Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.829
Filtrar
1.
Meat Sci ; 217: 109624, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39141966

RESUMEN

This study examined the impact of dietary guanidino acetic acid (GAA) and rumen-protected methionine (RPM) on beef quality in Simmental bulls. For 140 days, forty-five bulls (453.43 ± 29.05 kg) were randomly divided into control (CON), 0.1% GAA (GAA), and 0.1% GAA + 0.1% RPM (GAM) groups with 15 bulls in each group and containing 3 pen with 5 bulls in each pen. Significant improvements in eye muscle area, pH48h, redness (a*) value, and crude protein (CP) content of longissimus lumborum (LL) muscles were observed in the GAA and GAM groups (P < 0.05). Conversely, the lightness (L*) value, drip loss, cooking loss, and moisture contents decreased (P < 0.05). Additionally, glutathione (GSH) and glutathione peroxidase (GSH-PX) concentrations of LL muscles in GAM were higher (P < 0.05), while malondialdehyde (MDA) content of LL muscles in GAA and GAM groups were lower (P < 0.05). Polyunsaturated fatty acids (PUFA) profiles were enriched in beef from GAM group (P < 0.05). The addition of GAA and RPM affected the expression of genes in LL muscle, such as HMOX1, EIF4E, SCD5, and NOS2, which are related to hypoxia metabolism, protein synthesis, and unsaturated fatty acid synthesis-related signaling pathways. In addition, GAA and RPM also affected the content of a series of metabolites such as L-tyrosine, L-tryptophan, and PC (O-16:0/0:0) involved in amino acid and lipid metabolism-related signaling pathways. In summary, GAA and RPM can improve the beef quality and its nutritional composition. These changes may be related to changes in gene expression and metabolic pathways related to protein metabolism and lipid metabolism in beef.


Asunto(s)
Alimentación Animal , Glicina , Metionina , Músculo Esquelético , Carne Roja , Rumen , Animales , Bovinos , Masculino , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Carne Roja/análisis , Alimentación Animal/análisis , Rumen/metabolismo , Glicina/análogos & derivados , Dieta/veterinaria , Glutatión/metabolismo , Suplementos Dietéticos , Ácidos Grasos Insaturados/análisis , Glutatión Peroxidasa/metabolismo , Malondialdehído/metabolismo , Malondialdehído/análisis , Color
2.
Animal ; 18(8): 101249, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39096600

RESUMEN

The red seaweed Asparagopsis taxiformis has a potent antimethanogenic effect, which has been proven both in vitro and in vivo. Vegetable oil immersions of this seaweed (hereafter Bromoil) help stabilise the bromoform (CHBr3) responsible for its antimethanogenic effect. We evaluate the effects of increasing the levels of CHBr3 in lamb diets on growth performance, methane (CH4) production, animal health and meat quality. Twenty-four Merino Branco ram lambs were fed a ground complete compound feed, supplemented with 50 mL/kg DM of sunflower oil with different CHBr3 content. The treatments were defined by the CHBr3 doses in the oil: 0 mg (control - B0), 15 mg (B15), 30 mg (B30) and 45 mg (B45) of CHBr3 per kg of feed DM. The feed was prepared daily by mixing Bromoil with the compound feed. At the end of the experiment, the lambs were sacrificed, the ruminal content was collected for in vitro fermentation to evaluate CH4 production and organic matter (OM) degradability, and the rumen mucosa was sampled for histological examination. Meat samples were collected for chemical composition and CHBr3 analysis. The half-life of CHBr3 in the air-exposed feed was 3.98 h making it very difficult to establish the practiced level of CHBr3 supplementation. Lambs-fed treatments B30 and B45 decreased DM intake by up to 28%. Average daily gain was also reduced due to CHBr3 supplementation, with B45 showing results 40% lower than B0. DM feed conversion ratio was similar for all treatments. The degradability of OM, the volume of total gas and of gas without CH4 were unaffected by the experimental treatments, evaluated by the in vitro method. However, the volume of CH4 decreased by up to 75% for treatments above 30 mg/kg DM, while the yield of CH4/g OM degraded was reduced by up to 78% with treatments above 30 mg/kg DM. Meat chemical composition was not affected by Bromoil supplementation and no traces of CHBr3 were found in meat samples. During this experiment, the animals presented normal health and behaviour. However, postslaughter examination of the rumen showed distinct lesions on the ventral region of the rumen mucosa of animals supplemented with Bromoil. These lesions were more severe in the animals receiving treatments B30 and B45. This research determined that although concentrations of CHBr3 in the diet above 30 mg/kg DM helped to reduce CH4 emissions, it negatively affected the performance and rumen wall.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Metano , Rhodophyta , Rumen , Aceite de Girasol , Animales , Masculino , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Suplementos Dietéticos/análisis , Fermentación , Carne/análisis , Metano/metabolismo , Rhodophyta/química , Rumen/metabolismo , Ovinos , Oveja Doméstica , Aceite de Girasol/administración & dosificación
3.
Animal ; 18(8): 101254, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106553

RESUMEN

The risk of acquiring new intramammary infections is high at the end of lactation, especially for the high milk-producing dairy animals. Resistance to bacterial infection increases following the completion of mammary gland involution after milking cessation. The serotonin precursor 5-hydroxytryptophan (5-HTP) could accelerate involution by increasing circulating serotonin levels, but ruminal microbes may degrade 5-HTP if orally administered to adult ruminants. It is unclear whether rumen-protected 5-HTP could effectively mediate circulating serotonin (5-hydroxytryptamine, 5-HT) and therefore accelerate mammary gland involution in ruminants. Goats were used as a model in the current study to investigate the effects of rumen-protected 5-HTP on behaviour, 5-HT metabolism, and mammary involution in ruminants. In the first experiment, 16 female Dazu black goats were assigned to one of four groups in a randomised block design. The treatments included a basal diet plus 0, 4, 20, or 100 mg/kg BW of rumen-protected 5-HTP. Serum was collected at 0, 3, 6, 12, and 24 h after offering the rumen-protected 5-HTP in the morning feed, and the behaviours were monitored. In the second experiment, 12 female Dazu black goats (Somatic cell count < 250 000) were randomly assigned to the control (basal diet) or rumen-protected 5-HTP group (basal diet plus 20 mg/kg BW). Milk or mammary secretions were manually collected aseptically on d -1, 1, 2, 3, 4, and 5 around weaning. The results depicted that rumen-protected 5-HTP supplementation elevated circulating 5-HTP and 5-hydroxyindole acetic acid concentrations, while 20 mg/kg BW of rumen-protected 5-HTP supplementation lowered the goats' locomotive activity. A high concentration of rumen-protected 5-HTP (100 mg/kg BW) increased serum alkaline phosphatase and gamma-glutamyl transpeptidase concentrations. Moreover, oral supplementation with 20 mg/kg BW of rumen-protected 5-HTP accelerated mammary gland involution and reduced feed intake in goats after weaning. These results demonstrate that oral supplementation with rumen-protected 5-HTP influences 5-HT metabolism and accelerates mammary gland involution after milking cessation in ruminants.


Asunto(s)
5-Hidroxitriptófano , Cabras , Lactancia , Glándulas Mamarias Animales , Rumen , Serotonina , Animales , Cabras/fisiología , Femenino , 5-Hidroxitriptófano/farmacología , 5-Hidroxitriptófano/administración & dosificación , Rumen/metabolismo , Rumen/efectos de los fármacos , Serotonina/sangre , Serotonina/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Lactancia/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Suplementos Dietéticos/análisis , Leche/química , Leche/metabolismo , Dieta/veterinaria
4.
PLoS One ; 19(8): e0306597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39106246

RESUMEN

Gossypol, a yellow polyphenolic compound found in the Gossypium genus, is toxic to animals that ingest cotton-derived feed materials. However, ruminants display a notable tolerance to gossypol, attributed to the pivotal role of ruminal microorganisms in its degradation. The mechanisms of how rumen microorganisms degrade and tolerate gossypol remain unclear. Therefore, in this study, Enterobacter sp. GD5 was isolated from rumen fluid, and the effects of gossypol on its metabolism and gene expression were investigated using liquid chromatography-mass spectrometry (LC-MS) and RNA analyses. The LC-MS results revealed that gossypol significantly altered the metabolic profiles of 15 metabolites (eight upregulated and seven downregulated). The Kyoto Encyclopedia of Genes and Genomes analysis results showed that significantly different metabolites were associated with glutathione metabolism in both positive and negative ion modes, where gossypol significantly affected the biosynthesis of amino acids in the negative ion mode. Transcriptomic analysis indicated that gossypol significantly affected 132 genes (104 upregulated and 28 downregulated), with significant changes observed in the expression of catalase peroxidase, glutaredoxin-1, glutathione reductase, thioredoxin 2, thioredoxin reductase, and alkyl hydroperoxide reductase subunit F, which are related to antioxidative stress. Furthermore, Gene Ontology analysis revealed significant changes in homeostatic processes following gossypol supplementation. Overall, these results indicate that gossypol induces oxidative stress, resulting in the increased expression of antioxidative stress-related genes in Enterobacter sp. GD5, which may partially explain its tolerance to gossypol.


Asunto(s)
Enterobacter , Gosipol , Metabolómica , Gosipol/farmacología , Gosipol/metabolismo , Enterobacter/metabolismo , Enterobacter/genética , Enterobacter/efectos de los fármacos , Animales , Transcriptoma/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Metaboloma/efectos de los fármacos , Perfilación de la Expresión Génica , Rumen/microbiología , Rumen/metabolismo , Rumen/efectos de los fármacos
5.
PLoS One ; 19(8): e0308646, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39173024

RESUMEN

Coccomyxa sp. KJ is a unicellular green microalga that accumulates abundant lipids when cultured under nitrogen-deficient conditions (KJ1) and high nitrogen levels when cultured under nitrogen-sufficient conditions (KJ2). Considering the different characteristics between KJ1 and KJ2, they are expected to have different effects on rumen fermentation. This study aimed to determine the effects of KJ1 and KJ2 on in vitro ruminal fermentation, digestibility, CH4 production, and the ruminal microbiome as corn silage substrate condition. Five treatments were evaluated: substrate only (CON) and CON + 0.5% dry matter (DM) KJ1 (KJ1_L), 1.0% DM KJ1 (KJ1_H), 0.5% DM KJ2 (KJ2_L), and 1.0% DM KJ2 (KJ2_H). DM degradability-adjusted CH4 production was inhibited by 48.4 and 40.8% in KJ2_L and KJ2_H, respectively, compared with CON. The proportion of propionate was higher in the KJ1 treatments than the CON treatment and showed further increases in the KJ2 treatments. The abundances of Megasphaera, Succiniclasticum, Selenomonas, and Ruminobacter, which are related to propionate production, were higher in KJ2_H than in CON. The results suggested that the rumen microbiome was modified by the addition of 0.5-1.0% DM KJ1 and KJ2, resulting in increased propionate and reduced CH4 production. In particular, the KJ2 treatments inhibited ruminal CH4 production more than the KJ1 treatments. These findings provide important information for inhibiting ruminal CH4 emissions, which is essential for increasing animal productivity and sustaining livestock production under future population growth.


Asunto(s)
Fermentación , Metano , Rumen , Animales , Rumen/microbiología , Rumen/metabolismo , Metano/metabolismo , Metano/biosíntesis , Microbioma Gastrointestinal/efectos de los fármacos , Chlorophyta/metabolismo , Microbiota/efectos de los fármacos , Digestión , Nitrógeno/metabolismo , Bovinos , Ensilaje
6.
Sci Total Environ ; 949: 175263, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39102957

RESUMEN

The correlation between enteric methane emissions (eME) and feed efficiency (FE) in cattle is linked to the anaerobic fermentation of feedstuffs that occurs in the rumen. Several mathematical indices have been developed to predict feed efficiency and identify low methane emitters in herds. To investigate this, the current study aimed to evaluate the rumen microbial composition in the same group of animals ranked according to six different indices (three indices for FE and three for eME). Thirty-three heifers were ranked into three groups, each consisting of 11 animals, based on FE (feed conversion efficiency - FCE, residual weight gain - RG, and residual feed intake - RFI) and eME indices (production, yield, and intensity). Rumen fluids were collected using a stomach tube and analyzed using 16S rRNA and 18S rRNA, targeting rumen bacteria, archaea, and protozoa. The sequencing analysis revealed that the presence of unique microbial species in the rumen varies across animals ranked by the FE and eME indices. The High RG group harbored 17 unique prokaryotic taxa, while the High FCE group contained only seven. Significant differences existed in the microbial profiles of the animals based on the FE and eME indices. For instance, Raoultibacter was more abundant in the Intermediate RFI group but less so in the Intermediate RG and Intermediate FCE groups. The abundance of Entodinium was higher while Diplodinium was lower in the High FCE group, in contrast to the High RG and High RFI groups. Methanobrevibacter exhibited similar abundances across eME indices. However, the heifers did not demonstrate the same production, yield, and intensity of eME. The present findings underscore the importance of standardizing the FE and eME indices. This standardization is crucial for ensuring consistent and reliable assessments of the composition and function of the rumen microbiome across different herds.


Asunto(s)
Alimentación Animal , Microbioma Gastrointestinal , Metano , Rumen , Metano/metabolismo , Rumen/microbiología , Rumen/metabolismo , Animales , Bovinos , Alimentación Animal/análisis , ARN Ribosómico 16S , Bacterias/clasificación , Bacterias/metabolismo , Femenino
7.
Trop Anim Health Prod ; 56(7): 229, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096346

RESUMEN

Holocellulose (HC) fraction extracted from date-pits was evaluated as a novel feed additive for ruminant feeding. This study was performed to investigate the effectiveness of the HC additive on rumen fermentation, methane (CH4) production, and diet degradability over 24 h of in vitro incubation. Three independent incubation trials were conducted over three consecutive weeks, employing the same in vitro methodology to assess four treatment doses in a completely randomized design. The experimental diet incorporated four increasing doses of HC, containing HC at 0 (HC0), 10 (HC10), 20 (HC20), and 30 (HC30) g/kg dry matter (DM). In vitro gas production (GP) and CH4 production, volatile fatty acids (VFAs) concentration, protozoa accounts, degraded organic matter (DOM), metabolizable and net energy (ME and NE), and hydrogen (H2) estimates were measured. No significant differences in ruminal pH were observed as the HC doses gradually increased. All incremental doses of HC additive over 24 h resulted in a linear increase in GP (P < 0.001), DOM (P < 0.001), total VFAs (P = 0.011), and propionate (P < 0.001) concentrations, as well as estimated energy (ME and NE) (P < 0.05) and microbial protein (P = 0.017) values. However, the inclusion of increasing doses of HC in the diet displayed linear reductions in the net CH4 production (ml/kg DOM; P = 0.002), protozoa abundance (P = 0.027); acetate (P = 0.029), and butyrate (P < 0.001) concentrations, the acetate-to-propionate ratio (P < 0.001), and the estimated net H2 production concentration (P = 0.049). Thus, the use of date-pits HC additive generated positive ruminal fermentability, including increased total VFAs and a reduction in the acetate-to-propionate ratio, leading to decreased CH4 output over 24 h of in vitro incubation. Hence, HC could be considered a potent feed additive (at up to 30 g/kg DM), demonstrating promising CH4-mitigating competency and thereby enhancing energy-use efficiency in ruminants.


Asunto(s)
Alimentación Animal , Dieta , Digestión , Fermentación , Metano , Rumen , Animales , Rumen/parasitología , Rumen/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Metano/metabolismo , Digestión/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Distribución Aleatoria , Suplementos Dietéticos/análisis
8.
Animal ; 18 Suppl 2: 101280, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39129068

RESUMEN

Ruminants are often considered less susceptible to mycotoxins than monogastrics, owing to rumen microflora converting mycotoxins to less toxic compounds or several compounds present in the rumen-reticulum compartment, being able to bind the mycotoxin "mother" molecule that make them unavailable for absorption process in the gastro-intestinal tract of host animals. However, if ruminants consume feed contaminated by mycotoxins for long periods, their growth, development, and fertility can be compromised. Among regulated mycotoxins, the most studied and known for their effects are aflatoxins (AFs) AFB1, AFB2, AFG1 and AFG2, as well as the AFM1 for its high importance in dairy sector, deoxynivalenol (DON) and its metabolites 3/15 acetyl-DON and 3-glucoside DON, T-2 and HT-2 toxins, zearalenone, fumonisins, in particular that belong to the B class, and ochratoxin A. Furthermore, because of the emergence of multiple emerging mycotoxins that are detectable in feed utilised in ruminant diets, such as ensiled forage, there is now a growing focus on investigating these compounds by the scientific community to deepen their toxicity for animal health. Despite the enhancement of research, it is remarkable that there is a paucity of in vivo trials, as well as limited studies on nutrient digestibility and the impact of these molecules on rumen and intestinal functions or milk yield and quality. In this review, recent findings regarding the occurrence of regulated and emerging mycotoxins in forage and their possible adverse effects on dairy cattle are described, with special emphasis on animal performance and on rumen functionality.


Asunto(s)
Alimentación Animal , Contaminación de Alimentos , Micotoxinas , Rumiantes , Animales , Micotoxinas/análisis , Micotoxinas/toxicidad , Alimentación Animal/análisis , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Rumen/microbiología , Rumen/metabolismo , Bovinos
9.
Anim Sci J ; 95(1): e13988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165081

RESUMEN

Short-chain fatty acids (SCFAs) produced in the rumen are key factors affecting dairy cows' energy balance (EB). This study aimed to quantitatively evaluate the effects of SCFAs production on EB in dairy cows. Primiparous dairy cows were divided into high non-esterified fatty acid (NEFA; group H) and low NEFA (group L) groups based on their blood NEFA levels at week 3 postpartum, which served as an indicator of EB. The amounts of SCFAs produced in the rumen, including acetate, propionate, and butyrate (SCFAsP), were calculated using the predicted rumen volume. Because there were no differences between the groups in SCFAsP/dry matter intake, whereas 4% fat-corrected milk (FCM)/SCFAsP was significantly higher in group H, it was suggested that more body fat was mobilized for milk production in group H. However, group L, which showed better EB, had propionate dominant and lower FCM/SCFAsP and milk energy/SCFAs energy at 3 and 7 weeks postpartum, indicating that group L had a better energy supply for milk production. These results suggest that SCFAsP produced by rumen fermentation and the composition of SCFAs in the rumen affect milk production and EB.


Asunto(s)
Metabolismo Energético , Ácidos Grasos no Esterificados , Ácidos Grasos Volátiles , Fermentación , Lactancia , Leche , Rumen , Animales , Rumen/metabolismo , Bovinos/metabolismo , Bovinos/fisiología , Femenino , Ácidos Grasos Volátiles/metabolismo , Lactancia/metabolismo , Lactancia/fisiología , Leche/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/sangre , Embarazo , Paridad , Periodo Posparto/metabolismo , Propionatos/metabolismo
10.
World J Microbiol Biotechnol ; 40(10): 300, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39134917

RESUMEN

Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Gases de Efecto Invernadero , Ganado , Metano , Rumen , Metano/metabolismo , Animales , Rumen/microbiología , Rumen/metabolismo , Edición Génica/métodos , Gases de Efecto Invernadero/metabolismo , Bovinos , Cabras , Consorcios Microbianos , Ovinos , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Microbioma Gastrointestinal , Rumiantes/microbiología
11.
Anim Biotechnol ; 35(1): 2371519, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38990689

RESUMEN

The present study aimed to evaluate the effect of dry turmeric rhizomes on in vitro biogas production and diet fermentability. Turmeric rhizomes were included at gradually increased levels: 0, 0.5, 1, 1.5 and 2% of a diet containing per kg dr matter (DM): 500 g concentrate feed mixture, 400 g berseem hay and 100 g rice straw, and incubated for 48 h. Gas chromatography-mass spectrometry analysis showed that ar-turmerone, α-turmerone and ß-turmerone were the major bioactive compounds in the rhizomes. Turmeric rhizomes increased (p < 0.01) asymptotic gas production (GP) and rate and lag of CH4 production and decreased (p < 0.01) rate of GP, lag of GP, asymptotic CH4 production and proportion of CH4 production. Turmeric rhizome administration linearly increased (p < 0.01) DM and fiber degradability and concentrations of total short-chain fatty acids, acetic and propionic acids and ammonia-N and quadratically (p < 0.05) decreased fermentation pH. It is concluded that including up to 2% turmeric rhizomes improved in vitro ruminal fermentation and decreased CH4 production.


Asunto(s)
Curcuma , Fermentación , Metano , Rizoma , Curcuma/química , Rizoma/química , Animales , Metano/metabolismo , Rumen/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Digestión/efectos de los fármacos
12.
PLoS One ; 19(7): e0305674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024228

RESUMEN

This study aims to compare rumen microbiome and metabolites between second lactation dairy cows in the 75th percentile (n = 12; 57.2 ± 5.08 kg/d) of production according to genomic predicted transmitting ability for milk (GPTAM) and their counterparts in the 25th percentile (n = 12; 47.2 ± 8.61 kg/d). It was hypothesized that the metagenome and metabolome would differ between production levels. Cows were matched by days in milk (DIM), sire, occurrence of disease, and days open in previous lactation. For an additional comparison, the cows were also divided by phenotype into high (n = 6; 61.3 ± 2.8 kg/d), medium (n = 10; 55 ± 1.2 kg/d), and low (n = 8; 41.9 ± 5.6 kg/d) based on their milk production. Samples were collected 65 ± 14 DIM. Rumen content was collected using an oro-gastric tube and serum samples were collected from the coccygeal vessels. High-resolution liquid chromatography-mass spectrometry (LC-MS) was used for rumen and serum metabolite profiling. Shotgun metagenomics was used for rumen microbiome profiling. Microbiome sample richness and diversity were used to determine alpha and Bray-Curtis dissimilarity index was used to estimate beta diversity. Differences in metabolites were determined using t-tests or ANOVA. Pearson correlations were used to consider associations between serum metabolites and milk production. There was no evidence of a difference in rumen metabolites or microbial communities by GPTAM or phenotype. Cows in the phenotypic low group had greater serum acetate to propionate ratio and acetate proportion compared to the cows in the phenotypic medium group. Likewise, serum propionate proportion was greater in the medium compared to the low phenotypic group. Serum acetate, butyrate, and propionate concentrations had a weak positive correlation with milk production. When investigating associations between rumen environment and milk production, future studies must consider the impact of the ruminal epithelium absorption and post-absorption processes in relation to milk production.


Asunto(s)
Lactancia , Leche , Rumen , Animales , Bovinos , Rumen/microbiología , Rumen/metabolismo , Femenino , Leche/metabolismo , Leche/microbiología , Fenotipo , Metaboloma , Microbiota , Genómica/métodos , Metagenoma , Metabolómica/métodos , Multiómica
13.
Anim Sci J ; 95(1): e13983, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39053951

RESUMEN

This study aimed to clarify the efficacy of cashew nutshell liquid (CNSL) in methane emissions, milk production, and rumen fermentation of lactating cows in practical conditions. Ten Holstein lactating cows were used in a free-stall barn with a milking robot. Two treatments were arranged as control (no CNSL additive, n = 5) or CNSL addition (10 g/day of CNSL, n = 5) for 21 days after the 7-day preliminary period. A sniffer method was applied to predict daily methane production and methane conversion factor (MCF). In vitro, rumen gas production was also tested using the rumen fluid of individual cows. Daily dry matter intake (DMI), eating time, milk production, and methane production were not affected by the CNSL addition. However, methane production per DMI and MCF were lower (p ≤ 0.01) for the CNSL cows than those for the control cows. Ruminal total volatile fatty acid (VFA) concentration and acetate proportion tended to be lower (p < 0.15) for CNSL cows. A tendency to decrease (p < 0.10) in methane was also observed in the in vitro incubation with the rumen fluid obtained from the CNSL cows compared with those from the control cows. These results suggest that adding CNSL to diets could reduce the methane yield of cows in practical conditions.


Asunto(s)
Anacardium , Fermentación , Lactancia , Metano , Leche , Rumen , Animales , Bovinos/metabolismo , Metano/metabolismo , Metano/análisis , Femenino , Rumen/metabolismo , Leche/química , Leche/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Dieta/veterinaria , Alimentación Animal , Industria Lechera , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Acetatos
14.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-39051129

RESUMEN

The objective of this study was to evaluate effects of increasing the inclusion of dry-rolled hybrid rye (HR) as a replacement for dry-rolled barley grain (DRB) on feed intake, ruminal fermentation, and the site and extent of nutrient digestion for finishing cattle. Eight ruminally and duodenally cannulated Hereford-cross heifers were used in a replicated 4 × 4 Latin square design with 21-d periods including 15 d of dietary adaptation and 6 d of data and sample collection. Dietary treatments included a control diet with 10.00% grass hay, 85.21% DRB, 4.51% of a vitamin and mineral supplement, and 0.28% of urea on a dry matter (DM) basis. Hybrid rye grain replaced 33%, 67%, or 100% of the DRB. Feed ingredients, feed refusals, ruminal pH, ruminal fluid, duodenal digesta, and fecal samples were collected from days 18 to 21 in each period. Data were analyzed using the Proc Glimmix procedure of SAS 9.4 (SAS Inst. Inc., Cary, NC) to evaluate the linear, quadratic, and cubic effects of increasing HR inclusion. Increasing HR inclusion as a substitute for DRB linearly decreased (P < 0.01) DM intake, linearly decreased mean ruminal pH (P < 0.01), and increased the duration (P < 0.01) and area (P = 0.02) that ruminal pH was < 5.5. There were no effects of HR inclusion on total short chain fatty acid and lactic acid concentrations in ruminal fluid. Likewise, the molar proportions of acetate and butyrate were not affected by HR inclusion. Propionate was cubically affected by HR inclusion (P = 0.02). Ruminal ash-free neutral detergent fiber (aNDFom) digestibility linearly increased (P = 0.03) with increasing HR, but there was no effect on ruminal starch digestibility averaging 71.1% (SEM = 3.611). Increasing HR inclusion linearly increased intestinal DM digestibility (% of flow to the duodenum; P = 0.03), tended to linearly increase intestinal digestibility of organic matter (P = 0.08), and tended to quadratically affect intestinal digestibility of aNDFom (P = 0.07). Increasing hybrid rye linearly increased apparent total tract DM, organic matter, crude protein, aNDFom, and starch digestibility (P ≤ 0.05). In addition, increasing HR inclusion linearly increased GE digestibility (P < 0.01) and the DE concentration (P < 0.01). Increasing the inclusion rate of HR grain as a substitute for DRB in finishing diets decreased DMI and increased risk for low ruminal pH, which may be influenced by greater digestible energy concentration arising from greater DM, OM, aNDFom, and starch digestibility.


Rye grain is not a common cereal grain used for finishing cattle due to risk for ergot contamination and concerns with palatability; however, the development of varieties with low ergot risk may increase its use. In this study, dry matter intake, ruminal fermentation, and the site and extent of nutrient digestion were evaluated when dry-rolled hybrid rye (HR) replaced dry-rolled barley (DRB) in diets for finishing beef cattle. Increasing the inclusion of HR as a substitute for DRB linearly decreased dry matter intake while linearly increasing the duration that ruminal pH was <5.5. Ruminal digestibility of ash-free neutral detergent fiber (aNDFom) linearly increased with increasing HR inclusion, while ruminal starch digestibility was not affected. Total tract digestibility of dry matter, organic matter, crude protein, aNDFom, and starch, along with the digestible energy concentration, linearly increased as HR inclusion increased as a substitute for DRB. These results suggest that incorporating HR as a replacement for DRB has the potential to improve the ruminal digestibility of aNDFom and total tract digestibility for most chemical constituents but may reduce dry matter intake while increasing risk for low ruminal pH.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Digestión , Fermentación , Hordeum , Rumen , Secale , Animales , Bovinos/fisiología , Rumen/metabolismo , Secale/química , Femenino , Dieta/veterinaria , Digestión/efectos de los fármacos , Alimentación Animal/análisis , Hordeum/química , Ingestión de Alimentos , Grano Comestible/química
15.
Sci Rep ; 14(1): 16914, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043743

RESUMEN

Manipulation of the rumen microbial ecosystem in early life may affect ruminal fermentation and enhance the productive performance of dairy cows. The objective of this experiment was to evaluate the effects of dosing three different types of microbial inoculum on the rumen epithelium tissue (RE) transcriptome and the rumen epimural metatranscriptome (REM) in dairy calves. For this objective, 15 Holstein bull calves were enrolled in the study at birth and assigned to three different intraruminal inoculum treatments dosed orally once weekly from three to six weeks of age. The inoculum treatments were prepared from rumen contents collected from rumen fistulated lactating cows and were either autoclaved (control; ARF), processed by differential centrifugation to create the bacterial-enriched inoculum (BE), or through gravimetric separation to create the protozoal-enriched inoculum (PE). Calves were fed 2.5 L/d pasteurized waste milk 3x/d from 0 to 7 weeks of age and texturized starter until euthanasia at 9 weeks of age, when the RE tissues were collected for transcriptome and microbial metatranscriptome analyses, from four randomly selected calves from each treatment. The different types of inoculum altered the RE transcriptome and REM. Compared to ARF, 9 genes were upregulated in the RE of BE and 92 in PE, whereas between BE and PE there were 13 genes upregulated in BE and 114 in PE. Gene ontology analysis identified enriched GO terms in biological process category between PE and ARF, with no enrichment between BE and ARF. The RE functional signature showed different KEGG pathways related to BE and ARF, and no specific KEGG pathway for PE. We observed a lower alpha diversity index for RE microbiome in ARF (observed genera and Chao1 (p < 0.05)). Five microbial genera showed a significant correlation with the changes in host gene expression: Roseburia (25 genes), Entamoeba (two genes); Anaerosinus, Lachnospira, and Succiniclasticum were each related to one gene. sPLS-DA analysis showed that RE microbial communities differ among the treatments, although the taxonomic and functional microbial profiles show different distributions. Co-expression Differential Network Analysis indicated that both BE and PE had an impact on the abundance of KEGG modules related to acyl-CoA synthesis, type VI secretion, and methanogenesis, while PE had a significant impact on KEGGs related to ectoine biosynthesis and D-xylose transport. Our study indicated that artificial dosing with different microbial inocula in early life alters not only the RE transcriptome, but also affects the REM and its functions.


Asunto(s)
Rumen , Transcriptoma , Animales , Bovinos , Rumen/microbiología , Rumen/metabolismo , Epitelio/metabolismo , Epitelio/microbiología , Masculino , Microbioma Gastrointestinal/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Perfilación de la Expresión Génica/métodos
16.
Trop Anim Health Prod ; 56(6): 201, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990398

RESUMEN

The aim of this study was to explore the effect of replacing protein pellets with soybean grain in high-concentrate diets with or without the addition of silage, on the intake, digestibility, and rumen and blood parameters of feedlot cattle in tropical regions. Four cannulated, crossbred steers were used, 4.5 ± 0.5 years old, with an average weight of 685.55 ± 111.78 kg. The steers were distributed in a 4 × 4 Latin square, in a 2 × 2 factorial scheme (two sources of protein: protein pellets or whole soybean grain, with or without added dietary bulk). There was no effect (P ≥ 0.109) from the interaction between the source of protein and the addition of silage to the diet on dry matter (DM) and nutrient intake, or the digestibility (P ≥ 0.625) of DM or crude protein (CP). However, both factors affected (P ≤ 0.052) the intake of DM, neutral detergent fiber (NDF), and non-fiber carbohydrates (NFC), as well as the independent digestibility (P ≤ 0.099) of fat, NFC, total carbohydrates (TC), and total cholesterol concentration. There was an effect (P ≤ 0.053) from the interaction between the source of protein and the addition of silage to the diet on the digestibility of NDF and total digestible nutrients (TDN), as well as on the glycose concentration (P = 0.003). Blood parameters (i.e. protein, albumin, creatinine, triglycerides, aspartate aminotransferase (AST), and alanine aminotransferase (ALT)) were not affected (P ≥ 0.139) by the source of protein, the addition of silage, or their interaction. Lastly, including 150 g/kg silage DM in a high-grain diet, and using soybean grain as a source of protein in substitution of protein pellet could be a suitable nutritional strategy to ensure adequate DM and nutrient intake and digestibility, with no detrimental effects on rumen and blood parameters of feedlot cattle in the tropics.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Digestión , Glycine max , Rumen , Clima Tropical , Animales , Bovinos/sangre , Bovinos/fisiología , Bovinos/metabolismo , Rumen/metabolismo , Masculino , Alimentación Animal/análisis , Digestión/fisiología , Dieta/veterinaria , Ensilaje/análisis , Proteínas en la Dieta/metabolismo , Proteínas en la Dieta/administración & dosificación , Nutrientes/metabolismo
17.
Trop Anim Health Prod ; 56(6): 202, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992295

RESUMEN

The objective of the study was to determine whether adding grape seed oil (GSO) to the diet of primiparous Jersey breeds during the transition period would improve animal health by measuring effects on the rumen environment, serum biochemistry, oxidative response, and the composition and quality of milk. We used 14 Jersey heifers, weighing an average of 430 kg and 240 days of gestation. The animals were divided into two groups and offered a basal diet, including GSO in the concentrate for the GSO group (dose of 25 mL per animal day) and the same dose of soybean oil (SO) for the control group. The animals were allocated and maintained in a compost barn system, receiving an anionic diet (pre-partum) and a diet for postpartum lactating animals. Dry matter intake (DMI), milk production, serum biochemistry, serum and milk oxidative stability, ruminal fluid and milk fatty acid profile, milk qualitative aspects, and ruminal parameters such as pH, bacterial activity, and protozoan count were evaluated. The addition of GSO had a positive effect on the health of the cows, especially on the oxidative stability of the cows, by increasing total thiols (P = 0.03), higher plasma ferric reducing capacity (FRAP) (P = 0.01), and total antioxidant capacity (TAC) (P = 0.01). In the oxidative stability of the milk produced by the treated animals, there was also an increase in TAC (P = 0.05) and FRAP (P = 0.03). Discreet changes were observed in the ruminal environment with a decreasing trend in pH (P = 0.04) but an increase in bacterial activity (P = 0.05) and protozoa counts (P = 0.07) in cows that consumed the additive. GSO consumption affected the fatty acid profile in milk, increasing saturated fatty acids (SFA) (P = 0.05) and reducing unsaturated fatty acids (UFA) (P = 0.03). The oil did not affect milk production or efficiency in the postpartum period. Based on this information, it is concluded that the addition of GSO positively affects the cow's antioxidant system.


Asunto(s)
Alimentación Animal , Dieta , Lactancia , Leche , Rumen , Animales , Leche/química , Femenino , Bovinos , Rumen/parasitología , Rumen/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Embarazo , Fenómenos Fisiológicos Nutricionales de los Animales
18.
Sci Total Environ ; 949: 174618, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986687

RESUMEN

Understanding the dynamics of the rumen microbiome is crucial for optimizing ruminal fermentation to improve feed efficiency and addressing concerns regarding antibiotic resistance in the livestock production industry. This study aimed to investigate the adaptive effects of microbiome and the properties of carbohydrate-active enzymes (CAZy) and antibiotic resistance genes (ARGs) in response to dietary protein shifts. Twelve Charolais bulls were randomly divided into two groups based on initial body weight: 1) Treatment (REC), where the animals received a 7 % CP diet in a 4-week restriction period, followed by a 13 % CP diet in a 2-week re-alimentation period; 2) Control (CON), where the animals were fed the 13 % CP diet both in the restriction period and the re-alimentation period. Protein restriction decreased the concentrations of acetate, propionate, isovalerate, glutamine, glutamate, and isoleucine (P < 0.05), while protein re-alimentation increased the concentrations of arginine, methionine sulfoxide, lysine, and glutamate (P < 0.05). Protein restriction decreased the relative abundances of Bacteroidota but increased Proteobacteria, with no difference observed after re-alimentation. Protein restriction decreased relative abundances of the genera Bacteroides, Prevotella, and Bifidobacterium. Following protein recovery, Escherichia was enriched in CON, while Pusillibacter was enriched in REC, indicating that distinct microbial adaptations to protein shifts. Protein restriction increased GH97 while reducing GH94 and GT35 compared to CON. Protein restriction decreased abundances of KO genes involved in VFA production pathways, while they were recovered in the re-alimentation period. Protein restriction reduced tet(W/32/O) abundances but increased those of tet(X), nimJ, and rpoB2. Following protein re-alimentation, there was a decrease in ErmQ and tet(W/N/W), and an increase in Mef(En2) compared to CON, highlighting the impact of dietary protein on the distribution of antibiotic-resistant bacteria. Overall, comprehensive metagenomic analysis reveals the dynamic adaptability of the microbiome in response to dietary shifts, indicating its capacity to modulate carbohydrate metabolism and ARGs in response to protein availability.


Asunto(s)
Alimentación Animal , Rumen , Rumen/microbiología , Rumen/metabolismo , Animales , Alimentación Animal/análisis , Microbioma Gastrointestinal , Bovinos , Proteínas en la Dieta/metabolismo , Fermentación , Metagenómica , Dieta con Restricción de Proteínas , Masculino , Microbiota
19.
Trop Anim Health Prod ; 56(7): 219, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039346

RESUMEN

Soybean molasses (SBMO) is a byproduct derived from the production of soy protein concentrate, obtained through solubilization in water and alcohol. The utilization of SBMO as an animal feed ingredient shows promising potential, primarily due to its low cost and as a potential energy concentrate. This study aimed to assess the intake, digestibility, ruminal parameters (pH and ruminal ammonia - NH3), nitrogen retention (NR) and microbial protein synthesis in grazing beef cattle supplemented with SBMO as a substitute for corn during the rainy season. Five Nellore (10-month-old) bulls with an average initial weight of 246 ± 11.2 kg were utilized in a 5 × 5 Latin square design. The animals were housed in five paddocks, each consisting of 0.34 ha of Marandu grass (Urochloa brizantha). Five isonitrogenous protein-energy supplements (300 g crude protein [CP]/kg supplement) were formulated, with SBMO replacing corn at varying levels (0, 0.25, 0.50, 0.75, or 1.00 g-1 g). The supplements were provided daily at a quantity of 2.0 kg-1 animal. The inclusion of SBMO at any level of corn substitution did not significantly affect the intake of pasture dry matter or total dry matter (P > 0.10). Likewise, the intake of CP and, consequently, the ruminal concentration of NH3 did not differ among the SBMO levels. Increasing the inclusion of SBMO did not have a significant impact on NR (P > 0.10), indicating that animals receiving supplements containing 100% SBMO as a substitute for corn may perform similarly to animals receiving supplements with 100% corn (0% SBMO). Soybean molasses represents a viable alternative energy source for grazing beef cattle during the rainy season and can entirely replace corn without adversely affecting animal nutritional performance.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Digestión , Glycine max , Melaza , Rumen , Estaciones del Año , Animales , Bovinos/fisiología , Alimentación Animal/análisis , Melaza/análisis , Masculino , Glycine max/química , Suplementos Dietéticos/análisis , Rumen/metabolismo , Zea mays/química , Dieta/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales , Lluvia , Nitrógeno/metabolismo
20.
Sci Rep ; 14(1): 15476, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969828

RESUMEN

The Yunshang black goat is a renowned mutton specialist breed mainly originating from China that has excellent breeding ability with varying litter sizes. Litter size is an important factor in the economics of goat farming. However, ruminal microbiome structure might be directly or indirectly regulated by pregnancy-associated factors, including litter sizes. Therefore, the current experiment aimed to evaluate the association of different litter sizes (low versus high) with ruminal microbiome structure by 16S rRNA gene sequencing and metabolomic profiling of Yunshang black does. A total of twenty does of the Yunshang Black breed, approximately aged between 3 and 4 years, were grouped (n = 10 goats/group) into low (D-l) and high (D-h) litter groups according to their litter size (the lower group has ≤ 2 kids/litter and the high group has ≧ 3 kids/litter, respectively). All goats were sacrificed, and collected ruminal fluid samples were subjected to 16S rRNA sequencing and LC-MS/MC Analysis for ruminal microbiome and metabolomic profiling respectively. According to PCoA analysis, the ruminal microbiota was not significantly changed by the litter sizes among the groups. The Firmicutes and Bacteroidetes were the most dominant phyla, with an abundance of 55.34% and 39.62%, respectively. However, Ruminococcaceae_UCG-009, Sediminispirochaeta, and Paraprevotella were significantly increased in the D-h group, whereas Ruminococcaceae_UCG-010 and Howardella were found to be significantly decreased in the D-l group. The metabolic profiling analysis revealed that litter size impacts metabolites as 29 and 50 metabolites in positive and negative ionic modes respectively had significant differences in their regulation. From them, 16 and 24 metabolites of the D-h group were significantly down-regulated in the positive ionic mode, while 26 metabolites were up-regulated in the negative ionic mode for the same group. The most vibrant identified metabolites, including methyl linoleate, acetylursolic acid, O-desmethyl venlafaxine glucuronide, melanostatin, and arginyl-hydroxyproline, are involved in multiple biochemical processes relevant to rumen roles. The identified differential metabolites were significantly enriched in 12 different pathways including protein digestion and absorption, glycerophospholipid metabolism, regulation of lipolysis in adipocytes, and the mTOR signaling pathway. Spearman's correlation coefficient analysis indicated that metabolites and microbial communities were tightly correlated and had significant differences between the D-l and D-h groups. Based on the results, the present study provides novel insights into the regulation mechanisms of the rumen microbiota and metabolomic profiles leading to different fertility in goats, which can give breeders some enlightenments to further improve the fertility of Yunshang Black goats.


Asunto(s)
Cabras , Tamaño de la Camada , Metabolómica , ARN Ribosómico 16S , Rumen , Animales , Rumen/microbiología , Rumen/metabolismo , Femenino , ARN Ribosómico 16S/genética , Metabolómica/métodos , Metaboloma , Microbiota , Microbioma Gastrointestinal , Embarazo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...