Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.801
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2409605121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985768

RESUMEN

Members of the synaptophysin and synaptogyrin family are vesicle proteins with four transmembrane domains. In spite of their abundance in synaptic vesicle (SV) membranes, their role remains elusive and only mild defects at the cellular and organismal level are observed in mice lacking one or more family members. Here, we show that coexpression with synapsin in fibroblasts of each of the four brain-enriched members of this family-synaptophysin, synaptoporin, synaptogyrin 1, and synaptogyrin 3-is sufficient to generate clusters of small vesicles in the same size range of SVs. Moreover, mice lacking all these four proteins have larger SVs. We conclude that synaptophysin and synaptogyrin family proteins play an overlapping function in the biogenesis of SVs and in determining their small size.


Asunto(s)
Vesículas Sinápticas , Sinaptogirinas , Sinaptofisina , Animales , Sinaptofisina/metabolismo , Sinaptofisina/genética , Vesículas Sinápticas/metabolismo , Ratones , Sinaptogirinas/metabolismo , Sinaptogirinas/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Ratones Noqueados , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratas , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética
2.
Elife ; 132024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042440

RESUMEN

Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ microwaves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7, or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer in a titre-dependent fashion. Ca2+ microwaves developed in hippocampal CA1 and CA3, but not dentate gyrus nor neocortex, were typically first observed at 4 wk after viral transduction, and persisted up to at least 8 wk. The phenomenon was robust and observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ microwaves depend on the promoter and viral titre of the GECI, density of expression, as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artefact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ microwaves, and we provide a potential solution.


Asunto(s)
Calcio , Dependovirus , Hipocampo , Sinapsinas , Animales , Dependovirus/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Calcio/metabolismo , Hipocampo/metabolismo , Ratones , Vectores Genéticos , Transducción Genética , Regiones Promotoras Genéticas , Ratones Endogámicos C57BL , Masculino
3.
Cell Commun Signal ; 22(1): 371, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044222

RESUMEN

BACKGROUND: Protein kinase A (PKA) enhances neurotransmission at the neuromuscular junction (NMJ), which is retrogradely regulated by nerve-induced muscle contraction to promote Acetylcholine (ACh) release through the phosphorylation of molecules involved in synaptic vesicle exocytosis (SNAP-25 and Synapsin-1). However, the molecular mechanism of the retrograde regulation of PKA subunits and its targets by BDNF/TrkB pathway and muscarinic signalling has not been demonstrated until now. At the NMJ, retrograde control is mainly associated with BDNF/TrkB signalling as muscle contraction enhances BDNF levels and controls specific kinases involved in the neurotransmission. Neurotransmission at the NMJ is also highly modulated by muscarinic receptors M1 and M2 (mAChRs), which are related to PKA and TrkB signallings. Here, we investigated the hypothesis that TrkB, in cooperation with mAChRs, regulates the activity-dependent dynamics of PKA subunits to phosphorylate SNAP-25 and Synapsin-1. METHODS: To explore this, we stimulated the rat phrenic nerve at 1Hz (30 minutes), with or without subsequent contraction (abolished by µ-conotoxin GIIIB). Pharmacological treatments were conducted with the anti-TrkB antibody clone 47/TrkB for TrkB inhibition and exogenous h-BDNF; muscarinic inhibition with Pirenzepine-dihydrochloride and Methoctramine-tetrahydrochloride for M1 and M2 mAChRs, respectively. Diaphragm protein levels and phosphorylation' changes were detected by Western blotting. Location of the target proteins was demonstrated using immunohistochemistry. RESULTS: While TrkB does not directly impact the levels of PKA catalytic subunits Cα and Cß, it regulates PKA regulatory subunits RIα and RIIß, facilitating the phosphorylation of critical exocytotic targets such as SNAP-25 and Synapsin-1. Furthermore, the muscarinic receptors pathway maintains a delicate balance in this regulatory process. These findings explain the dynamic interplay of PKA subunits influenced by BDNF/TrkB signalling, M1 and M2 mAChRs pathways, that are differently regulated by pre- and postsynaptic activity, demonstrating the specific roles of the BDNF/TrkB and muscarinic receptors pathway in retrograde regulation. CONCLUSION: This complex molecular interplay has the relevance of interrelating two fundamental pathways in PKA-synaptic modulation: one retrograde (neurotrophic) and the other autocrine (muscarinic). This deepens the fundamental understanding of neuromuscular physiology of neurotransmission that gives plasticity to synapses and holds the potential for identifying therapeutic strategies in conditions characterized by impaired neuromuscular communication.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteínas Quinasas Dependientes de AMP Cíclico , Unión Neuromuscular , Receptor trkB , Transducción de Señal , Sinapsinas , Proteína 25 Asociada a Sinaptosomas , Sinapsinas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Unión Neuromuscular/metabolismo , Fosforilación , Receptor trkB/metabolismo , Ratas , Masculino , Proteína 25 Asociada a Sinaptosomas/metabolismo , Ratas Wistar , Receptores Muscarínicos/metabolismo
4.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 210-218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945886

RESUMEN

L-Theanine is contained in green tea at 1-3% per dry matter as an amino acid with an umami taste, and the antidepressant effect and protective effect against stress-induced brain atrophy in mice, as well as the related mechanism have been reported. However, effects of theanine on the hippocampus from the proteome analysis and the action mechanism have not been examined. In this study, we mainly investigated the possibility of theanine's cognitive impairment-preventing function and the action mechanism by proteomics in the hippocampus of SAMP8 administered with theanine. In addition to improvement in the aging score with theanine administration, in proteomics, significant suppressions in the expressions of synapsin 2, α-synuclein, ß-synuclein, and protein tau were observed by theanine administration, and the expression of CAM kinase II beta and alpha exhibited a significant increase and increasing tendency with theanine administration, respectively. The expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein tended to increase by theanine administration. On the other hand, serotonin/tryptophan, GABA/glutamic acid and glutamine/glutamic acid ratios in the hippocampus showed an increasing tendency, a significant increase, and an increasing tendency with theanine administration, respectively. These results suggested that theanine might have been involved in the improvement of neurodegeneration or cognitive impairment by suppressing the productions of synapsin, synuclein and protein tau which are considered to be produced along with aging and oxidation, and by enhancing the production of serotonin by increasing the expression of CAM kinase II, and further by affecting the metabolism of glutamate.


Asunto(s)
Envejecimiento , Glutamatos , Hipocampo , Animales , Glutamatos/farmacología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratones , Masculino , Envejecimiento/efectos de los fármacos , Sinapsinas/metabolismo , Ácido Glutámico/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Proteómica/métodos , Suplementos Dietéticos , Serotonina/metabolismo , Dieta/métodos , Ácido gamma-Aminobutírico/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
5.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866497

RESUMEN

Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.


Asunto(s)
Ratones Noqueados , Fibras Musgosas del Hipocampo , Plasticidad Neuronal , Terminales Presinápticos , Sinapsinas , Animales , Sinapsinas/metabolismo , Sinapsinas/genética , Fibras Musgosas del Hipocampo/fisiología , Masculino , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Terminales Presinápticos/metabolismo , Ratones Endogámicos C57BL , Ratones , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Potenciales Postsinápticos Excitadores/fisiología
6.
Cell Death Dis ; 15(4): 304, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693139

RESUMEN

Abnormal intraneuronal accumulation of soluble and insoluble α-synuclein (α-Syn) is one of the main pathological hallmarks of synucleinopathies, such as Parkinson's disease (PD). It has been well documented that the reversible liquid-liquid phase separation of α-Syn can modulate synaptic vesicle condensates at the presynaptic terminals. However, α-Syn can also form liquid-like droplets that may convert into amyloid-enriched hydrogels or fibrillar polymorphs under stressful conditions. To advance our understanding on the mechanisms underlying α-Syn phase transition, we employed a series of unbiased proteomic analyses and found that actin and actin regulators are part of the α-Syn interactome. We focused on Neural Wiskott-Aldrich syndrome protein (N-WASP) because of its association with a rare early-onset familial form of PD. In cultured cells, we demonstrate that N-WASP undergoes phase separation and can be recruited to synapsin 1 liquid-like droplets, whereas it is excluded from α-Syn/synapsin 1 condensates. Consistently, we provide evidence that wsp-1/WASL loss of function alters the number and dynamics of α-Syn inclusions in the nematode Caenorhabditis elegans. Together, our findings indicate that N-WASP expression may create permissive conditions that promote α-Syn condensates and their potentially deleterious conversion into toxic species.


Asunto(s)
Caenorhabditis elegans , Proteína Neuronal del Síndrome de Wiskott-Aldrich , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Animales , Humanos , Caenorhabditis elegans/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Sinapsinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732109

RESUMEN

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Asunto(s)
Diferenciación Celular , Melatonina , Células Madre Mesenquimatosas , Melatonina/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Humanos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Tejido Adiposo/citología , Neuronas/citología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Células de Schwann/citología , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Adulto , Nestina/metabolismo , Nestina/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/citología , Neuroglía/metabolismo , Sinapsinas/metabolismo
8.
Biomolecules ; 14(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38785996

RESUMEN

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 µM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Ácido Glutámico , Gynostemma , Animales , Ácido Glutámico/metabolismo , Ratas , Masculino , Gynostemma/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratas Sprague-Dawley , Sinaptosomas/metabolismo , Sinaptosomas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácido Kaínico/toxicidad , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinapsinas/metabolismo , Fosforilación/efectos de los fármacos , Calcio/metabolismo , Extractos Vegetales
9.
Elife ; 122024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713200

RESUMEN

The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.


Asunto(s)
Hipocampo , Neuronas , Sinapsinas , alfa-Sinucleína , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/química , Células Cultivadas , Hipocampo/metabolismo , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Sinapsis/metabolismo , Sinapsinas/metabolismo , Sinapsinas/genética , Vesículas Sinápticas/metabolismo
10.
Sci Rep ; 14(1): 8515, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609442

RESUMEN

Ticks are obligatory voracious blood feeders infesting diverse vertebrate hosts, that have a crucial role in the transmission of diverse pathogens that threaten human and animal health. The continuous emergence of tick-borne diseases due to combined worldwide climatic changes, human activities, and acaricide-resistant tick strains, necessitates the development of novel ameliorative tick control strategies such as vaccines. The synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is a bioanalytical microprobe capable of exploring the molecular chemistry within microstructures at a cellular or subcellular level and is considered as a nondestructive analytical approach for biological specimens. In this study, SR-FTIR analysis was able to explore a qualitative and semi-quantitative biochemical composition of gut and salivary glands of Hyalomma dromedarii (H. dromedarii) tick detecting differences in the biochemical composition of both tissues. A notable observation regarding Amide I secondary structure protein profile was the higher ratio of aggregated strands in salivary gland and beta turns in gut tissues. Regarding the lipid profile, there was a higher intensity of lipid regions in gut tissue when compared to salivary glands. This detailed information on the biochemical compositions of tick tissues could assist in selecting vaccine and/or control candidates. Altogether, these findings confirmed SR-FTIR spectroscopy as a tool for detecting differences in the biochemical composition of H. dromedarii salivary glands and gut tissues. This approach could potentially be extended to the analysis of other ticks that are vectors of important diseases such as babesiosis and theileriosis.


Asunto(s)
Acaricidas , Ixodidae , Animales , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Glándulas Salivales , Sinapsinas , Lípidos
11.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673871

RESUMEN

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Asunto(s)
Ketamina , Microglía , Ratas Sprague-Dawley , Sinapsis , Animales , Ketamina/administración & dosificación , Ketamina/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Ratas , Masculino , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Traumatismos Cerrados de la Cabeza/patología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Cuerpos Geniculados/patología , Cuerpos Geniculados/efectos de los fármacos , Conmoción Encefálica/patología , Conmoción Encefálica/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Sinapsinas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación
12.
Hum Gene Ther ; 35(9-10): 342-354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38661546

RESUMEN

X-linked retinoschisis (XLRS) is a monogenic recessive inherited retinal disease caused by defects in retinoschisin (RS1). It manifests clinically as retinal schisis cavities and a disproportionate reduction of b-wave amplitude compared with the a-wave amplitude. Currently there is no approved treatment. In the last decade, there has been major progress in the development of gene therapy for XLRS. Previous preclinical studies have demonstrated the treatment benefits of hRS1 gene augmentation therapy in mouse models. However, outcomes in clinical trials have been disappointing, and this might be attributed to dysfunctional assembly of RS1 complexes and/or the impaired targeted cells. In this study, the human synapsin 1 gene promoter (hSyn) was used to control the expression of hRS1 to specifically target retinal ganglion cells and our results confirmed the specific expression and functional assembly of the protein. Moreover, our results demonstrated that a single intravitreal injection of rAAV2-hSyn-hRS1 results in architectural restoration of retinal schisis cavities and improvement in vision in a mouse model of XLRS. In brief, this study not only supports the clinical development of the rAAV2-hSyn-hRS1 vector in XLRS patients but also confirms the therapeutic potential of rAAV-based gene therapy in inherited retinal diseases.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Inyecciones Intravítreas , Ratones Noqueados , Células Ganglionares de la Retina , Retinosquisis , Sinapsinas , Animales , Dependovirus/genética , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Ratones , Terapia Genética/métodos , Retinosquisis/terapia , Retinosquisis/genética , Humanos , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Expresión Génica , Regiones Promotoras Genéticas , Retina/metabolismo , Retina/patología , Técnicas de Transferencia de Gen
13.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608784

RESUMEN

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corteza Cerebral , Modelos Animales de Enfermedad , Enfermedad de Huntington , Neuronas , Sinapsis , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Ratones Transgénicos , Células Cultivadas , Sinapsinas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ratones Endogámicos C57BL
14.
Nat Commun ; 15(1): 2217, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472171

RESUMEN

Neurotransmitter release relies on the regulated fusion of synaptic vesicles (SVs) that are tightly packed within the presynaptic bouton of neurons. The mechanism by which SVs are clustered at the presynapse, while preserving their ability to dynamically recycle to support neuronal communication, remains unknown. Synapsin 2a (Syn2a) tetramerization has been suggested as a potential clustering mechanism. Here, we used Dual-pulse sub-diffractional Tracking of Internalised Molecules (DsdTIM) to simultaneously track single SVs from the recycling and the reserve pools, in live hippocampal neurons. The reserve pool displays a lower presynaptic mobility compared to the recycling pool and is also present in the axons. Triple knockout of Synapsin 1-3 genes (SynTKO) increased the mobility of reserve pool SVs. Re-expression of wild-type Syn2a (Syn2aWT), but not the tetramerization-deficient mutant K337Q (Syn2aK337Q), fully rescued these effects. Single-particle tracking revealed that Syn2aK337QmEos3.1 exhibited altered activity-dependent presynaptic translocation and nanoclustering. Therefore, Syn2a tetramerization controls its own presynaptic nanoclustering and thereby contributes to the dynamic immobilisation of the SV reserve pool.


Asunto(s)
Sinapsinas , Vesículas Sinápticas , Vesículas Sinápticas/fisiología , Sinapsinas/genética , Sinapsis , Transmisión Sináptica/fisiología , Neuronas/fisiología , Terminales Presinápticos
15.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38471782

RESUMEN

Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.


Asunto(s)
Proteínas de Drosophila , Sistema de Señalización de MAP Quinasas , Neuroglía , Neuronas , Terminales Presinápticos , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Sinapsinas , Transmisión Sináptica , Vesículas Sinápticas , Animales , Femenino , Masculino , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Sistema de Señalización de MAP Quinasas/fisiología , Mutación , Neuroglía/metabolismo , Neuroglía/fisiología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo
16.
Cell ; 187(9): 2175-2193.e21, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38552623

RESUMEN

In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Retículo Endoplásmico , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Calcio/metabolismo , Aparato de Golgi/metabolismo , Ratas , Transporte Biológico , Terminales Presinápticos/metabolismo , Sinapsinas/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas del Citoesqueleto/metabolismo , Separación de Fases
17.
Cell Mol Life Sci ; 81(1): 37, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214769

RESUMEN

The mechanism underlying the transition from the pre-symptomatic to the symptomatic state is a crucial aspect of epileptogenesis. SYN2 is a member of a multigene family of synaptic vesicle phosphoproteins playing a fundamental role in controlling neurotransmitter release. Human SYN2 gene mutations are associated with epilepsy and autism spectrum disorder. Mice knocked out for synapsin II (SynII KO) are prone to epileptic seizures that appear after 2 months of age. However, the involvement of the endocannabinoid system, known to regulate seizure development and propagation, in the modulation of the excitatory/inhibitory balance in the epileptic hippocampal network of SynII KO mice has not been explored. In this study, we investigated the impact of endocannabinoids on glutamatergic and GABAergic synapses at hippocampal dentate gyrus granule cells in young pre-symptomatic (1-2 months old) and adult symptomatic (5-8 months old) SynII KO mice. We observed an increase in endocannabinoid-mediated depolarization-induced suppression of excitation in young SynII KO mice, compared to age-matched wild-type controls. In contrast, the endocannabinoid-mediated depolarization-induced suppression of inhibition remained unchanged in SynII KO mice at both ages. This selective alteration of excitatory synaptic transmission was accompanied by changes in hippocampal endocannabinoid levels and cannabinoid receptor type 1 distribution among glutamatergic and GABAergic synaptic terminals contacting the granule cells of the dentate gyrus. Finally, inhibition of type-1 cannabinoid receptors in young pre-symptomatic SynII KO mice induced seizures during a tail suspension test. Our results suggest that endocannabinoids contribute to maintaining network stability in a genetic mouse model of human epilepsy.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Sinapsinas , Animales , Ratones , Endocannabinoides , Ratones Noqueados , Fenotipo , Convulsiones , Sinapsis , Sinapsinas/genética
18.
J Clin Invest ; 134(4)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175724

RESUMEN

The mechanisms behind a lack of efficient fear extinction in some individuals are unclear. Here, by employing a principal components analysis-based approach, we differentiated the mice into extinction-resistant and susceptible groups. We determined that elevated synapsin 2a (Syn2a) in the infralimbic cortex (IL) to basolateral amygdala (BLA) circuit disrupted presynaptic orchestration, leading to an excitatory/inhibitory imbalance in the BLA region and causing extinction resistance. Overexpression or silencing of Syn2a levels in IL neurons replicated or alleviated behavioral, electrophysiological, and biochemical phenotypes in resistant mice. We further identified that the proline-rich domain H in the C-terminus of Syn2a was indispensable for the interaction with synaptogyrin-3 (Syngr3) and demonstrated that disrupting this interaction restored extinction impairments. Molecular docking revealed that ritonavir, an FDA-approved HIV drug, could disrupt Syn2a-Syngr3 binding and rescue fear extinction behavior in Syn2a-elevated mice. In summary, the aberrant elevation of Syn2a expression and its interaction with Syngr3 at the presynaptic site were crucial in fear extinction resistance, suggesting a potential therapeutic avenue for related disorders.


Asunto(s)
Miedo , Corteza Prefrontal , Animales , Ratones , Extinción Psicológica/fisiología , Miedo/fisiología , Simulación del Acoplamiento Molecular , Corteza Prefrontal/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinaptogirinas/metabolismo
19.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256010

RESUMEN

The thermal stability of bovine serum albumin (BSA) in Tris buffer, as well as the effect of sinapic acid (SA) on protein conformation were investigated via calorimetric (differential scanning microcalorimetry-µDSC), spectroscopic (dynamic light scattering-DLS; circular dichroism-CD), and molecular docking approaches. µDSC data revealed both the denaturation (endotherm) and aggregation (exotherm) of the protein, demonstrating the dual effect of SA on protein thermal stability. With an increase in ligand concentration, (i) protein denaturation shifts to a higher temperature (indicating native form stabilization), while (ii) the aggregation process shifts to a lower temperature (indicating enhanced reactivity of the denatured form). The stabilization effect of SA on the native structure of the protein was supported by CD results. High temperature (338 K) incubation induced protein unfolding and aggregation, and increasing the concentration of SA altered the size distribution of the protein population, as DLS measurements demonstrated. Complementary information offered by molecular docking allowed for the assessment of the ligand binding within the Sudlow's site I of the protein. The deeper insight into the SA-BSA interaction offered by the present study may serve in the clarification of ligand pharmacokinetics and pharmacodynamics, thus opening paths for future research and therapeutic applications.


Asunto(s)
Ácidos Cumáricos , Albúmina Sérica Bovina , Ácidos Cumáricos/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Albúmina Sérica Bovina/química , Sinapsinas , Estabilidad Proteica
20.
Brain Res ; 1823: 148671, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952872

RESUMEN

The commonly used general anesthetic propofol can enhance the γ-aminobutyric acid-mediated inhibitory synaptic transmission and depress the glutamatergic excitatory synaptic transmission to achieve general anesthesia and other outcomes. In addition to the actions at postsynaptic sites, the modulation of presynaptic activity by propofol is thought to contribute to neurophysiological effects of the anesthetic, although potential targets of propofol within presynaptic nerve terminals are incompletely studied at present. In this study, we explored the possible linkage of propofol to synapsins, a family of neuron-specific phosphoproteins which are the most abundant proteins on presynaptic vesicles, in the adult mouse brain in vivo. We found that an intraperitoneal injection of propofol at a dose that caused loss of righting reflex increased basal levels of synapsin phosphorylation at the major representative phosphorylation sites (serine 9, serine 62/67, and serine 603) in the prefrontal cortex (PFC) of male and female mice. Propofol also elevated synapsin phosphorylation at these sites in the striatum and S9 and S62/67 phosphorylation in the hippocampus, while propofol had no effect on tyrosine hydroxylase phosphorylation in striatal nerve terminals. Total synapsin protein expression in the PFC, hippocampus, and striatum was not altered by propofol. These results reveal that synapsin could be a novel substrate of propofol in the presynaptic neurotransmitter release machinery. Propofol possesses the ability to upregulate synapsin phosphorylation in broad mouse brain regions.


Asunto(s)
Propofol , Sinapsinas , Femenino , Ratones , Masculino , Animales , Sinapsinas/metabolismo , Propofol/farmacología , Fosforilación , Terminales Presinápticos/metabolismo , Encéfalo/metabolismo , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...