Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.933
Filtrar
1.
Sci Rep ; 14(1): 19411, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169092

RESUMEN

Uncontrolled bleeding during surgery is associated with high mortality and prolonged hospital stay, necessitating the use of hemostatic agents. Fibrin sealant patches offer an efficient solution to achieve hemostasis and improve patient outcomes in liver resection surgery. We have previously demonstrated the efficacy of a nanostructured fibrin-agarose hydrogel (NFAH). However, for the widespread distribution and commercialization of the product, it is necessary to develop an optimal preservation method that allows for prolonged stability and facilitates storage and distribution. We investigated cryopreservation as a potential method for preserving NFAH using trehalose. Structural changes in cryopreserved NFAH (Cryo-NFAH) were investigated and comparative in vitro and in vivo efficacy and safety studies were performed with freshly prepared NFAH. We also examined the long-term safety of Cryo-NFAH versus TachoSil in a rat partial hepatectomy model, including time to hemostasis, intra-abdominal adhesion, hepatic hematoma, inflammatory factors, histopathological variables, temperature and body weight, hemocompatibility and cytotoxicity. Structural analyses demonstrated that Cryo-NFAH retained most of its macro- and microscopic properties after cryopreservation. Likewise, hemostatic efficacy assays showed no significant differences with fresh NFAH. Safety evaluations indicated that Cryo-NFAH had a similar overall profile to TachoSil up to 40 days post-surgery in rats. In addition, Cryo-NFAH demonstrated superior hemostatic efficacy compared with TachoSil while also demonstrating lower levels of erythrolysis and cytotoxicity than both TachoSil and other commercially available hemostatic agents. These results indicate that Cryo-NFAH is highly effective hemostatic patch with a favorable safety and tolerability profile, supporting its potential for clinical use.


Asunto(s)
Criopreservación , Hemostáticos , Hidrogeles , Nanoestructuras , Sefarosa , Animales , Hidrogeles/química , Hemostáticos/farmacología , Hemostáticos/química , Ratas , Sefarosa/química , Criopreservación/métodos , Nanoestructuras/química , Fibrina/química , Masculino , Hepatectomía/métodos , Humanos , Hemostasis/efectos de los fármacos , Ratas Sprague-Dawley
2.
Carbohydr Polym ; 343: 122495, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174106

RESUMEN

Bacterial cellulose (BC) is gathering increased attention due to its remarkable physico-chemical features. The high biocompatibility, hydrophilicity, and mechanical and thermal stability endorse BC as a suitable candidate for biomedical applications. Nonetheless, exploiting BC for tissue regeneration demands three-dimensional, intricately shaped implants, a highly ambitious endeavor. This challenge is addressed here by growing BC within a sacrificial viscoelastic medium consisting of an agarose gel cast inside polydimethylsiloxane (PDMS) molds imprinted with the features of the desired implant. BC produced with and without agarose has been compared through SEM, TGA, FTIR, and XRD, probing the mild impact of the agarose on the BC properties. As a first proof of concept, a PDMS mold shaped as a doll's ear was used to produce a BC perfect replica, even for the smallest features. The second trial comprised a doll face imprinted on a PDMS mold. In that case, the BC production included consecutive deactivation and activation of the aerial oxygen stream. The resulting BC face clone fitted perfectly and conformally with the template doll face, while its rheological properties were comparable to those of collagen. This streamlining concept conveys to the biosynthesized nanocelluloses broader opportunities for more advanced prosthetics and soft tissue engineering uses.


Asunto(s)
Celulosa , Dimetilpolisiloxanos , Oxígeno , Sefarosa , Celulosa/química , Sefarosa/química , Oxígeno/química , Dimetilpolisiloxanos/química , Reología , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Andamios del Tejido/química
3.
ACS Synth Biol ; 13(8): 2447-2456, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39042670

RESUMEN

The realization of soft robotic devices with life-like properties requires the engineering of smart, active materials that can respond to environmental cues in similar ways as living cells or organisms. Cell-free expression systems provide an approach for embedding dynamic molecular control into such materials that avoids many of the complexities associated with genuinely living systems. Here, we present a strategy to integrate cell-free protein synthesis within agarose-based hydrogels that can be spatially organized and supplied by a synthetic vasculature. We first utilize an indirect printing approach with a commercial bioprinter and Pluronic F-127 as a fugitive ink to define fluidic channel structures within the hydrogels. We then investigate the impact of the gel matrix on the expression of proteins in E. coli cell-extract, which is found to depend on the gel density and the dilution of the expression system. When supplying the vascularized hydrogels with reactants, larger components such as DNA plasmids are confined to the channels or immobilized in the gels while nanoscale reaction components can diffusively spread within the gel. Using a single supply channel, we demonstrate different spatial protein concentration profiles emerging from different cell-free gene circuits comprising production, gene activation, and negative feedback. Variation of the channel design allows the creation of specific concentration profiles such as a long-term stable gradient or the homogeneous supply of a hydrogel with proteins.


Asunto(s)
Bioimpresión , Sistema Libre de Células , Escherichia coli , Hidrogeles , Hidrogeles/química , Escherichia coli/genética , Escherichia coli/metabolismo , Bioimpresión/métodos , Poloxámero/química , Plásmidos/genética , Redes Reguladoras de Genes , Expresión Génica/genética , Sefarosa/química , Biología Sintética/métodos
4.
Biomacromolecules ; 25(8): 4965-4976, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39007721

RESUMEN

As an emerging biomedical material, wound dressings play an important therapeutic function in the process of wound healing. It can provide an ideal healing environment while protecting the wound from a complex external environment. A hydrogel wound dressing composed of tilapia skin gelatin (Tsg) and fucoidan (Fuc) was designed in this article to enhance the microenvironment of wound treatment and stimulate wound healing. By mixing horseradish peroxidase (HRP), hydrogen peroxide (H2O2), tilapia skin gelatin-tyramine (Tsg-Tyr), and carboxylated fucoidan-tyramine in agarose (Aga), using the catalytic cross-linking of HRP/H2O2 and the sol-gel transformation of Aga, a novel gelatin-fucoidan (TF) double network hydrogel wound dressing was constructed. The TF hydrogels have a fast and adjustable gelation time, and the addition of Aga further enhances the stability of the hydrogels. Moreover, Tsg and Fuc are coordinated with each other in terms of biological efficacy, and the TF hydrogel demonstrated excellent antioxidant properties and biocompatibility in vitro. Also, in vivo wound healing experiments showed that the TF hydrogel could effectively accelerate wound healing, reduce wound microbial colonization, alleviate inflammation, and promote collagen deposition and angiogenesis. In conclusion, TF hydrogel wound dressings have the potential to replace traditional dressings in wound healing.


Asunto(s)
Gelatina , Hidrogeles , Peróxido de Hidrógeno , Polisacáridos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Animales , Polisacáridos/química , Polisacáridos/farmacología , Gelatina/química , Ratones , Tiramina/química , Tiramina/farmacología , Peroxidasa de Rábano Silvestre/química , Vendajes , Humanos , Sefarosa/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antioxidantes/farmacología , Antioxidantes/química
5.
J Chromatogr A ; 1731: 465198, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39059303

RESUMEN

Exploiting high-performance magnetic beads for specific enrichment of ribonucleic acid (RNA) has important significance in the biomedical research field. Herein, a simple strategy was proposed for fabricating boronate-decorated polyethyleneimine-grafted magnetic agarose beads (BPMAB), which can selectively isolate cis-diol-containing substances through boronate affinity. The size of the basic magnetic agarose beads was controlled through the emulsification of the water-in-oil emulsion with a high-speed shear machine, which enhanced the specific surface area of BPMAB. Subsequently, to modify more boronic acid ligands, branched PEI with excellent hydrophilicity and numerous reaction sites was grafted. 2,4-Difluoro-3-formylphenyl boronic acid (2,4-DFPBA) was covalently immobilized for selectively capturing cis-diol-containing substances under physiological condition (pH 7.4). The BPMAB with a diameter range from 1.86 µm to 11.60 µm possessed clearly spherical structure, and excellent magnetic responsiveness and suspension ability in aqueous solution. ß-Nicotinamide adenine dinucleotide (ß-NAD), a short-chain cis-diol carrying agent, was selected as a target molecule for evaluating the adsorption property of BPMAB and the maximum adsorption capacity of BPMAB for ß-NAD could reach 205.11 mg g-1. In addition, the BPMAB as adsorbent was used to selectively enrich RNA from mammalian cells. The maximum adsorption capacity of BPMAB for RNA was 140.50 mg g-1. Under optimized conditions, the BPMAB-based MSPE successfully enriched the high-quality total RNA with 28S to 18S ribosomal RNA ratios ranging from 2.06 to 2.16. According to the PCR analysis of GADPH gene, the extracted total RNA was successfully reverse transcribed into cDNA. Therefore, we believe that the BPMAB-based MSPE could be applicable for the specific enrichment of RNA from complex biological systems.


Asunto(s)
Ácidos Borónicos , Polietileneimina , ARN , Sefarosa , Ácidos Borónicos/química , Polietileneimina/química , Sefarosa/química , ARN/química , Humanos , Adsorción , Animales , Tamaño de la Partícula
6.
Int J Biol Macromol ; 277(Pt 1): 133960, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39029832

RESUMEN

Agarose from biomass can be used to synthesize the rare sugar 3,6-anhydro-L-galactose (L-AHG), and the new synthesis route and functional properties of L-AHG have always been the focus of research. Here we developed a novel method to co-immobilize Aga50D and BpGH117 onto streptavidin-coated magnetic nanoparticles and achieved the conversion of agarose to bioactive L-AHG in one pot. Results showed that enzymes were successfully immobilized on the carrier. The activity of co-immobilized enzymes was 2.5-fold higher than that of single immobilized enzymes. Compared with free enzymes, co-immobilized enzymes exhibited enhanced thermal stability. The co-immobilized enzymes retained 79.45 % relative activity at 40 °C for 3 h, while the free enzymes only possessed 21.40 % residual activity. After eight cycles, the co-immobilized enzymes still retained 73.47 % of the initial activity. After silica gel chromatography, the purity of L-AHG obtained by co-immobilized enzymes hydrolysis reached 83.02 %. Furthermore, bioactivity experiments demonstrated that L-AHG displayed better antioxidant and antibacterial effects than neoagarobiose. L-AHG had broad-spectrum antibacterial activity, while neoagarobiose and D-galactose did not show an obvious antibacterial effect. This study provides a feasible method for the production of L-AHG by a co-immobilized multi-enzyme system and confirms that L-AHG plays a key role in the bioactivity of neoagarobiose.


Asunto(s)
Enzimas Inmovilizadas , Galactosa , Glicósido Hidrolasas , Sefarosa , Sefarosa/química , Sefarosa/análogos & derivados , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Galactosa/análogos & derivados , Galactosa/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Antibacterianos/farmacología , Antibacterianos/química , Hidrólisis , Estabilidad de Enzimas , Antioxidantes/farmacología , Antioxidantes/química , Temperatura
7.
J Biol Inorg Chem ; 29(5): 531-540, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066798

RESUMEN

The elucidation of metal-dependent biological processes requires selective reagents for manipulating metal ion levels within biological solutions such as growth media or cell lysates. To this end, we immobilized a phosphine sulfide-stabilized phosphine (PSP) ligand on agarose to create a resin for the selective removal of copper from chemically complex biological media through simple filtration or centrifugation. Comprised of a conformationally preorganized phenylene-bridged backbone, the PSP-ligand binds Cu(I) with a 1:1 stoichiometry and exhibits a pH-independent Cu(I) dissociation constant in the low zeptomolar range. Neither Zn(II), Fe(II), nor Mn(II) interact with the ligand at millimolar concentrations, thus offering a much-improved selectivity towards copper over other commonly employed solid-supported chelators such as Chelex 100. As revealed by X-ray fluorescence elemental analysis, the immobilized chelator effectively removes copper from cell culture growth media and cell lysate isolated from mouse fibroblasts. In addition to preparing copper-depleted media or cell lysates for biological studies, PSP-immobilized ligands might prove equally useful for applications in radiochemistry, materials science, and environmental science.


Asunto(s)
Quelantes , Cobre , Fosfinas , Sefarosa , Cobre/química , Ligandos , Sefarosa/química , Animales , Ratones , Fosfinas/química , Quelantes/química , Sulfuros/química , Medios de Cultivo/química
8.
Int J Biol Macromol ; 277(Pt 1): 133753, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084974

RESUMEN

In the study, lycopene and resveratrol nanoemulsion hydrogel beads were prepared by using agarose­sodium alginate as a carrier and the semi-interpenetrating polymer network technique, characteristics and morphologies were evaluated by scanning electron microscopy, fluorescence microscopy, rheological measurement. The synergistic antioxidant effect of lycopene and resveratrol was confirmed, the best synergistic antioxidant performance is achieved when the ratio of 1:1. To increase the solubility and improve the stability, the lycopene was prepared as solid dispersion added to the nanoemulsion. The encapsulation rate of lycopene and resveratrol reached 93.60 ± 2.94 % and 89.30 ± 1.75 %, respectively, and the cumulative release showed that the addition of agarose slowed down the release rate of the compound, which improves the applicability of lycopene and resveratrol and development of carriers for the delivery of different bioactive ingredients.


Asunto(s)
Alginatos , Antioxidantes , Emulsiones , Hidrogeles , Licopeno , Resveratrol , Sefarosa , Alginatos/química , Resveratrol/química , Resveratrol/farmacología , Licopeno/química , Licopeno/farmacología , Sefarosa/química , Emulsiones/química , Antioxidantes/química , Antioxidantes/farmacología , Hidrogeles/química , Portadores de Fármacos/química , Solubilidad , Reología , Composición de Medicamentos , Nanopartículas/química , Liberación de Fármacos , Carotenoides/química
9.
Int J Biol Macromol ; 276(Pt 2): 133900, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019377

RESUMEN

An innovative pH-responsive nanocomposite, comprising agarose (AGA) modified with polyethylene glycol (PEG) hydrogel and coated with ferric oxide (Fe2O3), has been formulated to facilitate the precise administration of 5-fluorouracil (5-Fu) to breast cancer cells. By utilizing a double emulsion technique, the size of the nanocomposites was significantly reduced through the application of almond oil; the inclusion of span 80 further improved their uniformity. The physiochemical properties of the nanocomposite were thoroughly examined by Fourier Transformed Infrared (FT-IR), X-ray diffraction (XRD), Field Emission-Scanning Electron Microscope (FE-SEM), Vibrating Sample Magnetometer (VSM), dynamic light scattering (DLS), and zeta potential tests. The verification of the uniform particle distribution was achieved by employing FE-SEM and VSM analyses. The average diameter of the particles was 223 nm, and their zeta potential was -47.6 mV. In addition, the nanocomposite exhibited a regulated release of 5-Fu at pH 5.4 and pH 7.4, as indicated by an in vitro drug release profile. PEG-AGA- Fe2O3@5-Fu exhibited biocompatibility, as indicated by the lack of deleterious effects observed in tumor cells. This revolutionary nanocomposite demonstrates exceptional promise for breast cancer treatment, underscoring its significance as a major advancement in the pursuit of novel nanotechnologies for cancer therapy.


Asunto(s)
Compuestos Férricos , Fluorouracilo , Hidrogeles , Nanocompuestos , Polietilenglicoles , Sefarosa , Fluorouracilo/química , Fluorouracilo/farmacología , Polietilenglicoles/química , Sefarosa/química , Compuestos Férricos/química , Humanos , Nanocompuestos/química , Hidrogeles/química , Liberación de Fármacos , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral
10.
Biomed Pharmacother ; 177: 117051, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959608

RESUMEN

Due to the limitations of the current skin wound treatments, it is highly valuable to have a wound healing formulation that mimics the extracellular matrix (ECM) and mechanical properties of natural skin tissue. Here, a novel biomimetic hydrogel formulation has been developed based on a mixture of Agarose-Collagen Type I (AC) combined with skin ECM-related components: Dermatan sulfate (DS), Hyaluronic acid (HA), and Elastin (EL) for its application in skin tissue engineering (TE). Different formulations were designed by combining AC hydrogels with DS, HA, and EL. Cell viability, hemocompatibility, physicochemical, mechanical, and wound healing properties were investigated. Finally, a bilayered hydrogel loaded with fibroblasts and mesenchymal stromal cells was developed using the Ag-Col I-DS-HA-EL (ACDHE) formulation. The ACDHE hydrogel displayed the best in vitro results and acceptable physicochemical properties. Also, it behaved mechanically close to human native skin and exhibited good cytocompatibility. Environmental scanning electron microscopy (ESEM) analysis revealed a porous microstructure that allows the maintenance of cell growth and ECM-like structure production. These findings demonstrate the potential of the ACDHE hydrogel formulation for applications such as an injectable hydrogel or a bioink to create cell-laden structures for skin TE.


Asunto(s)
Materiales Biomiméticos , Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Humanos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ingeniería de Tejidos/métodos , Supervivencia Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Cicatrización de Heridas/efectos de los fármacos , Colágeno Tipo I/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Dermatán Sulfato/química , Dermatán Sulfato/farmacología , Fibroblastos/efectos de los fármacos , Elastina/química , Matriz Extracelular/metabolismo , Biomimética/métodos , Sefarosa/química , Dermis/efectos de los fármacos , Dermis/metabolismo , Dermis/citología , Animales
11.
Int J Pharm ; 661: 124436, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977165

RESUMEN

Biotherapeutics is the fastest growing class of drugs administered by subcutaneous injection. In vitro release testing mimicking physiological conditions at the injection site may guide formulation development and improve biopredictive capabilities. Here, anin vitrorelease cartridge (IVR cartridge) comprising a porous agarose matrix emulating subcutaneous tissue was explored. The objective was to assess effects of medium composition and incorporation of human serum albumin into the matrix. Drug disappearance was assessed for solution, suspension and in situ precipitating insulin products (Actrapid, Levemir, Tresiba, Mixtard 30, Insulatard, Lantus) using the flow-based cartridge. UV-Vis imaging and light microscopy visualized dissolution, precipitation and albumin binding phenomena at the injection site. Divalent cations present in the release medium resulted in slower insulin disappearance for suspension-based and in situ precipitating insulins. Albumin-binding acylated insulin analogs exhibited rapid disappearance from the cartridge; however, sustained retention was achieved by coupling albumin to the matrix. An in vitro-in vivorelation was established for the non-albumin-binding insulins.The IVR cartridge is flexible with potential in formulation development as shown by the ability to accommodate solutions, suspensions, and in situ forming formulations while tailoring of the system to probe in vivo relevant medium effects and tissue constituent interactions.


Asunto(s)
Liberación de Fármacos , Inyecciones Subcutáneas , Humanos , Insulina/administración & dosificación , Insulina/química , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Sefarosa/química , Unión Proteica , Química Farmacéutica/métodos , Masculino
12.
Biofabrication ; 16(4)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38955197

RESUMEN

Plasma cells (PCs) in bone marrow (BM) play an important role in both protective and pathogenic humoral immune responses, e.g. in various malignant and non-malignant diseases such as multiple myeloma, primary and secondary immunodeficiencies and autoimmune diseases. Dedicated microenvironmental niches in the BM provide PCs with biomechanical and soluble factors that support their long-term survival. There is a high need for appropriate and robust model systems to better understand PCs biology, to develop new therapeutic strategies for PCs-related diseases and perform targeted preclinical studies with high predictive value. Most preclinical data have been derived fromin vivostudies in mice, asin vitrostudies of human PCs are limited due to restricted survival and functionality in conventional 2D cultures that do not reflect the unique niche architecture of the BM. We have developed a microphysiological, dynamic 3D BM culture system (BM-MPS) based on human primary tissue (femoral biopsies), mechanically supported by a hydrogel scaffold casing. While a bioinert agarose casing did not support PCs survival, a photo-crosslinked collagen-hyaluronic acid (Col-HA) hydrogel preserved the native BM niche architecture and allowed PCs survivalin vitrofor up to 2 weeks. Further, the Col-HA hydrogel was permissive to lymphocyte migration into the microphysiological system´s circulation. Long-term PCs survival was related to the stable presence in the culture of soluble factors, as APRIL, BAFF, and IL-6. Increasing immunoglobulins concentrations in the medium confirm their functionality over culture time. To the best of our knowledge, this study is the first report of successful long-term maintenance of primary-derived non-malignant PCsin vitro. Our innovative model system is suitable for in-depthin vitrostudies of human PCs regulation and exploration of targeted therapeutic approaches such as CAR-T cell therapy or biologics.


Asunto(s)
Hidrogeles , Células Plasmáticas , Humanos , Células Plasmáticas/citología , Células Plasmáticas/metabolismo , Hidrogeles/química , Supervivencia Celular/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Células de la Médula Ósea/citología , Colágeno/química , Médula Ósea/metabolismo , Células Cultivadas , Técnicas de Cultivo Tridimensional de Células , Modelos Biológicos , Andamios del Tejido/química , Sefarosa/química
13.
J Chromatogr A ; 1730: 465107, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38905946

RESUMEN

The use of nanobodies (Nbs) in affinity chromatography for biomacromolecule purification is gaining popularity. However, high-performance Nb-based affinity resins are not readily available, mainly due to the lack of suitable immobilization methods. In this study, we explored an autocatalytic coupling strategy based on the SpyCatcher/SpyTag chemistry to achieve oriented immobilization of Nb ligands. To facilitate this approach, a variant cSpyCatcher003 (cSC003) was coupled onto agarose microspheres, providing a specific attachment site for SpyTagged nanobody ligands. The cSC003 easily purified from Escherichia coli through a two-step procedure, exhibits exceptional alkali resistance and structural recovery capability, highlighting its robustness as a linker in the coupling strategy. To validate the effectiveness of cSC003-derivatized support, we employed VHSA, a nanobody against human serum albumin (HSA), as the model ligand. Notably, the immobilization of SpyTagged VHSA onto the cSC003-derivatized support was achieved with a coupling efficiency of 90 %, significantly higher than that of traditional thiol-based coupling method. This improvement directly correlated to the preservation of the native conformation of nanobodies during the coupling process. In addition, the Spy-immobilized resin demonstrated better performance in the binding capacity, with a 3-fold improvement in capture efficiency, underscoring the advantages of the Spy immobilization strategy for oriented immobilization of VHSA ligands. Moreover, online purification and immobilization of SpyTagged VHSA from crude bacterial lysate was achieved using the cSC003-derivatized support. The resulting resin exhibited high binding specificity towards HSA, yielding a purity above 95 % directly from human serum, and maintained good stability throughout multiple purification cycles. These findings highlight the potential of the Spy immobilization strategy for developing Nb-based affinity chromatographic materials, with significant implications for biopharmaceutical downstream processes.


Asunto(s)
Cromatografía de Afinidad , Albúmina Sérica Humana , Anticuerpos de Dominio Único , Cromatografía de Afinidad/métodos , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Humanos , Albúmina Sérica Humana/química , Escherichia coli/química , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología , Ligandos , Sefarosa/química , Péptidos
14.
Sci Rep ; 14(1): 13957, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886515

RESUMEN

Heteropolysaccharides are among the most widely distributed compounds in nature, acting as both tissue building blocks and as a source of nutrients. Their physicochemical and biological properties have been studied thoroughly; however, the microstructural properties of heteropolysaccharides are still poorly understood. This study aims to investigate the micro-structural peculiarities of agarose, gum arabic, hyaluronic and alginic acids by means of confocal laser scanning microscopy (CLSM) and cryogenic scanning electron microscopy (cryo-SEM). Herein, attention is paid to layered complexity of the microstructure differentiating surface, under surface, inner, and substrate interface layers. The scale and pattern of the polysaccharide's microstructure depend on the concentration, changing from lamellae to cell-like porous structures. This work provides the insight into micro- and nanoscale mechanisms of self-healing and substrate-induced reorganisation. Thus, investigation of the self-healing mechanism revealed that this diffusion-based process starts from the fibres, turning into lamellae, following by cell-like structures with smaller dimensions. Investigation of the substrate-induced reorganisation ability showed that nano-to-micro (scale) porous substrate causes reorganisation in the interface layer of the studied heteropolysaccharides. This work contributes to understanding the structural peculiarities of heteropolysaccharides by looking at them through a supramolecular, micro-level prism.


Asunto(s)
Polisacáridos , Polisacáridos/química , Microscopía Confocal , Soluciones , Alginatos/química , Microscopía Electrónica de Rastreo , Goma Arábiga/química , Sefarosa/química , Ácido Hialurónico/química , Microscopía por Crioelectrón
15.
Molecules ; 29(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38893374

RESUMEN

Bone tissue engineering (BTE) is the most promising strategy to repair bones injuries and defects. It relies on the utilization of a temporary support to host the cells and promote nutrient exchange (i.e., the scaffold). Supercritical CO2 assisted drying can preserve scaffold nanostructure, crucial for cell attachment and proliferation. In this work, agarose aerogels, loaded with hydroxyapatite were produced in view of BTE applications. Different combinations of agarose concentration and hydroxyapatite loadings were tested. FESEM and EDX analyses showed that scaffold structure suffered from partial closure when increasing filler concentration; hydroxyapatite distribution was homogenous, and Young's modulus improved. Looking at BTE applications, the optimal combination of agarose and hydroxyapatite resulted to be 1% w/w and 10% w/v, respectively. Mechanical properties showed that the produced composites could be eligible as starting scaffold for BTE, with a Young's Modulus larger than 100 kPa for every blend.


Asunto(s)
Huesos , Durapatita , Módulo de Elasticidad , Sefarosa , Ingeniería de Tejidos , Andamios del Tejido , Sefarosa/química , Ingeniería de Tejidos/métodos , Durapatita/química , Andamios del Tejido/química , Geles/química , Humanos , Ensayo de Materiales , Materiales Biocompatibles/química
16.
ACS Appl Mater Interfaces ; 16(24): 30874-30889, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38856922

RESUMEN

A new composite sponge assisted by magnetic field-mediated guidance was developed for effective hemostasis. It was based on polydopamine capillary-channel agarose (PDA-CAGA) sponge as matrix; meanwhile, the combination of deep eutectic solvent (DES, choline chloride:glycerol = 1:1, M/M)-dispersed Fe3O4 nanoparticles after fabrication by tannic acid (DES-Fe3O4@TA) was applied as hemostatic magnetic fluid. This sponge had oriented and aligned capillary channels realized by a 3D printed pattern, which endowed them with obvious shape memory and liquid absorption performance. Computational simulation was performed to describe the fluid status in channels; DES-Fe3O4@TA exhibited good magnetic properties, fluidity, and stability. In addition, the sponge driven to react rapidly with the bleeding site under the effect of a magnetic field presented a shorter hemostasis time (reduced by 85.02% in the tail and 81.07% in the liver of rats) and less blood loss (reduced by 97.08% in the tail and 91.50% in the liver) than those of medical gelatin sponge (GS). Meanwhile, the multifunctional material also exhibited better biocompatibility, procoagulant performance, and significant inhibition on S. aureus and E. coli than GS. As a whole, this work proposed a new strategy for rapid hemostasis by designing a magnetic field assisted composite bacteriostatic material, which also expanded the applications of green solvents in the clinical management field.


Asunto(s)
Escherichia coli , Sefarosa , Staphylococcus aureus , Animales , Ratas , Sefarosa/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Solventes/química , Hemostasis/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , Indoles/química , Antibacterianos/química , Antibacterianos/farmacología , Hemostáticos/química , Hemostáticos/farmacología , Campos Magnéticos , Masculino , Ratas Sprague-Dawley
17.
J Chromatogr A ; 1726: 464965, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733925

RESUMEN

Aristolochic acids (AAs) naturally occurring in the herbal genus Aristolochia are associated with a high risk of kidney failure, multiple tumors and cancers. However, approaches with high selectivity and rapidity for measuring AAs in biological samples are still inadequate. Inspired by the mechanism of AAs-induced nephrotoxicity, we designed a hybrid magnetic polymer-porous agarose (denoted as MNs@SiO2M@DNV-A), mimicking the effect of basic and aromatic residues of organic anion transporter 1 (OAT1) for efficient enriching aristolochic acid I (AA I) and aristolochic acid II (AA II) in the plasma. The monomers of vinylbenzyl trimethylammonium chloride (VBTAC), N-vinyl-2-pyrrolidinone (NVP) and divinylbenzene (DVB) were employed to construct the polymer layer, which provided a selective adsorption for AAs by multiple interactions. The porous agarose shell contributed to remove interfering proteins in the plasma samples. A magnetic solid-phase extraction (MSPE) based on the proposed composite enhanced the selectivity toward AA I and AA II in the plasma samples. In combination of HPLC analysis, the proposed method was proved to be applicable to fast and specific quantification of AAs in blood samples, which was characterized by a good linearity, high sensitivity, acceptable recovery, excellent repeatability and satisfactory reusability.


Asunto(s)
Ácidos Aristolóquicos , Compuestos de Amonio Cuaternario , Sefarosa , Extracción en Fase Sólida , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/aislamiento & purificación , Ácidos Aristolóquicos/sangre , Sefarosa/química , Extracción en Fase Sólida/métodos , Compuestos de Amonio Cuaternario/química , Cromatografía Líquida de Alta Presión/métodos , Porosidad , Límite de Detección , Animales , Humanos , Polímeros/química , Adsorción , Reproducibilidad de los Resultados
18.
Carbohydr Polym ; 338: 122201, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763726

RESUMEN

Agarans represent a group of galactans extracted from red algae. Funoran and agarose are the two major types and commercially applied polysaccharides of agaran. Although the glycoside hydrolases targeting ß-glycosidic bonds of agaran have been widely investigated, those capable of degrading α-glycosidic bonds of agarose were limited, and the enzyme degrading α-linkages of funoran has not been reported till now. In this study, a GH96 family enzyme BiAF96A_Aq from a marine bacterium Aquimarina sp. AD1 was heterologously expressed in Escherichia coli. BiAF96A_Aq exhibited dual activities towards the characteristic structure of funoran and agarose, underscoring the multifunctionality of GH96 family members. Glycomics and NMR analysis revealed that BiAF96A_Aq hydrolyzed the α-1,3 glycosidic bonds between 3,6-anhydro-α-l-galactopyranose (LA) and ß-d-galactopyranose-6-sulfate (G6S) of funoran, as well as LA and ß-d-galactopyranose (G) of agarose, through an endo-acting manner. The end products of BiAF96A_Aq were majorly composed of disaccharides and tetrasaccharides. The identification of the activity of BiAF96A_Aq on funoran indicated the first discovery of the funoran hydrolase for α-1,3 linkage. Considering the novel catalytic reaction, we proposed to name this activity as "α-funoranase" and recommended the assignment of a dedicated EC number for its classification.


Asunto(s)
Glicósido Hidrolasas , Sefarosa , Sefarosa/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Hidrólisis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Galactanos/química , Galactanos/metabolismo
19.
Anal Chem ; 96(22): 9167-9176, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38761141

RESUMEN

The detection of virus RNA in wastewater has been established as a valuable method for monitoring Coronavirus disease 2019. Carbon nanomaterials hold potential application in separating virus RNA owing to their effective adsorption and extraction capabilities. However, carbon nanomaterials have limited separability under homogeneous aqueous conditions. Due to the stabilities in their nanostructure, it is a challenge to efficiently immobilize them onto magnetic beads for separation. Here, we develop a porous agarose layered magnetic graphene oxide (GO) nanocomposite that is prepared by agglutinating ferroferric oxide (Fe3O4) beads and GO with agarose into a cohesive whole. With an average porous size of approximately 500 nm, the porous structure enables the unhindered entry of virus RNA, facilitating its interaction with the surface of GO. Upon the application of a magnetic field, the nucleic acid can be separated from the solution within a few minutes, achieving adsorption efficiency and recovery rate exceeding 90% under optimized conditions. The adsorbed nucleic acid can then be preserved against complex sample matrix for 3 days, and quantitatively released for subsequent quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection. The developed method was successfully utilized to analyze wastewater samples obtained from a wastewater treatment plant, detecting as few as 10 copies of RNA molecules per sample. The developed aMGO-RT-qPCR provides an efficient approach for monitoring viruses and will contribute to wastewater-based surveillance of community infections.


Asunto(s)
Grafito , Nanocompuestos , ARN Viral , Sefarosa , Aguas Residuales , Grafito/química , Aguas Residuales/virología , Aguas Residuales/química , ARN Viral/análisis , ARN Viral/aislamiento & purificación , Sefarosa/química , Nanocompuestos/química , Porosidad , Adsorción
20.
Sci Rep ; 14(1): 10931, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740842

RESUMEN

Biomaterial scaffolds play a pivotal role in the advancement of cultured meat technology, facilitating essential processes like cell attachment, growth, specialization, and alignment. Currently, there exists limited knowledge concerning the creation of consumable scaffolds tailored for cultured meat applications. This investigation aimed to produce edible scaffolds featuring both smooth and patterned surfaces, utilizing biomaterials such as salmon gelatin, alginate, agarose and glycerol, pertinent to cultured meat and adhering to food safety protocols. The primary objective of this research was to uncover variations in transcriptomes profiles between flat and microstructured edible scaffolds fabricated from marine-derived biopolymers, leveraging high-throughput sequencing techniques. Expression analysis revealed noteworthy disparities in transcriptome profiles when comparing the flat and microstructured scaffold configurations against a control condition. Employing gene functional enrichment analysis for the microstructured versus flat scaffold conditions yielded substantial enrichment ratios, highlighting pertinent gene modules linked to the development of skeletal muscle. Notable functional aspects included filament sliding, muscle contraction, and the organization of sarcomeres. By shedding light on these intricate processes, this study offers insights into the fundamental mechanisms underpinning the generation of muscle-specific cultured meat.


Asunto(s)
Diferenciación Celular , Carne in Vitro , Andamios del Tejido , Transcriptoma , Animales , Alginatos/química , Materiales Biocompatibles/química , Biopolímeros , Gelatina/química , Perfilación de la Expresión Génica , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Salmón , Sefarosa/química , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...