Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 981
Filtrar
1.
PeerJ ; 12: e17881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346043

RESUMEN

Vepris Comm. ex A. Juss. is a genus of 96 species extending from Africa to India that are distinct in their unarmed stems and their digitately (1-)3(-5) foliolate leaflets, and whose many secondary compounds earn them uses in traditional medicine. Mziray (1992) subsumed six related genera into Vepris, with Vepris amaniensis (Engl.) Mziray becoming somewhat of a dustpan for ambiguous specimens (Cheek & Luke, 2023). This study, using material from the Kew herbarium, sought to pull out novel species from those previously incorrectly filed as Vepris amaniensis, and here describes the new species Vepris usambarensis sp. nov. This species is morphologically distinct from Vepris amaniensis with its canaliculate to winged petioles, 0.5-2.3 cm long inflorescences, 1-3 foliolate leaflets, and hairs on inflorescences and stem apices. Phytochemical analysis attributed seven compounds to Vepris usambarensis: tecleanthine (1), evoxanthine (2), 6-methoxytecleanthine (3), tecleanone (4), 1-(3,4-methylenedioxyphenyl)-1,2,3-propanetriol (5), lupeol (6), and arborinine (7). This is a unique mixture of compounds for a species of Vepris, though all are known to occur in the genus, with the exception of 1-(3,4-methylenedioxyphenyl)-1,2,3-propanetriol (5) which was characterized from a species in the Asteraceae. An attempt at constructing a phylogeny for Vepris using the ITS and trnL-F regions was made, but these two regions could not be used to differentiate at species level and it is suggested that 353 sequencing is used for further research. Originally more than one new species was hypothesized to be within the study group; however, separating an additional species was unsupported by the data produced. Further phylogenetic analysis is recommended to fully elucidate species relationships and identify any cryptic species that may be present within Vepris usambarensis.


Asunto(s)
Filogenia , Rutaceae , Rutaceae/clasificación
2.
Sci Rep ; 14(1): 19856, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191888

RESUMEN

This study aimed to reveal the diversity and variation in panicle traits of the Chinese prickly ash and clarify their influence on the its systematic classification to provide a theoretical basis and technical support for the efficient utilization of Chinese prickly ash germplasm resources and breeding. Sixteen panicle traits were identified from 35 Chinese prickly ash germplasm resources from 2021 to 2022. The diversity of these panicle traits and their role in the plant's systematic classification were studied using variance, correlation, cluster, and principal component analyses. Cluster analysis showed that the 35 Chinese prickly ash germplasm resources could be divided into two groups with Euclidean distances of 25. Further analysis showed that yield traits such as panicle length, panicle width, primary branching, grain number per panicle, and grain weight per panicle were significantly positively correlated with grain chlorophyll content, while grain anthocyanin content was negatively correlated with both panicle (panicle length, panicle width, panicle length to width ratio, primary branching, grain number per panicle, and grain weight per panicle) and grain characteristics (single grain weight, thousand-grain weight, grain length, grain width and fruit shape index). In conclusion, Chinese prickly ash germplasms have diverse panicle traits. Z. armatum has dark green grains, long and wide panicles, a long conical shape, many primary branches, high grain weight, and high grain number per panicle. In contrast, Z. bungeanum has bright red seeds, a panicle width larger than its length, short and conical panicles, a small number of primary branches, and low grain weight per panicle and number of grains per panicle. Overall, Z. armatum had a significant yield advantage over Z. bungeanum.


Asunto(s)
Rutaceae , Semillas , China , Clorofila/análisis , Análisis por Conglomerados , Variación Genética , Fenotipo , Fitomejoramiento , Análisis de Componente Principal , Carácter Cuantitativo Heredable , Semillas/crecimiento & desarrollo , Semillas/anatomía & histología , Rutaceae/clasificación
3.
J Exp Biol ; 227(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39054940

RESUMEN

The Order Lepidoptera contains nearly 160,000 described species and most of them are specialist herbivores that use restricted plant species as hosts. Speciation that originated from host shift is one of the important factors for the diversification of Lepidoptera. Because plants prepare secondary metabolites for defense against herbivores, with varying profiles of the components among different plant taxa, the specialist herbivores need to be adapted to the toxic substances unique to their host plants. Swallowtail butterflies of the genus Papilio consist of over 200 species. Approximately 80% of them utilize Rutaceae plants, and among the remaining species, a specific subgroup uses phylogenetically distant Apiaceae plants as larval hosts. Rutaceae and Apiaceae commonly contain toxic secondary metabolites, furanocoumarins, and molecular phylogenetic studies support the concept that Apiaceae feeders were derived from Rutaceae feeders. Molecular mechanisms underlying furanocoumarin tolerance in Papilio butterflies have been investigated almost exclusively in an Apiaceae feeder by an in vitro assay. In contrast, there is little information regarding the Rutaceae feeders. Here, we focused on a Rutaceae feeder, Papilio xuthus, and identified two furanocoumarin-responsive cytochrome P450-6B (CYP6B) genes, of which one was an ortholog of a furanocoumarin-metabolizing enzyme identified in the Apiaceae-feeding Papilio while the other was previously unreported. We further conducted in vivo functional analysis using the CRISPR/Cas9 system, revealing a contribution of these CYP6Bs to furanocoumarin tolerance of P. xuthus larvae. Our findings suggest that co-option of furanocoumarin-metabolizing CYP6B enzymes at least partially contributed to the host shift from Rutaceae to Apiaceae in Papilio butterflies.


Asunto(s)
Mariposas Diurnas , Sistema Enzimático del Citocromo P-450 , Furocumarinas , Rutaceae , Animales , Mariposas Diurnas/enzimología , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Furocumarinas/metabolismo , Furocumarinas/química , Rutaceae/metabolismo , Rutaceae/genética , Rutaceae/química , Larva/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Filogenia , Herbivoria
4.
Fitoterapia ; 177: 106083, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897253

RESUMEN

In an extensive screening endeavor for anti-coronaviral compounds, we examined 824 tropical plant extracts from the Annonaceae and Rutaceae families. The screening identified an ethyl acetate extract from the aerial parts of Miliusa balansae for its potent inhibitory activity against Human coronavirus HCoV-229E. Subsequent bioassay-guided fractionation of this extract revealed two unreported miliusanes including a complex dimeric structure and seven known compounds, comprising miliusane XXXVI, (+)-miliusol, bistyryls, styryl-pyranones, and the flavonoid rhamnetin. The absolute configuration of the new dimeric miliusane was determined by X-ray crystallography and a putative biogenetic origin was proposed. Investigation of the antiviral effect of these nine phytochemicals within HCoV-229E-infected Huh-7 cells showed that (+)-miliusol and miliusane XXXVI exert antiviral activity at non-cytotoxic concentrations, with IC50 values of 1.15 µM and 19.20 µM, respectively. Furthermore, these compounds significantly inhibited SARS-CoV-2 infection in Vero cells, presenting IC50 values of 11.31 µM for (+)-miliusol and 17.92 µM for miliusane XXXVI. Additionally, both compounds exhibited a potent antiviral effect against the emergent mosquito-borne Zika virus, with IC50 values of 1.34 µM and 23.45 µM, respectively. Time-of-addition assays suggest that their mechanism of action might target later stages of the viral cycle, indicating potential modulation of specific cellular pathways. These findings reinforce the invaluable contribution of medicinal flora as reservoirs of natural antiviral agents and emphasize their prospective role in combatting viruses of medical interest.


Asunto(s)
Antivirales , Antivirales/farmacología , Antivirales/aislamiento & purificación , Antivirales/química , Células Vero , Chlorocebus aethiops , Humanos , Animales , Estructura Molecular , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Componentes Aéreos de las Plantas/química , Rutaceae/química , SARS-CoV-2/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Annonaceae/química
5.
Chem Pharm Bull (Tokyo) ; 72(6): 574-583, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38866495

RESUMEN

In Vietnam, the stems and roots of the Rutaceous plant Paramignya trimera (Oliv.) Burkill (known locally as "Xáo tam phân") are widely used to treat liver diseases such as viral hepatitis and acute and chronic cirrhosis. In an effort to search for Vietnamese natural compounds capable of inhibiting coronavirus based on molecular docking screening, two new dimeric coumarin glycosides, namely cis-paratrimerin B (1) and cis-paratrimerin A (2), and two previously identified coumarins, the trans-isomers paratrimerin B (3) and paratrimerin A (4), were isolated from the roots of P. trimera and tested for their anti-angiotensin-converting enzyme 2 (ACE-2) inhibitory properties in vitro. It was discovered that ACE-2 enzyme was inhibited by cis-paratrimerin B (1), cis-paratrimerin A (2), and trans-paratrimerin B (3), with IC50 values of 28.9, 68, and 77 µM, respectively. Docking simulations revealed that four biscoumarin glycosides had good binding energies (∆G values ranging from -10.6 to -14.7 kcal/mol) and mostly bound to the S1' subsite of the ACE-2 protein. The key interactions of these natural ligands include metal chelation with zinc ions and multiple H-bonds with Ser128, Glu145, His345, Lys363, Thr371, Glu406, and Tyr803. Our findings demonstrated that biscoumarin glycosides from P. trimera roots occur naturally in both cis- and trans-diastereomeric forms. The biscoumarin glycosides Lys363, Thr371, Glu406, and Tyr803. Our findings demonstrated that biscoumarin glycosides from P. trimera roots hold potential for further studies as natural ACE-2 inhibitors for preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Cumarinas , Glicósidos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/química , Humanos , Cumarinas/química , Cumarinas/farmacología , Cumarinas/aislamiento & purificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , COVID-19/virología , Rutaceae/química , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Antivirales/química , Antivirales/aislamiento & purificación , Raíces de Plantas/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación
6.
BMC Plant Biol ; 24(1): 424, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764045

RESUMEN

Rutaceae family comprises economically important plants due to their extensive applications in spices, food, oil, medicine, etc. The Rutaceae plants is able to better utilization through biotechnology. Modern biotechnological approaches primarily rely on the heterologous expression of functional proteins in different vectors. However, several proteins are difficult to express outside their native environment. The expression potential of functional genes in heterologous systems can be maximized by replacing the rare synonymous codons in the vector with preferred optimal codons of functional genes. Codon usage bias plays a critical role in biogenetic engineering-based research and development. In the current study, 727 coding sequences (CDSs) obtained from the chloroplast genomes of ten Rutaceae plant family members were analyzed for codon usage bias. The nucleotide composition analysis of codons showed that these codons were rich in A/T(U) bases and preferred A/T(U) endings. Analyses of neutrality plots, effective number of codons (ENC) plots, and correlations between ENC and codon adaptation index (CAI) were conducted, which revealed that natural selection is a major driving force for the Rutaceae plant family's codon usage bias, followed by base mutation. In the ENC vs. CAI plot, codon usage bias in the Rutaceae family had a negligible relationship with gene expression level. For each sample, we screened 12 codons as preferred and high-frequency codons simultaneously, of which GCU encoding Ala, UUA encoding Leu, and AGA encoding Arg were the most preferred codons. Taken together, our study unraveled the synonymous codon usage pattern in the Rutaceae family, providing valuable information for the genetic engineering of Rutaceae plant species in the future.


Asunto(s)
Uso de Codones , Genoma del Cloroplasto , Plantas Medicinales , Rutaceae , Plantas Medicinales/genética , Rutaceae/genética , Codón/genética
7.
Fitoterapia ; 175: 105962, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641195

RESUMEN

Glycosmis pentaphylla, a member of the Rutaceae family, has been extensively studied for its pharmacological activities, focusing mainly on the cytotoxic properties of its roots and stems. Conversely, limited researched has been done in terms of the phytochemical composition of the fruits. The objective of this study is to isolate and identify the bioactive compounds found in the fruits of G. pentaphylla and then evaluate their potential for anti-cancer activity in oral cancer CAL 27 cell lines. The extraction of bioactive compounds from fruits was done by maceration, and the isolation of alkaloids and volatile oil fractions (F1-F5) was performed by column chromatography. The alkaloids, such as 3-O-methoxyglycocitrine II, noracronycine, 1-hydroxy-3-methoxy-10-methyl-9-acridone and kokusaginine, were first isolated from the fruits of G. pentaphylla. Additionally, GC-MS analysis identified 78 metabolites. The isolated compounds and identified volatile oil fractions were explored for their anti-cancer activity by cell viability assay. Results demonstrated that isolated compounds were found inactive, while the volatile fraction F1 was found active in CAL 27 cell line. Fraction F1 impeded wound healing in CAL 27 cells by scratch assay, and significantly inhibited colony formation in colony formation assay. In cell cycle analysis, treatment with fraction F1 redistributed cells to the S and G2 phases of the cell cycle. α-elemol (2) is the major metabolite identified from the F1 fraction by GC-MS, which could be responsible for the anti-cancer activity. There is potential for future work to further isolate volatile oil metabolites and evaluate their anti-cancer activity through in-vivo techniques.


Asunto(s)
Alcaloides , Antineoplásicos Fitogénicos , Frutas , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles , Fitoquímicos , Rutaceae , Frutas/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Rutaceae/química , Línea Celular Tumoral , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Humanos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Estructura Molecular
8.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474571

RESUMEN

The Euodia genus comprises numerous untapped medicinal plants that warrant thorough evaluation for their potential as valuable natural sources of herbal medicine or food flavorings. In this study, untargeted metabolomics and in vitro functional methods were employed to analyze fruit extracts from 11 significant species of the Euodia genus. An investigation of the distribution of metabolites (quinolone and indole quinazoline alkaloids) in these species indicated that E. rutaecarpa (Euodia rutaecarpa) was the most widely distributed species, followed by E. compacta (Euodia compacta), E. glabrifolia (Euodia glabrifolia), E. austrosinensis (Euodia austrosinensis), and E. fargesii (Euodia fargesii). There have been reports on the close correlation between indole quinazoline alkaloids and their anti-tumor activity, especially in E. rutaecarpa fruits which exhibit effectiveness against various types of cancer, such as SGC-7901, Hela, A549, and other cancer cell lines. Additionally, the E. rutaecarpa plant contains indole quinazoline alkaloids, which possess remarkable antibacterial properties. Our results offer novel insights into the utilization of Euodia resources in the pharmaceutical industry.


Asunto(s)
Alcaloides , Evodia , Plantas Medicinales , Quinolonas , Rutaceae , Humanos , Extractos Vegetales , Alcaloides Indólicos , Células HeLa , Quinazolinas
9.
Molecules ; 29(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474645

RESUMEN

Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of Annona cherimola, Diospyros kaki, Cydonia oblonga, and Fortunella margarita as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of D. kaki, whereas kaempferol glucoside and procyanidin A were present only in the pulp. In A. cherimola, catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of F. margarita peel extract. Naringenin and hesperidin were found only in the pulp of F. margarita. The most significant compositional variety between the peel and pulp extracts was observed for C. oblonga: Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. D. kaki and F. margarita peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The C. oblonga pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of A. cherimola inhibited mushroom tyrosinase but activated the murine enzyme. F. margarita pulp and peel extracts showed the highest in vitro SPF. A. cherimola, D. kaki, and F. margarita extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% (v/v) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics.


Asunto(s)
Annona , Catequina , Diospyros , Melanoma , Rosaceae , Rutaceae , Ratones , Animales , Humanos , Catequina/análisis , Antioxidantes/farmacología , Diospyros/química , Quempferoles/análisis , Monofenol Monooxigenasa , Pulgar , Frutas/química , Rosaceae/química , Rutina/análisis , Fitoquímicos/análisis , Extractos Vegetales/química
10.
Phytochemistry ; 221: 114042, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38417721

RESUMEN

Ethyl acetate fraction of Toddalia asiatica was fractionated to yield fifteen previously undescribed prenylated coumarins, asiaticasics A-O (1-15) along with nine (16-24) known derivatives. The structures of these undescribed coumarins were established by spectroscopic analysis and reference data. Biological activity evaluation showed that compound 3 with the IC50 value of 2.830 µM and compound 12 with the IC50 value of 0.682 µM owned anti-inflammatory activity by detecting the rate of lactate dehydrogenase release in pyroptosis J774A.1 cells. The results showed that the expression of Caspase-1 and IL-1ß was decreased in a dose-dependent manner in the compound 12 treatment group, suggesting that compound 12 may reduce pyroptosis by inhibiting NLRP3 inflammasome. To further determine that compound 12 treatment can inhibit macrophage pyroptosis, morphological observation was performed and the results were consistent with the bioactivity evaluation.


Asunto(s)
Cumarinas , Rutaceae , Cumarinas/química , Rutaceae/química , Extractos Vegetales/química , Antiinflamatorios/farmacología , Raíces de Plantas/química
11.
Phytochem Anal ; 35(4): 634-646, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38191127

RESUMEN

INTRODUCTION: Toddalia asiatica (TA) is a classical traditional Chinese medicine used to treat rheumatoid arthritis and contusions. However, research regarding TA quality control is currently limited. OBJECTIVE: We aimed to establish a strategy for identifying quality markers that can be used for the evaluation of the quality of TA. METHOD: A rapid and efficient ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantitative determination of 19 compounds in TA from different regions. Then, the extraction process of TA was successively optimized by single-factor optimization and response surface methodology. Moreover, chemometrics was employed to confirm the correlation between quality and target compounds. RESULTS: Utilizing the UHPLC-MS/MS method, separation of the 19 bioactive compounds was achieved within 14 min. The method was validated in terms of linearity (r2 > 0.9982), precision (0.08%-3.70%), repeatability (0.50%-2.54%), stability (2.26%-5.46%), and recovery (95.8%-113%). The optimal extraction process (extraction solvent, 65% ethanol aqueous solution; solid-liquid ratio, 1:20; extraction time, 25 min) was determined with the total content of 19 bioactive compounds as indicator. Significant disparities were observed in the contents of target compounds across different batches of TA. Besides, all samples could be categorized into two distinct groups, and magnoflorine, (-)-lyoniresinol, nitidine chloride, norbraylin, skimmianine, and decarine were identified as quality markers. CONCLUSION: In the present study, we developed a strategy to improve the quality control of TA. In consideration of the pharmacodynamic activity and statistical differences, six compounds are proposed as quality markers for TA.


Asunto(s)
Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Rutaceae/química , Quimiometría/métodos , Control de Calidad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Reproducibilidad de los Resultados
12.
J Oleo Sci ; 73(2): 263-273, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38233115

RESUMEN

Haplophyllum tuberculatum (Forssk.) A.Juss. volatile oils were obtained by distillation of the aerial parts of the plant growing in Libya during the summer and spring seasons. A yield and componential analysis revealed that the summer season oil, which is frequently used in traditional medicaments by North African communities, was high in yield (0.858%) compared to the spring season oil (0.47%), and distinguished by the presence of major and various diverse constituents, some of which are considered chemical markers. Owing to the traditional and high incidence of use of the summer-produced essential oil for the treatment of several disorders, including hepatic diseases, and fatigue, the oil was pharmacologically investigated for its varied bioactivities of anti-microbial, in vivo anti-oxidant, and in vitro anti-cancer properties. Thirty-three compounds were identified and represented 96.2% of the peaks in the GCchromatogram of the summer oil, in which the major volatile constituents were δ-3-carene (21.5%), bornyl acetate (16.9%), and limonene aldehyde (15.2%). The summer-based essential oil of the plant demonstrated moderate anti-bacterial activity against Gram-positive bacteria and a relatively strong antibacterial effect against Gram-negative bacteria as compared to the positive antibacterial controls, ampicillin and gentamicin, respectively. Also, antifungal activity against Aspergillus sp. was observed. The summerproduced oil also exhibited in vivo antioxidant and in vitro anti-cancer activities.


Asunto(s)
Aceites Volátiles , Rutaceae , Aceites Volátiles/química , Estaciones del Año , Antibacterianos/química , Antifúngicos , Antioxidantes/farmacología , Antioxidantes/química , Rutaceae/química , Pruebas de Sensibilidad Microbiana , Aceites de Plantas/farmacología , Aceites de Plantas/química
13.
Fitoterapia ; 172: 105759, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013059

RESUMEN

A pair of new enantiomeric indolopyridoquinazoline-type alkaloids, (+)-1,7S,8R- and (-)-1,7R,8S-trihydroxyrutaecarpine (3a and 3b), and a new limonoid-tyrosamine hybrid, austrosinin (8), along with six known alkaloids and limonoids, were isolated from the stems with leaves of Tetradium austrosinense. Their structures were elucidated on the basis of analysis of MS, NMR, ECD and time-dependent density functional theory-based electronic circular dichroism (TDDFT-ECD) calculations, as well as proposed biosynthetic pathway. An anti-inflammatory bioassay in vitro showed 8 had significant immunosuppressive effect against the production of pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Asunto(s)
Alcaloides , Limoninas , Rutaceae , Limoninas/farmacología , Limoninas/química , Estructura Molecular , Alcaloides/farmacología , Alcaloides/química , Rutaceae/química , Dicroismo Circular
15.
J Food Sci ; 88(12): 4942-4961, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37960942

RESUMEN

Nanoencapsulated bael fruit (Aegle marmelos L. Correa (Family: Rutaceae)) extracts reveal novel prospects in the development of dietary supplements with improved biological activities in the field of the food industry. The main objectives of this study were to prepare and characterize aqueous, ethanol, 50% ethanol, and 50% acetone extracts of bael fruit encapsulated alginate nanoparticles and investigate the effect of encapsulation on in vitro release of polyphenols, antidiabetic, antioxidant, and anti-inflammatory activities, and their stability. Bael fruit extracts encapsulated alginate nanoparticles were prepared using the ionic gelation method. Characterization, in vitro release profiles of polyphenols, determination of antidiabetic, anti-inflammatory, antioxidant activity, and accelerated stability were conducted. The results of the characterization confirmed the successful encapsulation of extracts of bael fruit in the alginate matrix. The aqueous extract of bael fruit encapsulated alginate nanoparticles exhibited a more controlled slow-release profile, accounting for 21.82% ± 1.17% and 48.14% ± 0.52% of polyphenols at solutions of pH 1.2 and pH 6.8, respectively. In general, the results of the bioactivity assessment suggested that nanoencapsulation could facilitate the enhancement of its antidiabetic, antioxidant, and anti-inflammatory properties. The results of thermogravimetric analysis and thin layer chromatography fingerprint showed the stability of aqueous bael fruit extract encapsulated alginate nanoparticles at 27 and 4°C over a month. In summary, the results of this study revealed the potency of nanoencapsulated aqueous extract of bael fruit to develop a dietary supplement with improved antidiabetic, antioxidant, and anti-inflammatory activities. PRACTICAL APPLICATION: The encapsulation of bael fruit extracts into a nanocarrier enhances bioactivities and promotes the controlled release of bioactive compounds. This could be useful in the future food industry, based on scientifically proven data, and inspire the market by means of the development of dietary supplements. Overall, the results would facilitate the formulation of novel commercially elegant nanoencapsulated dietary supplements with improved potential to manage a healthy life.


Asunto(s)
Aegle , Nanopartículas , Rutaceae , Aegle/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alginatos , Antioxidantes/farmacología , Frutas , Polifenoles , Suplementos Dietéticos , Hipoglucemiantes , Etanol , Antiinflamatorios/farmacología
16.
Chem Biodivers ; 20(12): e202300952, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37994297

RESUMEN

The genus Melicope, which consists of 230 species, stands out as the largest genus within the Rutaceae family. Melicope species are characterized by their evergreen nature and can range from shrubs to predominantly dioecious trees. The Melicope species have been utilized in traditional medicine to address a wide range of ailments, including fever, colds, cramps, and inflammation. These plants have gained significant attention due to their noteworthy ethnopharmacological and ethnomedicinal significance. Researchers have isolated numerous biologically active secondary metabolites from different Melicope species, which include polymethoxylated flavonoids, furanocoumarins, acetophenones, benzenoids, and quinolone alkaloids. These compounds exhibit diverse biological activities, such as antibacterial, antidiabetic, antifungal, and antiproliferative properties against human cancer cell lines. This review provides an update on the chemical constituents of the selected species of Melicope. The study also highlights the anticancer and cytotoxicity properties of the plant extracts and phytochemical constituents from Melicope species. Furthermore, the molecular mechanisms underlying the anticancer effects are elucidated. Overall, this review contributes to understanding the significant pharmacological potential of Melicope species and unlocking their chemical composition, emphasizing their relevance in the development of therapeutic agents, particularly in the field of cancer research.


Asunto(s)
Rutaceae , Humanos , Rutaceae/química , Medicina Tradicional , Etnofarmacología , Extractos Vegetales , Fitoquímicos/química , Fitoterapia
17.
Chin J Nat Med ; 21(11): 852-858, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38035940

RESUMEN

We reported the discovery of six novel coumarins, toddasirins A-F (1-6), each endowed with modified isoprenyl or geranyl side chains, derived from the roots of Toddalia asiatica. Comprehensive structural elucidation was achieved through multispectroscopic analyses, single-crystal X-ray diffraction experiments, and advanced quantum mechanical electronic circular dichroism (ECD) calculations. Furthermore, the anti-inflammatory activity of these compounds was assessed. Notably, compounds 1-3 and 6 demonstrated notable inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells, with 50% inhibitory concentration (IC50) values of 3.22, 4.78, 8.90, and 4.31 µmol·L-1, respectively.


Asunto(s)
Cumarinas , Rutaceae , Ratones , Animales , Cumarinas/farmacología , Cumarinas/química , Rutaceae/química , Antiinflamatorios/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Óxido Nítrico , Estructura Molecular
18.
Bol. latinoam. Caribe plantas med. aromát ; 22(6): 887-895, nov. 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1554532

RESUMEN

Hortia oreadica is indiscriminated used by people from Cerrado. However, vegetable raw material quality is decisive in obtaining inter mediate and final products. So, this study aimed to establish quality parameters of H. oreadica . For this, we performed the phytochemical screening of H. oreadica leaf and identified the best extractive conditions for phenolic compounds and flavonoids usin g factorial experimental design, varying the alcoholic strength, extraction temperature, and solid/liquid ratio in the ultrasound - assisted extraction method. The optimum extraction condition for phenolic compounds and flavonoids was 60% alcoholic strength, 40°C temperature, and a solid/liquid ratio of 8 mg/m L . Under this setting, the phenolic and flavonoid contents were 0.171 ± 0.002 mg/m L (predicted value = 0.165) and 0.087 ± 0.002 mg/m L (predicted value = 0.084), respectively. The optimized extraction par ameters could be upscaled to develop pharmaceutical drugs or nutraceutical products from this non - traditional plant species using an eco - friendly approach.


Hortia oreadica es utilizada indiscriminadamente por la gente del Cerrado. Sin embargo, la calidad de la materia prima vegetal es determinante en la obtención de productos intermedios y finales. Por lo tanto, este estudio tuvo como objetivo establecer parámetros de calidad de H. oreadica . Para ello, realizamos el tamizaje fitoquímico de la hoja de H. oreadica e identificamos las mejores condiciones extractivas para compuestos fenólicos y flavonoides mediante un diseño experimental factorial, variando el grado alcohólico, la temperatura de extracción y la relación sólido/líquido en el método de extracción asistido por ultrasonido. La condición óptima de extracción para compuestos fenólicos y flavonoides fue de 60% de grado alcohólico, 40°C de t emperatura y una relación sólido/líquido de 8 mg/m L . Bajo esta configuración, los contenidos de fenoles y flavonoides fueron 0,171 ± 0,002 mg/m L (valor previsto = 0,165) y 0,087 ± 0,002 mg/m L (valor previsto = 0,084), respectivamente. Los parámetros de ext racción optimizados podrían ampliarse para desarrollar fármacos o productos nutracéuticos a partir de esta especie de planta no tradicional uti lizando un enfoque ecológico .


Asunto(s)
Ultrasonido/métodos , Flavonoides/química , Extractos Vegetales/química , Rutaceae/química , Compuestos Fenólicos , Fenoles/química , Plantas Medicinales
19.
Sci Rep ; 13(1): 15161, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704836

RESUMEN

The substitution of wood apple juice and soybean powder in the seaweed jelly product can be used as an alternative to emergency supplementary feeding (ESF) for children under five years of age, which contains high protein, fiber, and calories. This study aimed to determine the effect of adding wood apple juice and soybean powder to the nutrition content, vitamin C, zinc, magnesium, total phenol, antioxidant activity, acceptability, and shelf-life of seaweed jelly products. This study was an experimental study with a completely randomized design with two treatment factors, which consisted of making seaweed jelly products with three different ratios of wood apple juice and soybean powder, 60:40 (F1), 50:50 (F2), and 40:60 (F3), dried at 40 °C (T1) and 50 °C (T2). Macronutrients were determined using proximate analysis. The total phenol and vitamin C were measured using Folin-ciocalteu reagent and UV-Vis spectrophotometry. Antioxidant activity was analyzed by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH). The contents of zinc and magnesium were evaluated through Atomic Absorption Spectrophotometry (AAS). Estimation of shelf life was determined with Accelerated Shelf-Life Test (ASLT) method and Arrhenius equation model. The best formula based on proximate analysis was F3, which contained 361.98 kcal of energy and 33.79 g of protein. The best formula (F1) dried at 40 °C; contains 56.28 mg/100 g vitamin C; zinc was 1.55 mg/100 g; magnesium was 79.25 mg/100 g; antioxidant activity (IC50) was 88.39 µg/mL; and total phenol was 8.59 mg GAE/g. The quality attributes of the best formula show the potential of the jelly as an emergency food despite its short shelf-life.


Asunto(s)
Malus , Rutaceae , Niño , Humanos , Preescolar , Glycine max , Polvos , Antioxidantes , Magnesio , Verduras , Vitaminas , Ácido Ascórbico , Fenol , Fenoles
20.
Trop Biomed ; 40(2): 152-159, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37650400

RESUMEN

Antibiotics which once a boon in medicine and saved millions of lives are now facing an ever-growing menace of antibacterial resistance, which desperately needs new antibacterial drugs which are innovative in chemistry and mode of action. For many years, the world has turned to natural plants with antibacterial properties to combat antibiotic resistance. On that basis, we aimed to identify plants with antibacterial and antibiotic potentiating properties. Seventeen different extracts of 3 plants namely Burkillanthus malaccensis, Diospyros hasseltii and Cleisthanthus bracteosus were tested against multi-drug resistant Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Methicillinresistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA). Antibacterial activity of hexane, methanol and chloroform extracts of bark, seed, fruit, flesh and leaves from these plants were tested using, disk diffusion assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiotic potentiating capabilities were tested using time-kill assay. B. malaccensis fruit chloroform extract showed the biggest zone of inhibition against MRSA (13.00±0.0 mm) but C. bracteosus bark methanol extract showed the biggest inhibition zone against MSSA (15.33±0.6 mm). Interestingly, bark methanol extract of C. bracteosus was active against MRSA (8.7±0.6 mm), MSSA (7.7±0.6 mm) (Gram-positive) and A. baumannii (7.7±0.6 mm) (Gram-negative). Overall, the leaf methanol and bark methanol extract of C. bracteosus warrants further investigation such as compound isolation and mechanism of action for validating its therapeutic use as antibiotic potentiator importantly against MRSA and A. baumannii.


Asunto(s)
Antibacterianos , Bacterias , Extractos Vegetales , Humanos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Cloroformo/farmacología , Diospyros/química , Metanol/farmacología , Extractos Vegetales/farmacología , Rutaceae/química , Phyllanthus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA