimate. The Request is approved and an answer is given. The name Rhodococcus Zopf 1891 (Approved Lists 1980) is illegitimate because it is a later homonym of the validly published cyanobacterial name Rhodococcus Hansgirg 1884. The Judicial Commission also clarifies that it has the means to resolve such cases by conserving a name over an earlier homonym. It is concluded that the name Rhodococcus Zopf 1891 (Approved Lists 1980) is significantly more important than the name Rhodococcus Hansgirg 1884 and therefore the former is conserved over the latter. This makes the name Rhodococcus Zopf 1891 (Approved Lists 1980) legitimate.


Asunto(s)
Rhodococcus , Terminología como Asunto , Rhodococcus/clasificación
18.
Curr Microbiol ; 81(7): 218, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856763

RESUMEN

Atractylodes macrocephala Koidz (AMK) is a perennial herb from the plant family Asteraceae (formerly Compositae). This herb is mainly distributed in mountainous wetlands in Zhejiang, Sichuan, Yunnan, and Hunan provinces of China. Its medicinal production and quality, however, are severely impacted by root rot disease. In our previous study, endophytic bacterium designated AM201 exerted a high biocontrol effect on the root rot disease of AMK. However, the molecular mechanisms underlying this effect remain unclear. In this study, the identity of strain AM201 as Rhodococcus sp. was determined through analysis of its morphology, physiological and biochemical characteristics, as well as 16S rDNA sequencing. Subsequently, we performed transcriptome sequencing and bioinformatics analysis to compare and analyze the transcriptome profiles of root tissues from two groups: AM201 (AMK seedlings inoculated with Fusarium solani [FS] and AM201) and FS (AMK seedlings inoculated with FS alone). We also conducted morphological, physiological, biochemical, and molecular identification analyses for the AM201 strain. We obtained 1,560 differentially expressed genes, including 187 upregulated genes and 1,373 downregulated genes. We screened six key genes (GOLS2, CIPK25, ABI2, egID, PG1, and pgxB) involved in the resistance of AM201 against AMK root rot disease. These genes play a critical role in reactive oxygen species (ROS) clearance, Ca2+ signal transduction, abscisic acid signal inhibition, plant root growth, and plant cell wall defense. The strain AM201 was identified as Rhodococcus sp. based on its morphological characteristics, physiological and biochemical properties, and 16S rDNA sequencing results. The findings of this study could enable to prevent and control root rot disease in AMK and could offer theoretical guidance for the agricultural production of other medicinal herbs.


Asunto(s)
Atractylodes , Endófitos , Perfilación de la Expresión Génica , Enfermedades de las Plantas , Raíces de Plantas , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Rhodococcus/fisiología , Atractylodes/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Endófitos/genética , Endófitos/metabolismo , Endófitos/clasificación , Endófitos/fisiología , Endófitos/aislamiento & purificación , Transcriptoma , Fusarium/genética , Fusarium/fisiología , China , ARN Ribosómico 16S/genética
19.
Chemosphere ; 361: 142489, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825247

RESUMEN

Microorganisms have great potential for bioremediation as they have powerful enzymes and machineries that can transform xenobiotics. The use of a microbial consortium provides more advantages in application point of view than pure cultures due to cross-feeding, adaptations, functional redundancies, and positive interactions among the organisms. In this study, we screened about 107 isolates for their ability to degrade dyes in aerobic conditions and without additional carbon source. From our screening results, we finally limited our synthetic consortium to Gordonia and Rhodococcus isolates. The synthetic consortium was trained and optimized for azo dye degradation using sequential treatment of small aromatic compounds such as phenols that act as selective pressure agents. After four rounds of optimization with different aims for each round, the consortium was able to decolorize and degrade various dyes after 48 h (80%-100% for brilliant black bn, methyl orange, and chromotrop 2b; 50-70% for orange II and reactive orange 16; 15-30% for chlorazol black e, reactive red 120, and allura red ac). Through rational approaches, we can show that treatment with phenolic compounds at micromolar dosages can significantly improve the degradation of bulky dyes and increase its substrate scope. Moreover, our selective pressure approach led to the production of various dye-degrading enzymes as azoreductase, laccase-like, and peroxidase-like activities were detected from the phenol-treated consortium. Evidence of degradation was also shown as metabolites arising from the degradation of methyl red and brilliant black bn were detected using HPLC and LC-MS analysis. Therefore, this study establishes the importance of rational and systematic screening and optimization of a consortium. Not only can this approach be applied to dye degradation, but this study also offers insights into how we can fully maximize microbial consortium activity for other applications, especially in biodegradation and biotransformation.


Asunto(s)
Compuestos Azo , Biodegradación Ambiental , Colorantes , Consorcios Microbianos , Rhodococcus , Colorantes/química , Colorantes/metabolismo , Compuestos Azo/química , Compuestos Azo/metabolismo , Rhodococcus/metabolismo , Bacteria Gordonia/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Fenoles/metabolismo , Fenoles/química , Nitrorreductasas/metabolismo
20.
Environ Pollut ; 356: 124346, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852663

RESUMEN

Triclocarban (TCC) and its metabolite, 3,4-dichloroaniline (DCA), are classified as emerging organic contaminants (EOCs). Significant concerns arise from water and soil contamination with TCC and its metabolites. These concerns are especially pronounced at high concentrations of up to approximately 20 mg/kg dry weight, as observed in wastewater treatment plants (WWTPs). Here, a TCC-degrading co-culture system comprising Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 was utilized to degrade TCC (14.5 mg/L) by 85.9% in 7 days, showing improved degradation efficiency compared with monocultures. A combination of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), genome sequencing, transcriptomic analysis, and quantitative reverse transcription-PCR (qRT-PCR) was performed. Meanwhile, through the combination of further experiments involving heterologous expression and gene knockout, we proposed three TCC metabolic pathways and identified four key genes (tccG, tccS, phB, phL) involved in the TCC degradation process. Moreover, we revealed the internal labor division patterns and connections in the co-culture system, indicating that TCC hydrolysis products were exchanged between co-cultured strains. Additionally, mutualistic cooperation between BX2 and LY-1 enhances TCC degradation efficiency. Finally, phytotoxicity assays confirmed a significant reduction in the plant toxicity of TCC following synergistic degradation by two strains. The in-depth understanding of the TCC biotransformation mechanisms and microbial interactions provides useful information for elucidating the mechanism of the collaborative biodegradation of various contaminants.


Asunto(s)
Biodegradación Ambiental , Carbanilidas , Técnicas de Cocultivo , Pseudomonas , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Pseudomonas/metabolismo , Pseudomonas/genética , Carbanilidas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...